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Abstract: This investigation was carried out through three successive seasons (2017, 2018, and 2019)
on young pomegranate trees of the Wonderful cultivar to study the effect of four different irrigation
treatments (100%, 75%, 50%, and 25% of crop evapotranspiration—ETc) on vegetative growth and
the water–yield relationship. The study was conducted in Foggia (Apulia region, Southern Italy), an
agricultural area characterized by strong wind speeds and scarce water resources. The results showed
the effects of the different irrigation levels and seasons on the vegetative growth and fruit yield
characteristics. The cumulative trunk diameter, the annual shoot growth, the number of fruits per
tree, and the yield decreased from the full water restitution (100% ETc) to the severe water restriction
(25% ETc). The weight and the size of fruits decreased significantly with the restriction of water
volumes applied to the crop. A linear relationship between water consumption and yield (R = 1.00
in 2018 and 1.21 in 2019; n = 12) was found. The water use efficiency (WUE) gave no statistical
differences among irrigation treatments. The yield response factors (Ky: 1.06 in 2018 and 0.99 in 2019)
showed the sensitivity of pomegranates to water deficits.

Keywords: pomegranate; irrigation regime; shoot growth; trunk growth, yield response factor; water
use efficiency

1. Introduction

Modern water-saving agriculture aims to develop sustainable agriculture by focusing
on improving water use efficiency and on the use of appropriate irrigation variables. Dif-
ferent plant species have different drought tolerances, the identification and evaluation of
which is subject to environmental conditions. Pomegranate (Punica granatum L., Punicaceae)
is fairly drought resistant, and cultivation is mainly confined to semi-arid, mild-temperate
areas including most of the Mediterranean countries, which are characterized by water
scarcity [1,2]. It is a domesticated tree with relatively short juvenility [3] whose fruits
are of high nutritional and economic value [4]. In Italy, the pomegranate is cultivated in
such southern semiarid regions as Sicily, Apulia, Basilicata, and Calabria, where water
is a scarce resource. Particularly in the Apulia region, over the last decade, the area of
pomegranate cultivation has increased significantly, passing from 8 ha in 2009 [5] to about
1000 ha (60% of the total national cultivation area) in cultivation area today [6], in which
Wonderful is the cultivar most planted. To cope with water scarcity for this crop, there is
an increasing move to more efficient technological innovation and irrigation management
approaches such as the drip irrigation method and soil plastic mulching applied around
pomegranate plants, which produces a positive effect on fruit yield and quality [7–9]. More-
over, many authors have already studied the pomegranate response under deficit irrigation
(DI) strategies, with the aim of improving its development under water stress conditions,
minimizing production losses, and keeping or even improving fruit quality. Some studies
have demonstrated that restricting irrigation produced a decrease in photosynthesis and
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stomatal conductance, affecting the plants vegetative growth [10] and the growth of new
buds, shoots, and trunks [11,12], while the highest irrigation level stimulated vegetative
growth by increasing the shoot length, the number of leaves per shoot, and the leaf area [13].
Another study [14] showed that dendrometric responses varied with species and plant age.
Moreover, Intrigliolo et al. [15] showed that DI with 50% of the crop water used during
the entire season resulted in yields similar to full irrigation, whereas other authors [16,17]
indicated that DI reduces the total yield, the number of fruits per tree, and the size of
the fruit. Finally, other reports concluded that the use of a DI strategy throughout the
growing season or at specific phenological stages is useful [18,19]. The discrepancy among
these studies can be attributed to the different pomegranate varieties, the agro-climatic
conditions, and environmental factors [20]. Currently, no definitive solid criteria exist for
deciding the optimum timing of irrigation, probably because of the diversity of factors in-
volved, such as evaporative demand, soil characteristics, the soil water status at any precise
moment, the crop phonological stage, etc. This underscores the necessity of conducting
irrigation research under local conditions [11]. However, the improvement in pomegranate
production by using DI requires knowing the important agronomic factors in the planned
irrigation under water-limiting conditions such as the field water use efficiency (WUE),
that is, the ratio of the yield of the crop to the total amount of water used in the field [21]
and the yield response to the water factor (Ky), which represents the effect of a reduction
in evapotranspiration on yield losses [22]. To the best of our knowledge, no information
exists in this study’s area, which is also characterized by strong wind speeds, regarding
pomegranate water management aspects.

