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Abstract: The growing population of tropical countries has led to a new awareness of the importance
of vegetables as a source of essential foods and nutrients. The success of vegetable cultivation depends
to a large extent on high-quality seedlings. This work aimed at evaluating the effects of different
substrates and different nutrient solution concentrations on the development of lettuce and Chinese
cabbage seedlings in a semi-arid tropical area. Three independent experiments were conducted at
the Soil and Water Research Station at Yezin Agriculture University, Myanmar (Myanmar, 19.83◦ N;
96.27◦ E). In all experiments a randomized block design was implemented with four treatments
and three repetitions. In the first experiment the adaptability of lettuce seedling to two substrates
(namely a Hulls Manure mix composed by 50% of mature cattle manure and 50% of carbonized rice
husk and a soil based substrate constituted by 70% local soil, 20% burned rice husk, and 10% fresh
cattle manure) and two nutrient solutions with different electrical conductivities (ECs) (W0.1, stored
rainwater with EC = 0.13 dS m−1 and NS1.2, nutrient solution with EC = 1.20 dS m−1) were tested.
In the second and third experiments, two species (lettuce and Chinese cabbage) were assessed for
their response to nutrient solution concentrations. In both crops, 4 fertigation treatments (W0.1; NS0.6;
NS1.2; and NS1.8) were supplied, by modulating the concentration of a compound mineral fertilizer
(15:15:15) in the following ranges: W0.1: 0 g L−1, electrical conductivity (EC) 0.13 dS m−1, NS0.6:
0.3 g L−1, EC of 0.60 dS m−1; NS1.2: 0.6 g L−1, 1.2 dS m−1 EC, and NS1.8: 0.9 g L−1, 1.8 dS m−1 EC.
Adopting different substrates and applying different nutrient solutions significantly affected growth
(fresh weight and leaf morphology) and some physiological parameters (stomatal conductance, leaf
temperature, and leaf chlorophyll content) of lettuce and Chinese cabbage seedling. From the first
experiment, the combination of the soil based substrate and NS1.2 treatments allowed us to improve
the seedlings’ growth. In the second experiment, highest growth of lettuce and Chinese cabbage
seedlings was associated with NS1.2 and NS1.8, respectively. The presented results allow for the
optimization of both growing media and nutrient solution management when lettuce and Chinese
cabbage seedling are produced in the Central Dry Zone of Myanmar.

Keywords: seedling quality; plant nursery; electrical conductivity; Lactuca sativa L.; Brassica juncea

