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Abstract: Reference evapotranspiration (ET0) is a major estimator for crop water requirements
predicted by decision support systems for irrigation. However, the impact of different ET0s on the
predicted amount of water supply and counts of irrigation events has not been evaluated. Simulations
of the Geisenheim Irrigation Scheduling (GS) for vegetable crops with two different ET0s, P2-ET0

and FAO56-ET0, were evaluated to assess exemplarily the impact of ET0s. The sensitivity of both
ET0s to local climate conditions was characterized through a random forest analysis, and a linear
regression model was used to adjust the original GS by adapting Kc-values to the exchange ET0.
For assessing the outcomes of GS irrigation decision, simulations of 173 individual cropping cycles
including six vegetable crops over eight years were conducted. After adjusting P2-ET0 Kc-values to
FAO56-ET0 Kc-values, there was no impact of the ET0-model on the practical irrigation scheduling
with GS. Finally, we discuss that any ET0-model, if adjusted accordingly, might have little impact on
similar irrigation systems and provide a method to exchange ET0s.
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1. Introduction

Water resources are limited; however, the worldwide water demand is increasing with a growing
population and industry [1]. The naturally-available water supply is decreasing as a result of changes
in precipitation and water ecosystems caused by climate change [2]. In contrast, horticultural crops
have a high demand for water. Thus, crop growth and quality can only be secured by providing
sufficient irrigation, especially for leafy vegetables. In this context, horticulture is forced to justify
irrigation decisions, as well as optimize water use efficiency. A significant key to meet these challenges
is an efficient and comprehensible irrigation scheduling system. For open field irrigation, there are
several procedures available for estimating crop water requirements [3]. Irrigation scheduling based
on estimating crop water requirements with reference evapotranspiration (ET0) and crop coefficients
(Kc-values), also called “crop water balance (CWB)”, is internationally well-established [4,5]. The CWB
approach has been found to be simple, convenient, and reproducible for many crops in different
climate conditions ([6] and the references therein). The reference evapotranspiration (ET0) represents
the potential evapotranspiration of a model surface or crop. For crop-specific evapotranspiration, ET0

is adapted by Kc-values. Kc-values are scaling factors generated by adjusting the measured actual crop
evapotranspiration (ETc) to a ET0 (Equation (1)).

Kc =
ETc

ET0
(1)

Since Kc-values are a relative measure of the crop’s evapotranspiration, each ET0 and each
CWB model need specifically parametrized and evaluated Kc-values. Therefore, high quality and
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validly-calculated ET0, as well as carefully-parametrized Kc-values, are crucial for the CWB [5].
There are three types of ET0 models: first, models depending exclusively on ambient temperature
(e.g., [7]), second, radiation and temperature-based models [8], and third, combination models
additionally containing aerodynamic properties (e.g., [9]). The ET0 models differ in their calculation
procedures by the effort involved in the calculation, local adjustment, and the quantity and quality of
data acquisition for precise ET0 estimates. The FAO56 Penman–Monteith-ET0, which is a combination
model (FAO56-ET0; [5]), is currently the commonly-used and most positively-evaluated ET0 [10–12].
It is used in the “Kc-ET0 approach” to calculate and schedule crop irrigation [4,5]. Besides the FAO24
Kc-ET0 approach, there are further CWB procedures or software-based irrigation recommendation
systems, as reviewed by Cahn and Johnson [3] (Section 4.1). Some of them represent more advanced
decision support systems for irrigation scheduling [13–22]. Their underlying concept of ETc estimation
is similar to the above-mentioned approach. One of these is the Geisenheim Irrigation Scheduling (GS),
which is locally developed and applied under German climate conditions [23]. The GS approach is
similar to the FAO56 single Kc procedure (see the Materials and Methods). GS has been developed over
the past 30 years, and there are Kc-values evaluated for about 27 vegetable crops [24]. For calculating
GS, as well as the evaluation of the corresponding Kc-values, the Penman-ET0 [9] has been used, which
was adapted and adjusted for the research site (further called P2-ET0). An external service provider
supplied this P2-ET0. This is not unusual, since some ET0s, as the FAO56-ET0, are data demanding,
and for some regions, the availability of all required model parameters is limited. Therefore, there
are efforts to utilize statistically-adjusted and less data-demanding ET0 models (e.g., [10,25–31]).
Consequently, the P2-ET0 data, like any other statistically- or methodically-adjusted ET0, is proprietary
and exclusively available for the research site. To overcome this lack of universal applicability and, in
our case, to eliminate the dependency on an external service provider, it can be necessary to exchange
the ET0 used to calculate CWB.