Taking into account all of the above-mentioned considerations, the main objective
of this study was to evaluate the effects of deficit irrigation on the water use efficiency
(WUE) and the yield response factor as well as on vegetative growth and the yield of young
pomegranate trees. Finally, it should be noted that, from this same experiment, the effects
of different irrigation regimes on the physicochemical and phytochemical characteristics of
the fruits have been reported in a recently published paper [23].

2. Materials and Methods
2.1. Experimental and Climatic Conditions

The field trial was carried out at Foggia (41◦27′08′ ′ N, 15◦31′56′ ′ E and an altitude
of 54 m above see level. during three consecutive seasons (2017, 2018, and 2019) with
the Wonderful pomegranate cultivar, which corresponded to plants 2, 3, and 4 years old.
The commercial orchard was grown from cutting and trained to a vase shape and was
drip-fertirrigated and mulched with a plastic sheet along the tree rows. The drip irrigation
system comprised a single pipe with drippers at with the 21 h−1 flow rate spaced every
40 cm. During the growing seasons, standard agronomic practices were applied. The soil
texture was clay-loam [24] with an effective depth over 120 cm. The site of the research was
in a typical semi-arid zone, characterized by a Mediterranean climate, which is classified
as an accentuated thermomediterranean climate [25], with temperatures that may fall
below 0 ◦C in the winter and exceed 40 ◦C in the summer. Rainfall is unevenly distributed
throughout the year and is mostly concentrated in the winter months with a long-term
annual average of 559 mm [26].

During each experimental season, from April to October, daily climate data were
recorded at the nearest meteorological station, which was a few kilometers from the
experimental area. The data were used to calculate the reference evapotranspiration
(ETO) by the Penman–Monteith equation [27]. The shaded area (SA) of the trees and
the crop coefficient (Kc) were also estimated and used to calculate the maximum crop
evapotranspiration (ETC), the actual crop evapotranspiration (ETa), and other irrigation
parameters.
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2.2. Irrigation Treatments

Four different irrigation treatments (full water restitution of 100% of the ETc and
deficit irrigation of 75%, 50%, and 25% of the ETc), starting from the bud break stage to
fruit maturity, were performed. Each watering was applied by keeping a constant interval
(7 days) and by changing the water volume from 100% to 75%, 50%, and 25% of the ETc
net of rains [28,29] The irrigation volumes applied were measured using in-line water
meters installed on each experimental plot. The experimental design was a randomized
complete block design with three replicates per treatment. Each plot had three rows with
8 trees in each. The three central trees in the middle row were used for data collection.
All experimental trees were surrounded by guard trees in order to minimize the effect of
irrigation.

2.3. Determination of the ETc

The ETc was calculated weekly by a climatological approach, multiplying ETO by
Kc [27]. Considering that the orchard had not reached the final size, the Kc values were
corrected by the shaded area (SA) fraction of the soil at solar noon as the actual surface
subjected to irrigation, and they were calculated by Equation (1):

SAa = π R2 N/100 (1)

where, SAa = the actual shaded area; R = the average radius of the canopy’s circumference,
as measured on selected plants; N = the number of trees per hectare. The corrected Kca
was calculated by Equation (2) [30,31]:

Kca = Kc × (1 − (SAa/SAmax)0.5 (2)

where, Kca = the actual crop coefficient; Kc = the FAO crop coefficient; SAa = the actual
percentage of the shaded area; SAmax = the potential percentage of the soil shaded area
(80%) of the mature pomegranate orchard (N = the planning density equal to 606 trees
per ha).

Ultimately, the actual evapotranspiration (ETa) was calculated by Equation (3):

ETc = ETo × Kca (3)

Weekly values of ETO, Kca, and SAa were used to obtain the weekly values of ETc,
starting from the bud break stage (April) to the fruit maturity stage (September). A water
balance was carried out to determine the irrigation required.