1. Introduction

Climate change and the world population increase are leading to a new awareness
on the importance of vegetable crops as a source of food. This is particularly relevant,
since vegetables can supply essential nutrients (e.g., vitamins and minerals) that are oth-
erwise not available from other foods [1] Moreover, the current sanitary emergency due
to the COVID19 pandemic will likely reinforce the importance of getting knowledge and
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awareness regarding the cultivation of their own vegetables to increase family food se-
curity [2,3]. Small scale production of vegetables can improve food security and build
greater resilience, mainly in vulnerable families [4]. The Central Dry Zone of Myanmar
(CDZ-Myanmar) lies in the central area of the country, crossed by the Ayeyarwady River,
between latitudes 19◦20” to 22◦50” and longitudes 93◦40” to 96◦30”. The area covers about
13 percent of the country’s total area with a population of roughly 14.5 million, close to a
third of the country’s population (WFP 2011). The CDZ-Myanmar population’s livelihood
is highly dependent on the south-west monsoon, which provides the region’s annual share
of rainfall. Precipitations are mostly confined to the period from June to mid-October [5].
The local horticulture production is basically limited to onion cultivation grown along
the beds and banks of the surface streams. Other vegetables (tomato, Chinese cabbage,
lettuce, chili pepper, roselle, and pumpkin) are cultivated for home consumption only
and solely during the rainy season but actually, no particular care is paid to horticultural
production [6]. People living in the CDZ-Myanmar generally face a food insecurity gap
varying from 4 to 6 months each year and have to deal with irregular incomes due to
limited job opportunities. As emerged by the World Food Programme’s survey of 2013 [6],
food insecurity in the CDZ-Myanmar is mainly associated with poor access to food and
markets. The limited alternative sources of income makes the picture even more gloomy.
Furthermore, in the CDZ-Myanmar no farmer can produce vegetables regularly due to
a limited shortage of natural resources, limited budget, and know-how, and the scarce
access to innovative technologies for vegetable production. Accordingly, the local villagers’
diet has been found unbalanced and extremely poor in vitamins and micronutrients, at
least for half a year [7]. Fostering people to grow their own vegetables to reduce the food
insecurity gap is therefore crucial. Nevertheless, the starting point to ensure final vegetable
cultivation success depends mostly on high-quality seedlings [1]. Chinese cabbage (Brassica
juncea L.) and lettuce (Lactuca sativa L.) are two extensively grown vegetables in Myanmar.
In the CDZ-Myanmar, the production of Chinese cabbage is elevate, reaching 763 MT
year−1 while lettuce production is more limited, accounting for around 90 MT year−1 [8].
However, the increase of leaf fresh vegetable production is one of the priorities identified by
national and international agencies to stimulate farm diversification and improve the diet
of people living in CDZ-Myanmar [9]. From a nutritional perspective, both crops belong to
the so-called green leafy vegetables, whose relevance in the diet is associated with their
contributions in fibers, vitamins, and minerals (including calcium, iron, and phosphorous),
carotenoids, and other antioxidants [10–12]. People living in CDZ-Myanmar consume min-
imal amounts of fresh vegetables while consuming mainly cooked vegetables [13]. Chinese
cabbage is consumed fried, resulting in some nutritional value loss because vitamins and
antioxidants are lost through oxidation [14]. Generally, lettuce and Chinese cabbage are
transplanted, therefore appropriate seedling development is required. In countries with
more developed economies (e.g., Europe or North America), seedlings are usually supplied
by professional nurseries, who adopt commercial substrates in standard trays [15], which
allow for saving both substrate and space. On the other hand, in South-East Asia, vegetable
seeds are usually sown directly in the field, resulting in unequal distribution of seeds and
subsequently uneven emergence and growth of seedlings [16]. Good quality seedlings
guarantee a high rooting rate after transplanting, besides requiring less phytosanitary
treatments [17]. Furthermore, seedlings uniformity growing rate allows to save water,
while also reducing damage to plants’ roots at the time of transplanting [18]. A main
challenge for the vegetable production sector in the CDZ-Myanmar is represented by the
scarce availability of good-quality seedlings [19]. This study aims to assess the efficiency of
simplified methodologies for the local production of lettuce and Chinese cabbage seedlings
in CDZ-Myanmar by comparing two locally available substrates and different concentra-
tions of a nutrient solution obtained by using a local compound fertilizer. The assumption
is that the adoption of improved vegetable seedling production methodologies can ensure
better quality seedlings, as compared to current production techniques. The study inte-



Horticulturae 2021, 7, 64 3 of 15

grates figures from different crop features and management strategies to elaborate specific
recommendations on the optimal management of seedling production.

2. Materials and Methods
2.1. Location

Three experiments were conducted in open field conditions at the Soil and Water
Research Station of Yezin Agriculture University located in the University Campus, CDZ-
Myanmar, 16 km from the Capital Naypyidaw (19◦83′ North and 96◦27′ East, 122 m a.s.l.)
(Figure 1a,b). According to Köppen’s classification, the local climate is the Aw type, which
is tropical rainy with dry summer and rainy season concentrated between June and October.
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2.2. Plant Material and Crop Management

