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Abstract: High berry yield and quality of conventionally and organically grown cranberry stands
require proper nutrient sources and dosage. Our objective was to model the response of cultivar
“Stevens” to N, P, K, Mg, Cu, and B fertilization under conventional and organic farming systems.
A 3-year trial was conducted on permanent plots at four production sites in Quebec, Canada. We
analyzed yield predictors, marketable yield, and fruit quality in response to fertilization and soil
properties. Cranberry responded primarily to nitrogen fertilization and, to a lesser extent, to potas-
sium. Berry yield was closely related to the number of fruiting uprights (r = 0.92), berry counts per
fruiting upright (r = 0.91), number of reproductive uprights (r = 0.83), and fruit set (r = 0.77). Nitrogen
increased berry yield nonlinearly but decreased berry firmness, total anthocyanin content (TAcy),
and total soluble solids content (◦Brix) linearly, indicating a trade-off between berry yield and quality.
Fertilizer dosage at a high-yield level ranged between 30 and 45 kg N ha−1 in both conventional and
organic farming systems. Slow-release fertilizers delayed crop maturity and should thus be managed
differently than ammonium sulfate. Berry weight increased with added K. Redundancy analysis
showed a close correlation between marketable yield, berry quality indices, and soil tests, especially
K and Ca, indicating the need for soil test calibration.

Keywords: Brix; TAcy; nitrogen; potassium; compositional data; cranberry yield parameters; firm-
ness; local diagnosis; redundancy analysis

1. Introduction

Cranberry (Vaccinium macrocarpon Ait.) is grown in low-fertility acidic (pH 4.0 to 5.0)
sandy or peaty soils located in low-lying landscape positions to facilitate water transfer [1].
Wisconsin, Quebec, and Massachusetts are the world’s largest cranberry producers [2].
Quebec is the world leader in organically grown cranberries. Berry yield and quality
depend on site, fertilization, cultivar, maturity, harvest date, and temperature [3,4]. While
the fertilization of conventional systems has been documented to some degree, information
on the fertilization of organic systems is scanty.

Fruit set, number of uprights, relative abundance of reproductive uprights (% of total
uprights), number of flowers per reproductive upright, and berry weight are useful yield
predictors [5,6]. A cranberry plant typically produces one to three fruits per reproductive
upright from two to seven flowers. Depending on the cultivar and weather, berries take 60
to 120 d or even more to reach maturity and deep coloring [7]. Berry firmness, size, soluble
solids, and ascorbic acid and anthocyanin content are the most important traits for the
industry [8–10]. Berry moisture before harvest is also crucial to reduce the economic loss in
terms of yield, quality, and drying cost [11,12].
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Fertilization timing, source, and dosage must be managed to balance berry yield
and quality [13]. Nitrogen fertilization is the most effective means to stimulate cranberry
growth but it may affect floral induction negatively [14]. Excessive N dosage can produce
intraspecific competition among neighboring plants [15]. The N source, timing, and rate
should thus be managed carefully [16–18]. If applied in excess, N decreases berry yield and
quality [16,19] and increases the risk of overgrowth of vegetative parts [20]. Ammonium
sulfate is the most common N fertilizer in cranberry production. Slow-release nitrogen
fertilizers are other sources of N fertilizer that may delay berry maturity depending on the
N release rate [21]. Decision on proper N dosage and sources involves a trade-off between
berry yield and quality that must be addressed locally but has not yet been modeled under
the climatic conditions of eastern Canada.

Soil tests have been little documented in cranberry production. Potassium and phos-
phorus showed variable effects on berry yield and quality [22]. Soil test P and P fertilization
were found to be poorly correlated with crop yield [23,24]. The K dosage was found to
depend on soil test K, cultivar, and site, hence requiring local calibration [4]. Tissue testing
is the most frequent method to diagnose other elements [4,7,25,26].

On the other hand, redundancy analysis provides a means to explore the relationship
between cranberry performance and soil tests. To run a multivariate analysis such as
redundancy analysis (RDA), soil compositions should be log-ratio transformed to remove
false correlations between components that resonate on each other within the constrained
sample space of nutrient compositions [27,28].