However, the effect of this ET0 exchange on the recommendations of a decision support system
for vegetable irrigation is not yet known: Federer et al. [32] found ET0s to differ in their accuracy,
affected by different climates and regions, with no consistent trend. Therefore, in general, there should
be differences between P2-ET0 and FAO56-ET0. Further, there have been attempts to optimize the ET0

used in dynamic crop models, e.g., in a maize model, the effects of different ET0s were assessed, finding
no statistical difference in the modeling-based conclusion [33]. Hence, the ET0 exchange might not
affect the basic functionality of GS, also considering it is a much simpler model. However, this kind of
models covers only one specific crop. Furthermore, they evaluate the effect of ET0 on the performance
of crop growth systems rather than the quality of irrigation decisions. Xu and Chen [34] found small
deviations in water balances depending on different ET0s in a model for groundwater recharge. This
suggests that different ET0s might produce small deviations in crop water balances, as well. Even
though, the impact of different ET0s on decision support systems for vegetable irrigation has not been
evaluated so far. To fill this gap, we assess exemplarily the impact of P2-ET0 and FAO56-ET0 on GS
irrigation recommendations.

To exchange the ET0 model in an irrigation decision support system, several requirements have
to be met. These requirements are described for GS in the following points: (I) The ET0 model has to
provide a reliable estimation of ET0 without the need for adjustments to local conditions and a robust,
well-documented calculation procedure with broad application and implementation. (II) The ET0

model requires a similar sensitivity to the input data such as temperature, air humidity, global radiation,
and wind speed as P2-ET0. (III) The exchange of the ET0 model has to be enabled via an adjustment of
the Kc-values to sustain GS for practical application. (IV) The exchanged ET0 model should produce
similar irrigation patterns and volumes as the original ET0 model. We assumed that GS could be driven
with FAO56-ET0 by using statistically-adjusted Kc-values, which were evaluated with P2-ET0, without
significant changes in the resulting irrigation patterns and volumes. This study focused on performing
sensitivity analysis for ET0 values and the statistical adjustment of Kc-values for FAO56-ET0 with an
added validation with computer simulations. We hypothesize that CWB procedures, in general, do not
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solely depend on the ET0 and can be driven with different ET0s, producing the same outcomes when
adjusted correctly. This paper will describe a method that may enable the adjustment of irrigation
decision support systems with similar constraints in ET0 data availability.