The first two experiments were performed on lettuce (Lactuca sativa L.) cv. Green wave
(Evergreen seeds, Sunnyvale, CA, USA), while the third one was carried out on Chinese
cabbage (Brassica juncea L.) cv. Pavito (East West Seeds, Nanning, China). Both cultivars are
commonly sold in the local market of the main cities of CDZ-Myanmar such as Sagaing,
Magway, and Mandalay. Sowing took place on 9 January 2020 (first experiment) and
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27 February 2020 (second and third experiment). Crops were sown manually in 105 cells
plastic seedling trays. The sizes of the seedling tray were the following: 45 cm length; 28 cm
width and 5.5 cm dept. Plant density was 833 plants m−2. Seedling trays were placed on
a simple wooden/bamboo frame covered with a 70% shading net (Figure 1c) to reduce
sunlight intensity while preserving air circulation from the open sides. For five days after
sowing, irrigation was carried out only with clear water three times per day (at 7 a.m.,
11 a.m., and 3 p.m.). When 80% of seedlings presented fully expanded cotyledons, the
germination process was considered completed, and treatments started. Plant fertilization
was managed to supply 1 L per tray of nutrient solution twice a day (7 a.m. and 3 p.m.)
while only water was supplied once a day at 11 a.m. using a 1-L watering can.

2.3. Treatments and Experimental Design

Experiment 1: A total of four treatments were considered, obtained by the factorial
combination of two substrates (soil based substrate, SBS, and Hulls Manure mix, HM-mix)
and two nutrient solution concentrations (water, W0.1, and water enriched with fertilizer,
NS1.2).

SBS (soil based substrate) refers to the local common substrate generally used to grow
vegetables seedlings, composed by 70% of the local soil, 20% of burned rice husk, and 10%
of fresh cattle manure. In this case, the rice husks are burned inside an iron tank up to turn-
ing husks into ashes. HM-mix (Hulls Manure mix) refers to a substrate formerly suggested
for seedling production in the tropics [20], composed by 50% of carbonized rice husk and
50% of well sifted mature cattle manure. Physical and chemical substrates characteriza-
tion was performed at the laboratory of the Yezin Agriculture University of Naypyidaw
(Myanmar). Electrical conductivity (EC) and pH were determined using the conductivity
meter DS-51 and pH meter F-51 (HORIBA, Kyoto, Japan). Organic matter (OM), cation
exchange capacity (CEC), and water holding capacity (WHC) were determined using the
Tyurin’s method, leaching method, and Keen–Razcowski measurement method, respec-
tively [21–23]. Available N, P, and K were also analyzed using the Alkaline permanganate
method, Olsen’s P-Malachite method, and ammonium acetate extraction [24,25].

During seedling preparation, local farmers commonly irrigate plants with harvested
rainwater (W0.1), featuring EC of 0.13 dS m−1. Alternatively, a simplified nutrient solution
(NS1.2, featuring EC = 1.2 dS m−1) prepared using a compound fertilizer (N: 15%, P: 15%,
K: 15%, S: 2%, and CaO: 4.6%) at a concentration of 0.8 g L−1 was tested.

The experimental design was a completely randomized block design with four treat-
ments and three replicates of each essay (Figure 2).

Experiment 2 and 3: Four treatments were applied, obtained by using different
mineral fertilizer concentrations, namely: W0.1 (0 g L−1 of fertilizer, EC = 0.13 dS m−1),
NS0.6 (0.4 g L−1, EC = 0.6 dS m−1), NS1.2 (0.8 g L−1, EC = 1.2 dS m−1), and NS1.8 (1.2 g L−1,
EC = 1.8 dS m−1). The cost for preparing 1000 L of nutrient solution was of about 336 Kyats
(0.25 USD) for NS0.6, 672 Kyats (0.50 USD) for NS1.2, and 1008 Kyats (0.75 USD) for NS1.8.
The same HM-mix adopted for experiment 1 (50% of rice husk and 50% of mature cattle
manure) was used as growing media.