2.4. Determination of the Yield Water Use Efficiency (YWUE) and the Yield Response Factor (Ky)

The yield water use efficiency (YWUE) was calculated in each treatment from the
ratio of the total yield (in kilograms) to the amount of irrigation water applied (including
rainfall) to the crop (Kg·m−3 water). The yield response factor (Ky), which links the relative
yield decrease to the relative evapotranspiration deficit, is expressed by the following
Formulation (4) [22]:

Ky = (1 − Ya/Ym)/(1 − ETa/ETm) (4)

where, Ya (Kg ha−1) and Ym (Kg ha−1) are the actual and maximum yields (obtained
from the fully irrigated treatment), respectively; ETa (m3·ha−1) and ETm (m3·ha−1) are the
actual and maximum water consumptions (of the fully irrigated treatment), respectively.

2.5. Vegetative Growth Parameters

The trunk diameter (TD) was determined in three seasons, whereas the shoot length
(SL) was only determined in the second and third seasons. Both were measured on three
plants in each irrigation plot. The TD was measured two times in each year, at bud break
(in April) and at the end of growth season (in October). It was measured at a marked
point, 50 cm above the ground level, using the Vernier digital caliper, and expressed in
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millimeters. The annual trunk growth (ATG) and the trunk cumulative growth (TCG) were
also calculated. The SL was determined at the end of each growing season on four tagged
one-year-old shoots in the four direction points (East, West, North, and South) using a tape
and expressed in centimeters.

2.6. Yield, Morpho-Pomological Characteristics of the Fruits

In the first experimental season (2017), all the flowers were thinned by hand, to
guarantee the adequate development of trees, whereas, in the second and third years,
fruiting was allowed, and the harvests were carried out on 18 October, 2018 and on
29 October, 2019, respectively. At harvest time, the fruits per tree for each plot were
counted and weighted. The average number of fruits per tree and the yield (ton·ha−1)
were calculated. Samples of 12 fruits from each irrigation treatment of each replicate were
randomly collected. Each fruit was weighed (g) and measured in length (mm) and diameter
(mm).

2.7. Statistical Analysis

The results were evaluated with one-way ANOVA using JMP® software version 8
(SAS Institute Inc., Cary, NC, USA) and average values were compared with the Tukey
test. Standard deviations (SD) were calculated using Excel software of the Office 2007®

suite (Microsoft Corporation, Redmond, WA, USA). Percentage values were transformed
to arcsine prior to analysis of variance.

3. Results and Discussion
3.1. Weather Conditions and Water Consumption

In Table 1, the climatic data and the ETc in the three experimental seasons (April–
September) are reported. The weather conditions between seasons were quite similar,
whose values of the total ETo (a representative climate evaporative parameter) were
1080.7, 1061.1, and 1044.7 mm in 2017, 2018, and 2019, respectively. During each growing
season, the ETc increased with increasing canopy and evaporative air demand, reaching
the peak in July. The total seasonal ETc also increased over the years, with increasing
plant development from 310.4 to 375.4 to 518.9 mm in 2017, 2018, and 2019, respectively.
In each season, the cumulated water requirement values (ETc-0.70 p) became positive in
June. Therefore, the differentiation of irrigation treatments in each year began from the
flower-petals-opening fall stage (fruit setting) to the fruit-ripening stage.

Table 1. The monthly mean maximum and minimum temperatures (Tmax and Tmin), the relative air humidity (RHmax

and RHmin), the wind speed (Ws), the radiation (Rad), the total precipitation (p), the reference evapotranspiration (ETO),
the percentage of the shaded area of the trees (SAa), the crop coefficient (KC), the crop evapotranspiration (ETc), and the
cumulated water requirement (ETc-0.70 p) during the 2017, 2018, and 2019 seasons.