2. Materials and Methods

2.1. Geisenheim Irrigation Scheduling

Geisenheim Irrigation Scheduling [23,24] is a decision support system for sprinkle irrigation
management of vegetable crops. GS was developed in Geisenheim (Germany, Hesse, lat 49.98
long 7.96, soil: sandy loam, mean precipitation 549 mm/a) over the past 30 years. It is parametrized for
27 vegetable crops. These parametrizations are based on marketable yield. The underlying principle of
GS is a crop water balance. Parameters of GS have been evaluated in an open-air gravimetric container
system (similar to lysimeters), as well as in multi-annual open field experiments. The actual crop
transpiration and soil evaporation (ETc) is balanced with the incoming precipitation and irrigation over
the cultivation time on daily steps (see Equation (3)). For calculating ETc, GS uses an ET0 adjusted by
Kc-values, representing the crop’s evapotranspiration (see Equation (2)). The Kc-values are gradually
adjusted over the cultivation period in stages, depending on the phenological development of the
crop, which is measured in BBCH (“Biologische Bundesanstalt, Bundessortenamt und CHemische
Industrie”) code states [35]. The calculation of the GS procedure can be described as follows: first, crop
Kc-values and rooting depths with their corresponding developmental stages are selected from the GS
data tables [24]. Second, the irrigation thresholds for every developmental stage are calculated. The
thresholds represent the soil water content available for evapotranspiration (mm) and are determined
by the available field capacity of the soil (AFC) concerning the maximum rooting depth and the rooted
zone of the crop at the corresponding developmental stage. For each crop’s developmental stage,
there is an individual number of soil layers defined. Thus, the first threshold equals the soil water
content in the first rooted soil layer held between 60% to 90% AFC; the next threshold consists of 60%
to 100% AFC of the first layer plus 60% to 90% AFC of the second layer. The AFC in the first layer is
held to 90% to prevent nutrient leaching due to precipitation. This procedure applies to all following
layers and developmental stages, accordingly. Third, a starting point for the soil water content for
the field is set. This point is defined at 90% AFC. Either the corresponding soil water content can be
measured gravimetrically or it can be induced by extensive irrigation or precipitation, filling the soil
pores with water. This results in the soil reaching field capacity approximately two days after. At the
beginning of cultivation, the calculation of the CWB starts with the daily crop water balance. Therefore,
daily ETc is calculated from ET0 and the current Kc-values (Equation (2)), which is balanced with the
precipitation and irrigation of the day. This daily water balance is then summed up over the cultivation
period as the total water balance (see Equation (3)). If this total water balance equals or exceeds a
deficit equivalent to the respective irrigation threshold, this amount of water is recommended for
irrigation (see Equation (4)). In case total water balance exceeds 100% AFC due to an irrigation or
rainfall event, this water drains into deeper soil layers, and the total water balance is set to zero. If this
excess is caused by heavy rainfall, causing a total saturation of the coarse soil pores, the calculation
is interrupted for two days to allow the coarse soil pores to drain again to field capacity. Over the
whole cultivation period, phenological development of the crop is observed regularly, so, by reaching
the defined BBCH code states, Kc-values and irrigation thresholds for the daily calculation step are
adjusted to the next stage.

ETc = Kc · ET0 (2)

water balanceGS =
End

∑
Start

irrigation + rainfall− ETc (3)

if water balanceGS ≥ water threshold⇒ irrigation (4)
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2.2. Data

Weather data from the years 2000–2009, as well as the P2-ET0 were recorded daily, nearby
the experimental site in Geisenheim and provided by the German weather forecast (DWD)
(http://www.dwd.de). FAO56-ET0 was calculated from these weather data. The corresponding
units and abbreviations of the data are displayed in Table 1.

The calculation of FAO56-ET0 was based on the standard procedure as described by Allen et al. [5]
for daily steps. This includes the use of maximum and minimum air temperatures and the zeroing of
soil heat flux (G = 0; see Equation (5)). Contrary to the recommended procedure, actual vapor pressure
(ea) is calculated by Equation (6). This is because the minimum and maximum air humidity were not
logged and thus were not available for the recommended calculation procedure. For GS simulations,
a total of 173 individual recorded cultivation datasets from years 2000–2008 were used. They include
Kc-values and BBCH state dates for six cultivars: cauliflower (Brassica oleracea var. botrytis L.), broccoli
(Brassica oleracea var. italica Plenck), bush bean (Phaseolus vulgaris), carrot (Daucus carota subsp. sativus),
leek (Allium porrum), and onion (Allium cepa).

Table 1. Overview of the daily weather data with units and abbreviations.