The experimental design was a completely randomized block design with four treat-
ments and three replicates of each essay (Figure 2).
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Rice Husk Carbonization Process

The HM-mix is composed by cattle manure enriched with carbonized rice husk. The
carbonization of the rice husk is performed by using a metal chimney (height of 1.5 m
and diameter of 0.15 m, Figure 3a,b) that features a square perforated metal burner (28 cm
height) at its base, where combustion takes place. The carbonization process starts with
lighting a wood fire, which is quickly covered with the chimney. At this point, the rice
husk is poured directly over the burner, creating a cone in contact with the chimney itself
(Figure 3b) and undergoing a pyrolysis process. The carbonization process continued for
around 3 h, during which rice husk was turned several times to ensure homogeneous
carbonization. When full carbonization was reached, the chimney was removed and water
was poured over the carbonized rice husk to stop the combustion (Figure 3c). The obtained
carbonized rice husk (biochar) was then ready for use (Figure 3d).
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2.4. Measurements

At 21 days after sowing, morphological (experiment 1: width and length of all plant
leaves; experiment 2 and 3: seedling fresh weight, leaf number, width, and length of all
plant leaves) and physiological (experiment 1: leaf chlorophyll content and temperature;
experiment 2 and 3: stomatal conductance, leaf chlorophyll content, and leaf temperature)
parameters were taken. Leaf temperature was assessed using an infrared thermometer
model FLUKE 61 (Fluke Corporation, Everett, WA, USA). Stomatal conductance was
measured using a handheld photosynthesis measurement system model CI-340 (Camas,
WA, USA). Leaf chlorophyll content was estimated using SPAD 502 (Minolta, Osaka, Japan).
Morphological measurements were obtained from 6 plants per treatment per each of the
3 replicates (n = 18). Physiological measurements were made on the upper surface of the
canopy on three leaves per each sampled plant, on 6 plants per treatment in each of the
three replications (n = 18).
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2.5. Statistical Analysis

Data from experiment 1 were analyzed using two-way ANOVA (substrate × nutrient
solution), while data from experiment 2 and 3 were analyzed using one-way ANOVA.
Means were separated using the Tukey HSD (honestly significant difference) test [26] at
p ≤ 0.05. Before the analysis, all data were checked for normality and homogeneity of
the variance. Averages and standard errors (SE) were calculated. Statistical analysis was
carried out using R statistical software (version 3.3.2).

3. Results
3.1. Climate during the Experiments

The first experiment was carried out from 9 January to 29 January 2020. During
cultivation, maximum air temperatures ranged between 28.5 and 34.0 ◦C, with an average
of 32.3 ◦C. Minimum temperatures ranged between 14.4 and 19.4 ◦C, with an average
of 16.4 ◦C. The average maximum relative humidity (RH) was 73%, and the minimum
average RH was 50%. No rainfall occurred during the experiment.

The second and third experiments were carried out from 27 February to 19 March 2020.
Maximum air temperatures ranged between 30.7 and 38.6 ◦C, with an average of 35.8 ◦C.
Minimum temperatures ranged between 16.0 and 23.0 ◦C, with an average of 21.0 ◦C. The
average maximum relative humidity (RH) was 59%, and the minimum average RH was
30%. No rainfall occurred during the experiment.

3.2. Experiment 1
3.2.1. Substrate

Results of physical and chemical substrates characterization are reported in Table 1.

Table 1. Physical and chemical substrates characterization.

Substrate pH EC 1 (dS
m−1)

Available
N (mg
kg−1)

Available
P (mg
kg−1)

Available
K (mg
kg−1)

CEC 2

(meq 100
gr−1)

OM 3 (%) WHC 4

(mm m−1)

SBS 6.3 4.0 99.5 311 800 5.6 0.14 41.7
HM-mixed 6.5 4.2 6.2 1433 6200 20.8 33.8 171

1 EC = Electrical Conductivity; 2 CEC = Cation Exchange Capacity; 3 OM = Organic Matter; 4 WHC = Water Holding Capacity.

Both substrates have a subacid pH and a quite high EC, comparable to a moder-
ately saline soil. Among the macronutrient analyzed, the available nitrogen content was
higher in SBS than in the HM-mix. Contrarily, the HM-mix had higher phosphorous
and potassium, organic matter content, and water holding capacity. The observed higher
cation exchange capacity (CEC) of the HM-mixed substrate is also an indicator of a larger
nutrient reserve available for the plant. Moreover, during irrigation/fertilization, water
stagnation, and runoff on the surface trays with the SBS substrate occurred, highlight-
ing its low permeability, low infiltration capacity, and poor drainage compared to the
HM-mixed substrate.