Month Tmax Tmin RHmax RHmin Ws Rad p ETo SAa Kca ETc (ETc-0.70 p)

(◦C) (◦C) (%) (%) (m·s−1) (W·m−2) (mm) (mm) % (mm) (mm) (mm)

2017

April 21.3 9.7 90.1 47.0 3.1 172.8 82.0 138.9 5.5 0.20 27.8 −29.6
May 26.1 12.1 95.1 44.1 2.4 232.4 94.1 170.3 8.6 0.30 51.1 −14.8
June 33.2 17.6 83.8 30.4 2.7 262.5 1.0 205.0 10.6 0.30 61.5 +60.5
July 34.1 20.4 85.5 31.0 3.0 329.3 24.0 215.6 11.2 0.30 64.7 +40.7
Aug 35.0 19.2 78.0 26.8 2.7 314.6 14.6 201.9 11.2 0.30 60.6 +50.4
Sept 26.1 14.9 80.0 34.1 3.5 189.7 72.0 149.0 11.2 0.30 44.7 −5.7

Mean 29.3 15.7 85.4 35.6 2.9 250.2 9.7 0.28
Total 287.7 1080.7 310.4 100.9
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Table 1. Cont.

Month Tmax Tmin RHmax RHmin Ws Rad p ETo SAa Kca ETc (ETc-0.70 p)

(◦C) (◦C) (%) (%) (m·s−1) (W·m−2) (mm) (mm) % (mm) (mm) (mm)

2018

April 21.3 12.9 94.6 37.6 2.8 235.3 54.0 159.8 8.7 0.20 31.9 −6.2
May 26.1 13.4 95.2 49.1 2.4 275.8 58.3 170.6 15.4 0.30 51.2 +10.4
June 30.0 12.1 89.5 40.3 3.4 289.6 88.2 180.7 21.3 0.40 72.3 +10.3
July 33.3 19.6 83.6 35.4 3.0 318.7 16.8 206.3 22.6 0.40 82.5 +70.8
Aug 32.7 20.1 71.3 28.3 2.1 285.7 39.1 187.3 22.6 0.40 74.9 +47.5
Sept 29.1 17.1 81.3 30.0 3.7 193.6 80.0 156.4 22.6 0.40 62.6 +6.6

Mean 28.7 15.9 85.9 36.8 2.9 266.5 18.9 0.35
Total 366.4 1061.1 375.4 140.3

2019

April 20.6 8.2 94.4 51.0 3.7 190.2 40.3 131.6 18.0 0.30 39.5 +11.3
May 21.3 10.2 95.3 56.3 4.0 232.9 86.7 150.5 25.4 0.40 60.2 −0.49
June 33.2 17.5 85.9 35.1 3.7 252.2 9.2 200.3 25.8 0.50 110.0 +103.6
July 33.7 19.5 84.0 33.9 3.7 258.8 30.0 207.0 30.2 0.55 113.8 +92.8
Aug 34.8 20.3 79.9 33.9 3.6 225.6 5.7 198.9 30.5 0.55 109.4 +105.4
Sept 29.5 16.8 88.7 42.6 3.6 175.5 3.8 156.4 30.5 0.55 86.0 +83.3

Mean 28.9 15.4 88.0 42.5 3.7 222.5 26.7 0.47
Total 175.7 1044.7 518.9 395.9

3.2. Applied Irrigation

Table 2 shows the irrigation volumes, whose values obviously increased over the years
as the canopy of the plants and the relative Kc and ETc increased.

Table 2. Water applied (mm) and watering (n.) with different levels of irrigation.

Year Seasonal Irrigation Volume (mm) Watering

ETc100 ETc75 ETc50 ETc25 (n.)

2017 101 83 55 27 11
2018 140 105 70 35 12
2019 395 296 197 124 14

The seasonal irrigation volumes for the 100%, 75%, 50%, and 25% ETc treatments
were: 101, 83, 55, and 27 mm, respectively, with 11 watering events in 2017; 140, 105, 70,
and 35 mm, respectively, with 12 watering events in 2018; and 395, 296, 197 and 99 mm,
respectively, with 14 watering events in 2019 (Table 2).