Value Abbreviation Unit

Penman-P2-ET0 P2-ET0 mm · d−1

FAO56 Penman–Monteith-ET0 FAO56-ET0 mm · d−1

Temperature mean (24 h) Temperature ◦C
Temperature mean (max/min) Tmm ◦C
Temperature maxima Tmax ◦C
Temperature minima Tmin ◦C
Relative air humidity mean (24 h) AirHumidity %
Global radiation Radiation MJ ·m−2 · d−1

Wind speed at 2 m height mean (24 h) Windspeed2m m · s−1

FAO56-ET0 =
0.408∆(Rn − G) + γ 900

T+273 u2(es − ea)

∆ + γ(1 + 0.34u2)
, (5)

where
FAO56-ET0 is reference evapotranspiration (mm · d−1),
Rn net radiation at the crop surface (MJ ·m−2 · d−1),
G soil heat flux density (MJ ·m−2 · d−1),
T mean daily air temperature at 2 m height (◦C),
u2 wind speed at 2 m height (m · s−1),
es mean saturation vapor pressure (kPa),
ea actual vapor pressure (kPa),
es − ea saturation vapor pressure deficit (kPa),
∆ slope vapor pressure curve (kPa · ◦C−1), and
γ psychrometric constant (kPa · ◦C−1), and:

ea =
RHmean

100
es, (6)

where
ea is actual vapor pressure (kPa),
es mean saturation vapor pressure (kPa), and
RHmean mean relative air humidity (%).

http://www.dwd.de
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2.3. Sensitivity Analysis with Random Forest

The differences of P2-ET0 and FAO56-ET0 were statistically assessed by an analysis of sensitivity
to the environmental conditions in Geisenheim (weather data 2000–2009) using a random forest
model [36,37]. In contrast to classical sensitivity analysis methods, which often observe local and
one-dimensional parameter sensitivity, random forest allows for global multidimensional estimates
of parameter sensitivity [38]. The random forest algorithm builds randomly-generated “regression
decision trees”. For each tree, the algorithm samples a random subsample of the input and training
data, which is known as “bagging”. This machine learning model was built for P2-ET0 and FAO56-ET0

depending on the weather data, which also included the measuring date as a predictor. The random
forest regression trees were built by using three of eight variables (Table 1, plus date as a variable) in
each tree, in a total of 500 trees for each ET0. To determine the count of variables in each tree, the square
root of total variables was rounded to the next full number [37]. The sensitivity was assessed by the
inherent variable importance of the random forest models. It was measured as a relative increase in
mean squared error (%IncMSE), as recommended by Breiman [37]. This value describes the increase in
predicting performance loss of the random forest model if the factor in question is excluded from the
model. The variable importance is statistically independent of the parametrization data, because it
is generated from bagged data and, is thus, a very reliable value [36]. The relative rank of %IncMSE
compared the sensitivity of the random forest ET0 models to the input variables, since the absolute
value has no meaning for a comparison of random forest models. The random forest function used
to predict either FAO56-ET0 or P2-ET0 out of the most important variable (factor) of the models was
plotted to compare them visually.

2.4. Regression Model

To utilize P2-ET0-Kc-values (P2-Kc) in the calculation of GS with FAO56-ET0 as FAO56-Kc, a linear
regression model without intercept was parametrized. This simplified model approach enables the
easy mathematical transposition from ET0 to Kc-values as follows: The abundance of an intercept
allows for a static adjustment of Kc-values, without the need for daily recalculations depending on
ET0. Consequently, P2-ET0 was predicted from FAO56-ET0 (Equation (7)), so that P2-Kc could be
transposed to FAO56-Kc (Equation (8)). For parametrization of the regression model, we used the
dataset from 2009 and excluded it from simulation data to maintain statistical independence to prevent
overfitting. The performance of the regression model was assessed via residual standard deviation,
relative residual standard deviation, and analytical plots of the residuals versus predicted values.