3.2.2. Seedling Growth

For all parameters analyzed, no-significant interactions (p = 0.26 for leaf length;
p = 0.20 for leaf width; p = 0.45 for leaf temperature; and p = 0.77 for leaf chlorophyll
content) between the substrate and nutrient solution were observed, therefore the effect
of the two factors was discussed separately. The adopted substrate only affected leaf
length and width (Table 2), whereas the nutrient solution affected all parameters analyzed
(Table 3). As compared with SBS, HM-mix use resulted in increased leaf length and width
by 14% and 17%, respectively (Table 2). Leaf length and width and leaf chlorophyll content
were the highest in seedlings grown with nutrient solution NS1.2 (18.8 SPAD value), with a
152%, 17%, and 39% increase from seedling watered with clear water (W0.1), respectively
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(Table 3). On the other hand, the highest leaf temperature was observed in seedling watered
with W0.1 (26.2 ◦C).

Table 2. Experiment 1. Effect of substrate (SBS (soil based substrate) = substrate composed of 70%
soil, 20% burned rice husk, and 10% fresh cattle manure; HM-mix (Hulls Manure mix) = substrate
composed of 50% mature cattle manure and 50% carbonized rice husk) on lettuce seedlings leaf
width and length. Significance codes: **, significant differences at p ≤ 0.01.

Treatment Leaf Length
(cm)

Leaf Width
(cm)

SBS 5.33 3.35
HM-mix 6.05 3.91

** **

Table 3. Experiment 1. Effect of nutrient solution (W0.1: 0 g L−1 of fertilizer, EC = 0.13 dS m−1;
NS1.2: 0.8 g L−1 of fertilizer, EC = 1.2 dS m−1) on morphological and physiological parameters of
lettuce seedlings. Significance codes: *, significant differences at p ≤ 0.05; ***, significant differences
at p ≤ 0.001.

Treatment Leaf Length
(cm)

Leaf Width
(cm)

Leaf T
(◦C)

Leaf Chlorophyll Content
(SPAD Value)

W0.1 3.23 3.35 27.4 11.0
NS1.2 8.15 3.91 26.2 18.8

*** *** * ***

3.3. Experiment 2
Seedling Growth

Productive and morphological parameters: Seedling weight was affected by nutrient
solution, reaching the highest value in seedlings grown in NS1.2 (Figure 4a). The nutrient
solution also influenced the number of leaves (Table 4), although significant differences
were detected only between W0.1 and the other nutrient solution treatments. Leaf length
was the highest in NS1.2 and NS1.8 treatments and decreased when the nutrient solution’s
mineral fertilizer concentration was reduced (Table 4). Finally, leaf width was not affected
by nutrient solution treatments (Table 4).

Table 4. Experiment 2. Effect of different nutrient solution concentration (W0.1 = 0 g L−1 of fertilizer,
EC = 0.13 dS m−1; NS0.6 = 0.4 g L−1 of fertilizer, EC = 0.60 dS m−1; NS1.2 = 0.8 g L−1 of fertilizer,
EC = 1.2 dS m−1, and NS1.8 = 1.2 g L−1 of fertilizer, EC = 1.8 dS m−1) on morphological parameters
of lettuce. Significance codes: ***, significant differences at p ≤ 0.001, “ns” = not significant. Different
letters indicate significant differences with the Tukey HSD test at p ≤ 0.05.