3.3. The Effects of Irrigation Treatments on Vegetative Growth

The annual trunk growth (Figure 1) was the lowest in the first year, whose diameter
values were not statistically different among the irrigation treatments (average = 7.0 mm).
In the second and third years, ETc100 and ETc75 treatments showed a significantly higher
growth than in the first year. ETc50 and ETc25, although showing some differences among
years, were not statistically different.

Trunk cumulative growth (TCG) (Figure 2) gradually increased with some differences
among the irrigation treatments and the two seasons. During the first season, the increase
was almost uniform in all the treatments. It seems that all irrigation treatments supplied
enough water for plants because of their small size and low water requirements. However,
during the second season, and especially during the third season, the pomegranate trees
had a different growth, showing a lower capacity for tolerating water restrictions [32,33].
After three consecutive seasons, the largest TCG (42.6 mm) was noticed in the ETc100
treatment, although it was not significantly different from the ETc75 (39.0 mm) and ETc50
(38.8 mm) treatments but was statistically different from the ETc25 (35.5 mm) treatment.
These results, which show the sensitivity of stem growth of pomegranate trees to water
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restriction, were similar to those obtained by Bugueño et al. [34]. Additionally, previous
studies [11,12,35] conducted on young almond, lemon, olive, and cherry trees showed that
water restrictions reduced the cumulative trunk growth rate.Horticulturae 2021, 7, x FOR PEER REVIEW 6 of 13 
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seasons. Different letters indicate no significant differences among seasons at p ≤ 0.05, according to
the Tukey test.Horticulturae 2021, 7, x FOR PEER REVIEW 7 of 13 

 

 

 

Figure 2. Trunk cumulative growth for each irrigation treatment during the three seasons from April 2017 to October 2018. 
Irrigation treatments with different letters at the end of the three seasons were significantly different at p ≤ 0.05, according to 
the Tukey test. 

As for the shoot development, monitored only in the second and third years, no sig-
nificant differences were noted among the four spatial directions of the trees. A decrease 
in length as irrigation water application decreased was noted, although there were no 
significant differences between treatments because of the high variability of the data (Ta-
ble 3). These results are in harmony with those obtained by Khattab et al. [13]. Significant 
higher values were obtained in 2019 (on average 42.1 cm) than in 2018 (on average 12.9 
cm) (Figure 3).  

Table 3. Annual shoot growth (cm) as influenced by the four direction points and different levels of irrigation in the 2018 
and 2019 seasons. 

Treatment Year North East South West Mean 
ETc100 2018 22.6 ± 9.1 b 14.3 ± 3.7 b  13.3 ± 2.9 b 9.0 ± 3.6 b 14.8 ± 6.9 b 

 2019 52.3 ± 24.8 a 44.3 ± 6.0 a 42.6 ± 2.5 a 55.7 ± 9.3 a 48.7 ± 10.6 a 
ETc75 2018 18.3 ± 7.5 b 9.1 ± 6.9 b 15.3 ± 5.5 b 14.6 ± 9.8 b 14.3 ± 7.4 b 

 2019 51.6 ± 11.5 a 34.7 ± 13.8 a 48.3 ± 7.6 a 52.0 ± 3.6 a 46.7 ± 9.1 a 
ETc50 2018 17.0 ± 8.2 b 11.0 ± 5.7 b 9.7 ± 2.1 b 11.3 ± 1.5 b 12.2 ± 4.3 b 

 2019 43.3 ± 9.2 a 24.3 ± 9.2 a 43.3 ± 10.4 a 45.6 ± 10.2 a 39.1 ± 7.2 a 
ETc25 2018 6.0 ± 0.3 b 12.0 ± 0.6 b 12.7 ± 0.6 b 10.7 ± 4.0 b 10.3 ± 1.3 b 

 2019 41.3 ± 3.5 a 30.6 ± 10.6 a 35.0 ± 5.0 a 28.3 ± 10.6 33.8 ± 8.7 a 
Deviations followed by a different letter within the lines and columns were significantly different at p ≤ 0.05, according to 
the Tukey test. 

a

b

a
a

0
5

10
15
20
25
30
35
40
45
50

Tr
un

k 
cu

m
ul

at
iv

e 
di

am
et

er
 (m

m
)

Dates  of mesurements

ETc100 ETc75 ETc50 ETc25

Figure 2. Trunk cumulative growth for each irrigation treatment during the three seasons from April
2017 to October 2018. Irrigation treatments with different letters at the end of the three seasons were
significantly different at p ≤ 0.05, according to the Tukey test.