We hypothesized that (1) berry yield parameters and berry quality are impacted by
N, P, K, Mg, B, and Cu dosage and the N source in conventional and organic cranberry
agroecosystems, and (2) cranberry performance indices are correlated with soil test. The
first hypothesis was tested using a mixed model. The second hypothesis was addressed
by RDA. Our objective was to support site-specific nutrient management decisions in
cranberry agroecosystems.

2. Materials and Methods
2.1. Experimental Site and Design

One hundred and forty-four permanent plots of cultivar ‘Stevens’ were delineated in
four commercial fields in southern Quebec, Canada (Figure 1). ‘Stevens’ is characterized by
high yield and moderate color development [29]. The stands established in 1995, 1999, 2004,
and 2007 at sites 9, 45, A9, and 10, respectively, were monitored from the spring of 2014
to the fall of 2016. Site A9 was under organic farming. Others were under conventional
farming. Meteorological data during the 2014 to 2016 period (Appendix A, Figure A1) were
obtained from the closest weather stations of Environment Canada [30]. Cranberry stands
were irrigated to maintain soil matric potential between −3 and −7 kPa [31].

2.2. Soil Analysis

Soil samples (0 to 15 cm) were collected in each plot before fertilization in June 2014
and every year thereafter. Samples were air-dried and sieved to less than 2 mm. Grain-size
distribution was determined by sedimentation [32] and sand composition by hand-sieving.
Grain-size distribution is presented in Table 1. Minerals were extracted using the Mehlich
III method [33] and quantified by ICP-OES (inductively coupled plasma optical emission
spectrometry). The C and N contents were quantified by combustion (Leco CNS-2000
analyzer, St. Joseph, MI, USA). Soil pH was reported as pHcacl2. Results of soil analyses at
the onset of the experiment are presented in Table 1.
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Table 1. Soil particle size distribution and mean and standard deviation (SD) of soil data at each experimental site across
144 plots in June 2014.

Site 10 45 9 A9

g kg−1

Clay 23 26 28 36
Silt 40 32 41 36
Sand total 937 943 932 928
• 1–2 mm 6.1 19.1 34.1 13.2
• 0.5–1.0 mm 28.3 70.4 161.5 72.1
• 0.25–0.5 mm 332.9 283.5 405.3 417.3
• 0.1–0.25 mm 466.5 478.5 261.8 380.7
• 0.25–0.01 mm 103.2 91.5 69.2 44.7

mean ± standard deviation
pH (0.01 M CaCl2) 4.2 4.3 ± 0.1 4.3 ± 0.1 4.1 ± 0.1

g kg−1 (mean ± standard deviation)
Total C 3942 ± 664 12,170 ± 4218 10,615 ± 1875 10,528 ± 1836
Total N 162±88 479 ± 182 436 ± 173 400 ± 183
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Table 1. Cont.

Site 10 45 9 A9

Mehlich-3 analysis mg kg−1 (mean ± standard deviation)
P 63 ± 15 100 ± 21 164 ± 29.6 91 ± 19.2
K 8.5 ± 1.5 26.1 ± 6.8 16.6 ± 2.8 10.7 ± 3.2
Ca 31.6 ± 5.5 70.3 ± 24 106.1 ± 24.8 14.7 ± 4.1
Mg 10.7 ± 2 6.6 ± 2.6 9.8 ± 2.1 3.9 ± 1.3
Cu 1.8 ± 0.6 1.1 ± 0.6 1.7 ± 0.5 0.9 ± 0.3
Zn 0.6 ± 0.1 1.0 ± 0.2 2.0 ± 0.5 0.4 ± 0.1
Mn 1.5 ± 0.3 0.7 ± 0.3 1.2 ± 0.5 0.4 ± 0.3
Fe 177 ± 25 3043 ± 4 282 ± 30 239 ± 46
Al 594 ± 175 1240 ± 22 1510 ± 175 1488 ± 114