Treatment Leaf Number
(n plant−1)

Leaf Length
(cm)

Leaf Width
(cm)

W0.1 2.33 (b) 3.29 (c) 2.67
NS0.6 3.33 (a) 6.40 (b) 3.16
NS1.2 3.78 (a) 7.37 (a) 3.39
NS1.8 3.89 (a) 6.89 (ab) 3.40

*** *** ns
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Figure 4. Experiment 2. Effect of different nutrient solution concentration (W0.1 = 0 g L−1 of fertilizer, EC = 0.13 dS m−1;
NS0.6 = 0.4 g L−1 of fertilizer, EC = 0.60 dS m−1; NS1.2 = 0.8 g L−1 of fertilizer, EC = 1.2 dS m−1, and NS1.8 = 1.2 g L−1 of
fertilizer, EC = 1.8 dS m−1) on morphological and physiological parameters of lettuce. (a) Seedling fresh weight (g plant−1);
(b) leaf chlorophyll content; (c) leaf stomatal conductance (mmol m−2 s−1); and (d) leaf temperature (◦C). NS = Nutrient
Solution. Vertical bars indicate SE; different letters indicate significant differences with the Tukey HSD test at p ≤ 0.05.

Physiological parameter: Leaf chlorophyll content was the highest in NS1.8 and di-
minished with decreasing nutrient solution concentrations (Figure 4b). No significant
difference was observed between NS1.2 and NS0.6, while the lowest value was obtained
in W0.1 treatment (Figure 4b). Nutrient solution treatments affected stomatal conduc-
tance, which resulted to be the lowest in seedlings grown in W0.1, while no significant
differences were detected among the other nutrient solution treatments (average value of
315 mmol m−2 s−1) (Figure 4c). Leaf temperature was also affected by the nutrient solution
concentration, with the highest values in W0.1 (33.4 ◦C) and NS0.6 (31.1 ◦C), although, in
this second case, without statistically significant differences as compared to NS1.2 and NS1.8
(Figure 4d).

3.4. Experiment 3
Seedling Growth

Productive and morphological parameters: When NS1.8 was supplied, Chinese cab-
bage seedlings weight was the highest, and progressively decreased with the reduction of
nutrient solution concentration (Figure 5a). Additionally, leaf morphological parameters
(leaf number, width, and length) were affected by nutrient solution concentration, showing
higher values in plants grown with NS1.8 and NS1.2 (Table 5).
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Table 5. Experiment 3. Effect of different nutrient solution concentration (W0.1 = 0 g L−1 of fertilizer,
EC = 0.13 dS m−1; NS0.6 = 0.4 g L−1 of fertilizer, EC = 0.60 dS m−1; NS1.2 = 0.8 g L−1 of fertilizer,
EC = 1.2 dS m−1, and NS1.8 = 1.2 g L−1 of fertilizer, EC = 1.8 dS m−1) on morphological parameters
of Chinese cabbage. NS = Nutrient Solution. Significance codes: ***, significant at p ≤ 0.001. Different
letters indicate significant differences with Tukey HSD test at p ≤ 0.05.

Treatment Leaf Number
(n plant−1)

Leaf Length
(cm)

Leaf Width
(cm)

W0.1 3.00 (c) 3.02 (c) 1.51 (c)
NS0.6 3.78 (b) 6.31 (b) 3.26 (b)
NS1.2 4.33 (ab) 8.50 (a) 3.82 (a)
NS1.8 4.56 (a) 8.84 (a) 4.05 (a)

*** *** ***

Physiological parameters: Concerning leaf chlorophyll content, the highest values
were found in NS1.8, while the lowest values were observed in W0.1 and NS0.6 (Figure 5b).
The response in both stomatal conductance and leaf temperature was consistent with
lettuce’s observations, with lowest values in seedlings grown in W0.1 and no statisti-
cally significant differences among other nutrient solution treatments (average value of
481 mmol m−2 s−1) (Figure 5c). Leaf temperature was the greatest in W0.1, while no statis-
tically significant differences were detected among the other treatments (Figure 5d).