Horticulturae 2021, 7, 79 7 of 12

As for the shoot development, monitored only in the second and third years, no
significant differences were noted among the four spatial directions of the trees. A decrease
in length as irrigation water application decreased was noted, although there were no
significant differences between treatments because of the high variability of the data
(Table 3). These results are in harmony with those obtained by Khattab et al. [13]. Significant
higher values were obtained in 2019 (on average 42.1 cm) than in 2018 (on average 12.9 cm)
(Figure 3).

Table 3. Annual shoot growth (cm) as influenced by the four direction points and different levels of irrigation in the 2018
and 2019 seasons.

Treatment Year North East South West Mean

ETc100 2018 22.6 ± 9.1 b 14.3 ± 3.7 b 13.3 ± 2.9 b 9.0 ± 3.6 b 14.8 ± 6.9 b
2019 52.3 ± 24.8 a 44.3 ± 6.0 a 42.6 ± 2.5 a 55.7 ± 9.3 a 48.7 ± 10.6 a

ETc75 2018 18.3 ± 7.5 b 9.1 ± 6.9 b 15.3 ± 5.5 b 14.6 ± 9.8 b 14.3 ± 7.4 b
2019 51.6 ± 11.5 a 34.7 ± 13.8 a 48.3 ± 7.6 a 52.0 ± 3.6 a 46.7 ± 9.1 a

ETc50 2018 17.0 ± 8.2 b 11.0 ± 5.7 b 9.7 ± 2.1 b 11.3 ± 1.5 b 12.2 ± 4.3 b
2019 43.3 ± 9.2 a 24.3 ± 9.2 a 43.3 ± 10.4 a 45.6 ± 10.2 a 39.1 ± 7.2 a

ETc25 2018 6.0 ± 0.3 b 12.0 ± 0.6 b 12.7 ± 0.6 b 10.7 ± 4.0 b 10.3 ± 1.3 b
2019 41.3 ± 3.5 a 30.6 ± 10.6 a 35.0 ± 5.0 a 28.3 ± 10.6 33.8 ± 8.7 a

Deviations followed by a different letter within the lines and columns were significantly different at p ≤ 0.05, according to the Tukey test.Horticulturae 2021, 7, x FOR PEER REVIEW 8 of 13 
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Figure 3. The annual shoot growth of the irrigation treatments in the 2018 and 2019 growing seasons.
Different letters indicate significant differences between seasons at p ≤ 0.05, according to the Tukey
test.