P2-ET0 = x · FAO56-ET0 (7)

(7) in (2):
ETc = (P2-Kc · x) · FAO56-ET0 (8)

2.5. Simulations

Computer simulations of GS were evaluated to assess the predicting performance of the FAO56-Kc

model. The impact of a replaced ET0 and statistically-adjusted Kc-values in contrast to the original
GS was measured by comparing simulations of irrigation events. Weather data from 2000–2008 and
cultivation data for the six crops (see Section 2.2) were input into an R-script (see Section 2.6), which
implemented both ET0s in GS (GSP2, GSFAO56).

The FAO56-Kc in GSFAO56 were statistically adjusted through the parametrized regression model
(see Section 2.4). Since precipitation adds a random error to the irrigation calculations, precipitation
data were excluded for these simulations. Hence, no calculation pauses due to an excessive water
supply for the soil were included in the simulations. The model output was summarized as differences
in the total amount of water given (IWD), the total count of irrigation events (IC GSP2, IC GSFAO56),
and differences in the total count of irrigation events (ICD) for each of the six crops.
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2.6. Computer Software

All statistical analyses and simulations were calculated using the R-programming language [39].
For the random forest model generation, the package randomForest was used [40]. Graphs were
produced with the R-Package ggplot2 [41] with the color palette developed by Brewer [42]. The document
was built with LATEX and the dynamic document generation package knitR [43–45].

3. Results and Discussion

3.1. Regression

To adjust P2-Kc statistically for the use with FAO56-ET0 in GS, we conducted a regression
analysis between P2-ET0 and FAO56-ET0 with a simple linear regression model without intercept.
P2-ET0 was predicted by 1.33 · FAO56-ET0 with a residual standard deviation of 0.37 mm (Figure 1).
This corresponds to a relative error of 0.13%. The regression model (Figure 1) fit well to the data. The
analytical plot of the residuals versus predicted revealed a very slightly skewed relationship at low
and high ET0 values (blue line, Figure 2). The residuals of this model subsided at low and high values.
Additionally, the residual mean (red dotted line) did not match the zero (black dotted line) exactly
(Figure 2). These observations indicate a slight underestimation of the regression model and might
question the linearity of the model. There might be better-fitting statistical models to estimate the
relationship between P2-ET0 and FAO56-ET0. However, our model is the only approach that allows for
a one factorial adjustment of the Kc-values without the influence of the ET0. Consequently, FAO56-Kc

were calculated by 1.33 · Kc,P2 (Equations (7) and (8)). A final evaluation of this regression model
requires the combination with the irrigation model, which is described in Section 3.3.

y = 1.33x

0

2

4

6

8

0 2 4 6 8
FAO56-ET0 [mm · d−1]

P2
-E

T 0
[m

m
·d

−
1 ]

Figure 1. Simple linear regression model (blue line) for P2-ET0 ∼ FAO56-ET0 (mm · d−1). Data for the
year 2009, Geisenheim, Germany.
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Figure 2. Residuals (mm · d−1) versus predicted (mm · d−1) plot of the regression model P2-ET0 ∼ ET0:
P2-ET0 − P̂2-ET0 versus P̂2-ET0. With the null line (black), residual mean (red line), and polynomial
trend line of residuals (blue line, y = 1.07 · x2 − 0.82 · x− 0.04, α = 0.01, adj.R2 = 0.03).

3.2. Sensitivity of Random Forest

The factor importance of the FAO56-ET0 and P2-ET0 random forest models is shown in Figure 3.
In both cases, the most important factor was global irradiation, followed by air temperature and relative
air humidity. The overall order of the variables differed only slightly. Consequently, it was likely
that there were no significant differences in the fluctuations of P2-ET0 and FAO56-ET0 at the research
site. This conclusion is supported by the partial dependence plot for the most important variable,
global radiation (Figure 4). Both ET0 models followed the global radiation similarly. For instance,
irregular patterns such as the sudden rise of the curves between 12 MJ ·m−2 · d−1 to 15 MJ ·m−2 · d−1

were present in both models. These findings suggest that a simple linear scaling factor, as achieved
with the regression model, may be capable of adjusting both ET0s on an equal value. Moreover, a
similar order of sensitivity rankings in the main vegetation period was also found for FAO56-ET0, e.g.,
by Gong et al. [46], DeJonge et al. [47]. Due to this, the method for P2-ET0 to FAO56-ET0 adjustments
appears applicable in other regions, as well.