4. Discussion

Adopting different substrates and nutrient solutions significantly affected growth
(fresh weight and leaf morphology) and physiological parameters (stomatal conductance,
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leaf temperature, and chlorophyll content values) of lettuce and Chinese cabbage seedlings
grown in CDZ-Myanmar. Seedlings’ quality affects their growth and yield after trans-
planting, given that good-quality seedlings exhibit morphological characteristics such as
thick stems, thick leaves, dark green leaves, and large white roots [27]. In the first experi-
ment, lettuce seedlings with the longest leaf length and width were associated with the
HM-mix substrate and NS1.2 nutrient solution treatments. Physiological parameters (leaf
temperature and chlorophyll content values) were affected only by the nutrient solution
(Table 3). The combination of HM-mix and NS1.2 allowed obtaining the most appropriate
seedlings for transplanting. Although both substrates have similar EC and pH, the former
quite high while the latter adequate for lettuce growth, the obtained results differ probably
due to other HM-mix substrate’s intrinsic physical and chemical features. According to
the substrate analysis, SBS substrate showed larger nitrogen content as compared to the
HM-mix substrate, probably resulted by the inclusion of fresh cattle manure [28] that
negatively affected seedling growth. In a previous study by Sapkota et al. [29], elevated
nitrogen concentration in the substrate depressed root metabolism leading to shorter roots.
The high content of carbonized rice husks (biochar) in the HM-mixed substrate may be
responsible of its good agronomic performances, given that rice husk features elevate the
content of silicon and potassium [30]. The carbonization process is needed to avoid that
rice husk turns to ash, keeping the original shape and ensuring several benefits associated
with its capacity for decreasing bulk density, enhancing water holding capacity, adding
organic carbon, increasing available nutrients, and ultimately increasing crop yields [31,32].
Accordingly, carbonized rice husk use as a growing substrate should be promoted among
farmers, especially in those areas where it is readily available as in Asian countries, where
rice residues are estimated at 560 million tons for rice straw and 112 million tons for rice
husks [30]. Therefore, the promotion of this biochar production should also be stimulated
to increase vegetable local quality seedling production.

The low permeability and poor drainage showed by SBS substrate during the irriga-
tion/fertilization time, probably determined continuous waterlogged conditions reducing
oxygen in the substrate and seedling growth [33,34]. Main constraints generated by water
stagnation in agriculture include detrimental effects on both soil/substrate chemical and
physical properties when anaerobic conditions persist repetitively [34]. Furthermore, the
application of adequate nutrient solution assures higher and prompt nutrient availability
to the seedlings, and the root growing media may affect plants’ response to salinity [35,36].
According to the results obtained in the first experiment, the combination of HM-mixed
substrate and NS1.2 nutrient solution proved to be a valid option to produce quality lettuce
seedling in CDZ-Myanmar.