3.4. The Effect of Irrigation Treatments on Yield

The average number of fruits per tree (no) and the yields (t·ha−1) in all the irrigation
treatments were significantly higher in 2019 (averages of 18.9 no and 3.6 t·ha−1, respectively)
than in 2018 (averages of 9.3 no and 2.5 t·ha−1, respectively) (Table 4). These differences,
obviously, depended on the age of the plants. As regards the yield, it should be noted
that its increase in 2019 compared to 2018 was less than proportional to the number of
fruits per plant. This was due to the lower average weight of the fruit recorded in this last
year, as reported in Table 5. As a general trend, the aforementioned parameters decreased
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with reducing irrigation levels, albeit with some differences between the years. In 2018,
the ETc100 treatment gave the highest number of fruits per tree (11.6), which was not
significantly different from the ETc75 (10.5) and the ETc50 (8.9) treatments, but which was
statistically different from the ETc25 (6.5) treatment. Instead, in 2019, the ET100 treatment
provided the highest number (26.3), which was significantly different from the ETc75 (19.7)
treatment, which, in turn, was statistically different from the ETc50 (15.7) and the ETc25
(14.0) treatments. Similar to the number of fruit, in 2018, the highest yield of the ETc100
treatment (3.67 t·ha−1) was not significantly different from that of the ETc75 (2.79) treatment
but was statistically different from the ETc50 (2.24) and the ETc25 (1.31) treatments. In 2019,
the ETc100 treatment’s highest values (5.94 t·ha−1) were significantly different from the
ETc75 (4.10) treatment, which, in turn, was statistically different from the ETc50 (2.97) and
the ETc25 (1.57) treatments. These results showed that, in the first productive year (2018),
the pomegranate was not very sensitive to moderate (75% and 50%) water stress treatments
but was very sensitive to severe stress (25%), which caused a significant yield reduction. In
the successive seasons, any stress caused a significant yield reduction. These results are
in harmony with those obtained in other studies [16,36], but are in contrast with those of
Centofanti et al. [21], who reported that the DI strategies did not significantly affect the
yield in the Wonderful cultivar.

Table 4. Water consumption and the effect of irrigation levels on the number of fruits per tree, the yield, and the water use
efficiency of the Wonderful pomegranate cultivar in the 2018 and 2019 seasons.

Treatment Seasonal Water Consumption
(Including Rainfall) (m3·ha−1) Fruits Per Tree Fruit Yield WUE

2018 2019 2018 2019 2018 2019 2018 2019
ETc100 1766 4216 11.6 ± 1.8 a 26.3 ± 2.6 a 3.67 ± 0.40 a 5.94 ± 0.77 a 2.08 ± 0.33 1.41 ± 0.8
ETc75 1416 3130 10.5 ± 1.3 a 19.7 ± 1.2 b 2.79 ± 0.51 a 4.10 ± 0.15 b 1.97 ± 0.30 1.31 ± 0.10
ETc50 1066 2146 8.8 ± 1.2 ab 15.7 ± 1.7 c 2.22 ± 0.40 b 2.97 ± 0.38 c 2.08 ± 0.25 1.37 ± 0.18
ETc25 716 1166 6.5 ± 1.3 b 14.0 ± 1.4 c 1.32 ± 0.35 c 1.57 ±0.19 d 1.85 ± 0.28 1.35 ± 0.25

Means ± std. deviations followed by a different letter within the columns were significantly different at p ≤ 0.05, according to the Tukey
test.

Table 5. The effect of different irrigation treatments on the pomegranate fruits’ morphological characteristics in the 2018
and 2019 seasons.

Treatment Fruit Weight (g) Fruit Diameter (mm) Fruit Length (mm)

2018 2019 2018 2019 2018 2019
ETc100 522.7 ± 90.7 a 496.2 ± 107.9 a 95.6 ± 4.7 a 94.2 ± 5.0 a 83.8 ± 4.7 a 85.0 ± 7.0 a
ETc75 432.7 ± 95.0 ab 358.4 ± 43.5 a 89.1 ± 8.2 ab 88.2 ± 3.6 ab 80.2 ± 6.5 ab 76.0 ± 3.7 ab
ETc50 378.7 ± 110.3 ab 361.7 ± 102.1 a 84.7 ± 9.0 ab 85.9 ± 7.0 ab 76.3 ± 9.6 ab 75.4 ± 5.8 ab
ETc25 332.5 ± 85.6 b 304.1 ± 107.5 a 81.8 ± 6.7 b 80.4 ± 8.1 b 70.3 ± 7.3 b 73.4 ± 4.2 b

Means ± std. deviations followed by a different letter within the lines were significantly different at p ≤ 0.05, according to the Tukey test.

Furthermore, as it is seen in Figure 4, a linear crop-water-consumption–yield rela-
tionship was found in both years (R = 0.85 in 2018 and 0.99 in 2019; n = 12), whose yield
reduction was directly related to the reduction in water consumption. This results dif-
fer from those obtained from Aydin et al. [37] who found a second-degree polynomial
relationship between the irrigation water and the yield.
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Figure 4. Linear water production functions for pomegranates subjected to water deficits occurring
during the 2018 and 2019 growing seasons (n = 12).