Date

Windspeed2m

Tmin

Tmm

AirHumidity

Tmax

Temperature

Radiation

0.0 0.5 1.0 1.5
%IncMSE

FAO56-ET0

Date

Tmin

Windspeed2m

Tmm

AirHumidity

Temperature

Tmax

Radiation

0 1 2 3
%IncMSE

P2-ET0

Figure 3. Ranks of variable importance (%IncMSE), for the Random Forest Models P2-ET0 and
FAO56-ET0, using weather data of the years 2000–2009 (Explanation of parameters in Table 1).
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Figure 4. ET0 (mm · d−1) predicted by global radiation (MJ ·m−2 · d−1), based on functions of random
forest models for P2-ET0 and FAO56-ET0. The shaded box marks a similar the sudden rise of both ET0s
in response to the global radiation.

3.3. Simulations of GS

The comparison outcomes for GSP2 and GSFAO56 are shown in Table 2. Aggregated results are
presented for the six vegetable crops. There are averaged and relative differences of totaled irrigation
water (IWD) and counted irrigation events (ICD). The mean IWD varied between 1.18% for broccoli and
6.76% leek. This means that irrigation with the original P2-ET0-driven GS produced higher amounts
of irrigation water than the FAO56-ET0 adjusted GS. The highest standard deviation was observed in
bush beans (12.57%) with a mean IWD of 5.45%. This may be due to the high variability in cultivation
periods, which is also represented by the standard deviation of IC FAO56-ET0 and IC P2-ET0 (Table 2).
The boxplot (Figure 5) pictures the distribution patterns of the IWD. A widespread distribution of IWD
was observed in bush bean. ICD ranged between 0.25 and 0.76 counts (Table 2). Thus, on average, there
was a 0.45 irrigation events difference between the simulated GS irrigation scheduling systems. The
simulations of broccoli, carrot, cauliflower, leek, and onion seemed to generate negligible differences
in irrigation water when compared to common water distribution patterns produced by sprinkler
irrigation. For instance, the variation of the applied amount of water from common sprinkler irrigation
techniques in comparison to the water available to the crop was reported between 55% to 85% [48].
Zhang et al. [49] described an average sprinkler system uniformity (defined as the distinct distribution
uniformity of water applied in the whole irrigation system on the field). They found a sprinkler system
uniformity of 79% on average over several sprinkler types and terrain topographies. The ICD of the
simulations strengthen the implication that there are negligible differences between GSP2 and GSFAO56
for practical irrigation purposes. The ICD did not exceed one irrigation on average (Table 2).

The distribution of ICD is given in Figure 6. In 59% of the cases, there were no differences between
GSFAO56 and GSP2 at all. Over all crops, the ICD showed that GSFAO56 irrigated slightly less often than
GSP2. One less irrigation event was simulated in 36% of all irrigation events. Two fewer irrigation
events were simulated in only 5% of the cases (n = 173). Nonetheless, crops, which were the most likely
to have simulated two fewer irrigation events, leek and onion, produced a mean IWD of just 6.76%
and 1.87%. This low level of different water supply was also covered by the technical constraints of
common irrigation techniques mentioned above. Overall, the simulation results met our expectations
concerning the exchange of the ET0 with adjusted Kc-values for GS. The exchange resulted in similar
irrigation patterns and water volumes for our simulation study.
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Figure 5. Boxplot of relative irrigation water differences (IWD %), GSP2 − GSFAO56, by GS simulations
for the six vegetable crops. Black line = median, Boxes = second and third quantile, points = outliers.
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Figure 6. Occurrence (%) of irrigation count differences, ICD, of GSP2 relative to GSFAO56 (GSP2−GSFAO56)
as simulated using the six vegetable crops.
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Table 2. Simulation results comparing GSP2 and GSFAO56 (GSP2 − GSFAO56) with mean irrigation
water differences (%) (IWD), mean irrigation counts for both models (IC GSP2, IC GSFAO56), and mean
irrigation count differences (ICD) and their corresponding standard deviation.