Within second and third experiments, the definition of the optimal nutrient solution
concentration was targeted. Albeit limited literature has addressed to date the definition
of optimal nutrient solution strength on lettuce and Chinese cabbage nursery produc-
tion in tropical areas, comparison can be made against existing literature on commercial
hydroponic production. Accordingly, it was observed that whenever nutrient solution
salinity levels are elevated (above 2.0 dS m−1), lettuce fresh yield and plant growth might
be reduced [35]. Although the adopted substrate featured high electrical conductivity (EC)
(Table 1), the present study points out that the optimal nutrient solution EC for lettuce
seedlings production was 1.2 dS m−1 (NS1.2), while for the cultivation of Chinese cabbage
seedlings ranged between 1.2 and 1.8 dS m−1 (NS1.2; NS1.8) (Tables 4 and 5). The effect
of the initial high EC of the substrate on production was probably reduced by washing
practices of substrates performed in the first five days by watering trays with only clear
water. Bustamante et al. [37], in an experiment on the effect of washing treatments on
different composts used as nursery growing media for seedling pepper production, showed
that EC clearly decreased (up to 40.7%) in all growing substrates subjected to washing
treatments. From an economic point of view, maximum recommendable fertilizer addition
would be in the range of 0.8 g of fertilizer L−1. Considering the cost for 1000 L nutrient
solution preparation, it is possible to estimate a 33% economic saving that the farmer could
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obtain in preparing NS1.2 as compared to NS1.8 without compromising crop growth in
lettuce. It is also clear that the use of clear water or nutrient solutions with low electrical
conductivity for seedling production, such as in the case of W0.1 and NS0.6 treatments,
does not guarantee the achievement of satisfactory seedlings size, resulting in lower leaf
dimensions probably due to limited nutrients availability (Tables 4 and 5). For instance, in
lettuce, leaf size was formerly affected by nutrient solution composition and water avail-
ability [29,38,39]. Moreover, seedlings grown under W0.1 and NS0.6 showed lower values
of leaf chlorophyll content as compared to NS1.2 and NS1.8. According to Trani et al. [19],
lettuce seedlings, at the time of transplanting, should have intense green leaves of approx-
imately 5 cm in length, a condition that was not met, in the hereby presented study, in
W0.1. It emerges how obtaining lettuce seedlings of elevated quality is highly dependent
on whether their nutritional requirements are met [40]. Besides, W0.1 treatment, both in
lettuce and Chinese cabbage, showed the lowest values for stomatal conductance, the
highest foliar temperature, and the lowest chlorophyll content values compared to the
other treatments (Figure 4). It is evident that seedlings under W0.1 treatment had to deal
with abiotic stressors, most probably nutritional deficits. Plants’ stomatal conductance
is closely related to plants’ nutritional status, with a confirmed linear relationship with
leaf nitrogen concentration for broad categories of vegetables [41]. The application of
clear water (W0.1) clearly did not meet the nutritional requirements of the seedlings, and
fertigation yet at the nursery stage would be recommended to obtain seedlings suitable
for transplant and marketing. On the other hand, it resulted in being also important not
to provide too elevate fertilizer concentration, which would ultimately result in limited
improvements of plant growth. Indeed, significant decreases in total, marketable yields and
leaf transpiration in different lettuce cultivars were observed by Orsini et al., when salinity
stress associated with excessive minerals was experienced [42]. Accordingly, lettuce has
been considered a moderately salt-sensitive crop with a threshold electrical conductivity
(EC) of 1.3 dS m−1 and a negative slope of 13.0 for each unit added salinity above this
threshold value [43,44]. Finally, the three experiments highlighted the importance of using
the natural resource available accurately, considering the impact of some technical choices
also on climate change. The HM-mix substrate used in the three experiments has proven
to be a suitable local substrate for seedling production. Considering the growth potential
of the horticultural sector in Myanmar to contribute to food security [8], the adoption
of such a substrate will have a lower impact on climate change by limiting the use of
substrates commonly used for seedling production, such as peat. Peat comes from peatland
ecosystems, which are very important for carbon sequestration. Hence, when peat is used
as a substrate, the stored carbon is released, negatively affecting the environment and
CO2 balance [45]. The same is also true for the use of mineral fertilizers. Indeed, N2O is
considered to be highly damaging to the ozone layer, and about 80% of anthropogenic
N2O emissions are attributed to agriculture [46–49]. The second and third experiments
provide indications on how to obtain good quality seedlings without exceeding in the
use of mineral fertilizer, which, besides determining an economic loss for the growers,
negatively impacts the environment.

5. Conclusions

The three experiments highlight the importance of adopting accurate substrates and
nutrient solution concentration to improve vegetable seedlings production in semi-arid
areas such as the Central Dry Zone of Myanmar. The study confirmed that proper substrate
selection associated with a proper nutrient solution management might increase seedling
quality and improve physiological parameters of lettuce and Chinese cabbage seedling
production. Under limited resources, the substrate named HM-mixed and nutrient solution
NS1.2 allowed for obtaining high quality seedlings. An interdisciplinary approach and
appropriate dissemination and knowledge transfer will be essential to guarantee that the
seedling management methodology and technology for nursery purposes will be put in
place adequately by local institutions and farmers.
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