3.5. The Effect of Irrigation Treatments on Morphological Characteristics of Fruit

The average weight, diameter, and length of fruits showed significantly lower values
in 2019 compared to 2018. In both years, these parameters showed the highest values
in 2019 compared to 2018. In both years these parameters showed the hhighest values
in ETc100 treatment, although these were not significantly different from the ETc75 and
the ETc50 treatmetns and were not different from the ETc25 ones (Table 5).These results
are in accordance with a previous study [38] that reported a reduction in the fruit size in
pronounced water deficit levels. These results obtained on the physical prosuctive response
to irrigation can provide information relevant to production and industrial purposes. For
the latter, in addition to the qualitative aspects of the juice (content of bioactive compounds,
organic acids, sugars, etc.), reported in a prvious study [23], the knowledge of the mor-
pholological properties of fruit is useful in designing optimal equipment for harvesting,
trasporting, grading, cleaning, storing and packaging as well as processing the whole fruit
into other derived products.

3.6. The Water use Efficiency (WUE) and the Yield Response Factor (Ky)

As a general trend, Table 4 indicates that the WUE values were slightly higher in 2018
(they varied between 1.85 and 2.08 kg/m3) than those in 2019 (they varied between 1.31 and
1.41 kg/m3). However, in both years, no statistical differences in the WUE among irrigation
treatments were noted, although, in both years, slightly higher values were obtained in the
fully irrigated treatment. These results differ from other previously obtained results [13,39],
which indicated significantly higher WUE values in trees under highly irrigated levels.

As for the yield response factor, the results showed a slightly higher value in 2019
(1.21) than in 2018 (1.00) (Figure 5). In any case, according to the Ky obtained in this study,
it can be said that young Wonderful pomegranate plants are sensitive to drought stress
during the growth period. Our Ky values were higher than that (0.81) reported by Taha [40],
which expressed a moderate tolerance to water stress, but were much lower than that (1.57)
reported by Aydin et al. [37] for the Zivzik variety, which expressed a high sensitivity to
water stress. These differences may be due to factors other than water, such as nutrients,
different environments, different cultivars, and the age of the trees, which also affects the
yield response to water [22].
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4. Conclusions

This study investigated the adoption of a DI strategy (restitution of 100%, 75%, 50%,
and 25% of the ETC) during three successive growing seasons on pomegranates to evaluate
the effects on vegetative growth, yield, the water use efficiency, and the yield response
factor. The results showed that the plants at the end of the third experimental trial reached
the significantly highest cumulative trunk diameter by the restitution of 100% of the ETc,
while it gradually decreased with the increase in water stress treatments. Additionally, the
shoot length, on average, decreased as irrigation water applications decreased, although
insignificant differences were noted among treatments because of the high variability of the
data. As a general trend, the average number of fruits per tree, the fruit size, and the yield
decreased with reducing irrigation levels, among which the severe water restriction (25%
ETc) always provided the statistically lowest values. A linear crop-water-consumption–
yield relationship was found, where yield reduction was directly related to reduced water
use. Moreover, although slightly higher WUE values were obtained in the fully irrigated
plants, no statistical differences among irrigation treatments were noted. The results of the
yield response factor to the reduction in water use showed values of 1.00 and 1.21 in the
2018 and 2019 seasons, respectively. This means that, under our experimental conditions,
the young Wonderful pomegranate plants were sensitive to drought stress during the
growth period.

In conclusion, based on the above-mentioned results, young Wonderful pomegranate
trees in semiarid areas, also characterized by strong speed winds, require full water restitu-
tion throughout the dry season to reach optimal growth and yield. However, considering
that the effect of DI on pomegranate productive responses has been only recently studied
and that results from this and several other previously cited studies are contradictory,
longer-term studies are needed in semiarid areas to better predict physiological responses
to DI strategies relative to the productivity of pomegranate.
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