Crop IWD ± IC GSP2 ± IC GSFAO56 ± ICD ±

Broccoli 1.18 3.38 11.50 2.32 11.75 2.70 0.25 0.45
Bush bean 5.45 12.57 7.46 1.80 7.75 1.86 0.29 0.46

Carrot 2.84 4.19 15.98 3.83 16.36 4.01 0.39 0.54
Cauliflower 4.03 4.32 16.78 1.82 17.44 2.10 0.67 0.63

Leek 6.76 7.14 17.00 5.36 17.76 5.54 0.76 0.70
Onion 1.87 5.88 17.25 4.58 17.58 4.74 0.33 0.65

3.3.1. The Precision of the CWB and ET0 Model

The limits and validity range of both the CWB procedure and the ET0 model are crucial for a better
comprehension of the limits and validity range of our study. Individual, local parametrizations of
FAO56-ET0 can also cause daily, site-specific errors ranging from−4% to 15% [12]. These errors may be
related to the non-linear residual deviations due to the exclusion of the intercept in the model (Figure 2).
However, also Xu and Chen [34] found a maximum error of 10% for CWB models, when used to
calculate groundwater recharge, that have not been calibrated for their research site. Apart from the
variability, the mean IWD was positive over all crops. This may be due to the differing assumptions
of the Penman reference evapotranspiration and the FAO56-ET0. Penman is known to overestimate
ET0, because of the hypothesized free evaporating water surface [5]. This is accounted for in the
FAO56-ET0 using crop surface resistances. Therefore, the observed decrease in amounts of irrigation
water and count of irrigation events might also be an improvement over the original GS. The irrigation
decision may be more resource efficient, by recommending fewer irrigation events due to a more
accurate representation of ETc. Furthermore, similar comparison between a Penman-1963-ET0 and
the FAO-modified Penman-ET0 equation produced a difference of 23% in annual ET0 [50]. However,
the observed difference of 33% (factor 1.33) in our study in comparison to the difference of 23% [50]
may be caused by different climate conditions and the modifications in the P2-ET0.

3.3.2. Numerical and Statistical Issues

The statistical and numerical features of the model were essential constraints when rating the
outcome of this study. In the first instance, as for any other model, parametrization an experimental
validation was necessary for other locations. Further, the regression factor of 1.33 to adjust P2-Kc

to ET0 may be titled as “yet another trimming screw”. However, this factor influences the resulting
irrigation decisions in GS simulations. When compared with terms like the albedo coefficient used
in the Penman–Monteith-ET0 or the whole net radiation model in different ET0s, the observed effect
of these factors might be similar to the Kc-values’ adjustment at the end. As a generalization, the
regression model used was a one-factor representation of the differences between FAO56-ET0 and
P2-ET0. Simplified and less data-demanding models to predict ET0 are frequently reported in the
literature [10,25–31]. In these studies, the authors successfully adjusted statistical ET0 models for their
region with FAO56-ET0 as a reference, also neglecting the physically-based assumptions made in the
FAO56-ET0.

Further, it is in the nature of statistical model parametrizations to fit for the parametrization
site. This is even true with bad parametrization for a single submodel in a complex model. However,
with each additional parameter, an additional source of error arises. The more different the location
from the parametrization site, the more significant is the error, due to overfitted parameters. Thus,
the single parameter Kc-value model may work as well as, or outperform, complex models at other
non-parametrization sites.
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Another cause of differences in the simulations might be the binary nature of the irrigation trigger,
amplifying the contrast between the models. However, no examinations were carried out to determine
whether an irrigation event occurred one or two days after the end of the irrigation model period.
Since precipitation was excluded for simulations, it is likely that the influence of natural precipitation
patterns may decrease or also level the observed differences.

3.3.3. Practical Considerations

Based on the study, GS seemed to be useful for practical application with statistically-valid
adjusted Kc-values and FAO56-ET0. As it is a decision support system for irrigation scheduling,
one fewer recommended irrigation has little practical meaning. In contrast to the considerable impact
that natural precipitation, as well as a false prediction of this precipitation may have on cultivation and
irrigation practice, the influence of the model recommended irrigation water may vanish. Moreover,
two fewer simulated irrigation events may result in very different patterns if natural rainfall comes
into consideration. Furthermore, irrigation decisions are, in practice, considered based on many other
technical constraints, e.g., availability of irrigation systems and pest control. Those constraints might
find consideration in complex future irrigation decision support systems.

As emphasized before, we used a simple method to estimate and adjust the differences necessary
to facilitate the future use of GS. There is a need for simple methods for decision support systems
because GS has to serve as a practical model for an economic decision. An overly complicated system
might lead to failure, because of the need for dedicated labor to evaluate the model and adjust it for the
needs of the farm, also reducing the economic value of the complex. Additionally, the transferability
of GS might be facilitated by this simple method, as we eliminated the dependency on an external
service provider for calculating GS. Moreover, the FAO56-ET0 adjusted Kc-values may be more easily
modified for other climates by the method of Allen et al. [5], enabling the use of GS in other regions.

4. Conclusions

In the Geisenheim Irrigation Scheduling, the reference evapotranspiration P2-ET0 can be replaced
by the scientifically known ET0 to form FAO56-ET0. Both ET0s have a similar sensitivity to the weather
conditions on the parametrization and evaluation site of GS in Geisenheim. With this prerequisite
fulfilled, it was possible to parametrize a simple linear regression model to transpose Kc-values from
P2-ET0 to the use with FAO56-ET0. Therefore, the practical application of GS is possible with FAO56-ET0

and adjusted Kc-values. GS produces similar irrigation recommendations with the ET0 changed to
FAO56-ET0 with adjusted Kc-values as with P2-ET0 and the original Kc-values. Furthermore, there is a
potential for optimized irrigation recommendations with the more physically-adequate FAO56-ET0.

This study enabled us to eliminate the dependency on external weather service and to provide the
Geisenheim Irrigation Scheduling with a commonly-available ET0 for a universal application. In the
process of the evaluation of the ET0 exchange in GS, we used random forest as the statistical procedure
to assess the local sensitivities of the two ET0s. It proved to be a valuable tool and may be of good use
in similar “black box” applications. We replicated irrigation events with computer simulations from
GS with FAO56-ET0 and yielded nearly the same outcome concerning common irrigation practices.
The ET0 model itself has no impact on the practical irrigation scheduling recommendations of GS.
Thus, the validity of a similar irrigation decision support system based on CWB might be independent
of the incorporated ET0, as well, if adjusted accordingly. Overall, we provide a proven method to
adjust CWB procedures to an exchanged ET0.
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Abbreviations

The following abbreviations are used in this manuscript:

AFC Available field capacity of the soil
BBCH Crop phenology index
CWB Crop water balance
GS Geisenheim Irrigation Scheduling
ET0 Reference evapotranspiration
ETc Actual crop evapotranspiration
FAO56 Reference evapotranspiration based on the FAO56 paper
GSFAO56 GS simulation model with FAO56
GSP2 GS simulation model with P2
ICD Differences in total counts of irrigation events
IWD Differences in total amounts of irrigation water
P2 Adjusted Penman reference evapotranspiration
%IncMSE Relative increase in mean squared error
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