2.3. Fertilization

The experiment comprised 18 treatments (Appendix A, Table A1) arranged as ran-
domized block designs and replicated twice at each site, for a total of eight observations
per treatment per year. Plot size was 12 m2 (4 by 3 m). Fertilizer treatments are presented
in Table 2. The transition to organic farming at site A9 started in 2015. The N treatments (0,
15, 30, 45, or 60 kg N ha−1) comprised ammonium sulfate (21% N) or sulfur-coated urea
(SCU = 24% N, 5% P2O5, 11% K2O) on conventional sites and certified fish emulsions (6%
N, 1% P2O5, 1% K2O) or amino acids of plant origin (8% N) on the organic site (Table 2).
The K doses (0, 40, 80, or 120 kg K ha−1) were applied as potassium sulfate (50% K) or
sulfate of potassium and magnesium (18% K and 9% Mg). Phosphorus was supplied as
triple superphosphate (46% P2O5) on the conventional sites or as bone meal (13% P2O5) on
the organic site. Two Mg doses (0 or 12 kg Mg ha−1), two Cu doses (0 or 2 kg Cu ha−1),
and two B doses (0 or 1 kg B ha−1) were applied as Epsom salt (9% Mg), copper sulfate
(25% Cu), and sodium borate (20% B), respectively.

Where one element was varied, other elements were applied at rates of 45 kg N ha−1,
15 kg P ha−1, 80 kg K ha−1, 12 kg Mg ha−1, 2 kg Cu ha−1, and 1 kg B ha−1. Fertilizers
were applied uniformly by hand during the growing season. The N fertilizer was applied
within a 3- to 4-week window that coincides with fruit set and initial bud formation [34].
From early June to mid-June, B, Cu, and Mg fertilizer were applied during bud break and
bud elongation. Thereafter, NPK were applied at four occasions as follows: 15% at early
flowering (29 June to 2 July), 35% at 50% flowering (8 to 11 July), 35% at 50% fruit set (16 to
19 July), and 15% 1 to 2 weeks after the third application.

Table 2. Fertilization treatments during the 2014–2016 period at conventional and organic sites.

2014 2015 2016

Conventional Conventional Conventional Organic Conventional Organic

Nutrient kg element ha−1

N 0, 15, 30. 45, 60 0, 15, 30. 45, 60 0, 15, 30. 45, 60 0, 15, 30, 45, 60 0, 15, 30. 45, 60 0, 15, 30. 45, 60
P 0, 15, 30 0, 15, 30 0, 15, 30 0, 15, 30 15 15
K 0, 40, 80, 120 0, 40, 80, 120 0, 40, 80, 120 0, 40, 80, 120 0, 40, 80, 120 0, 40, 80, 120

Mg 0 or 12 0 or 12 0 or 12 0 or 12 12 12
Cu 0 or 2 0 or 2 0 or 2 0 or 2 2 2
B 0 or 1 0 or 1 0 or 1 0 or 1 1 1

2.4. Plant Measurements

Yield parameters used as yield predictors were flower counts, number of reproductive
uprights, number of flowers per reproductive upright, berry counts, number of fruiting
uprights, berry counts per fruiting upright, and fruit set (ratio of berry counts to flower
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counts). The counts of flowers and reproductive uprights were measured in 2014 and
2015 at the end of June on four representative areas totaling 0.37 m2 per plot while fruits
and fruiting uprights were counted in mid-August. Berries were hand-harvested in four
areas totaling 0.37 m2 in each plot, one to two weeks before starting the planned flooding
operation at the beginning of October, to avoid too early flooding. Berries were counted
and weighed to derive average berry weight (g) and marketable yield (Mg ha−1).

2.5. Berry Quality

Fruit quality followed commercial criteria of the USDA shipping point and market
inspection instructions for fresh cranberries (USDA, 2007). One kilogram of randomly
selected berries was weighed to determine berry quality after discarding unmarketable
fruits. Berry quality was determined as moisture content, total soluble solid concentration
(Brix), total anthocyanin concentration, acidity, and firmness [10].

Berries were frozen at −10 ◦C and analyzed for moisture content, TAcy [35], and ◦Brix
(refractometry) for soluble solids at the Ocean Spray quality department in Warren, Wis-
consin. As berries were harvested before commercial harvesting, average TAcy indices [24]
could be lower than market requirements of 350 to 450 mg kg−1 for bonus payments reach-
able at harvest. Berry firmness was quantified using the TA.TX2 Texture Analyzer (Texture
Technologies Inc., Scarsdale, NY, USA) [36]. Fifty berries per treatment were refrigerated
overnight then maintained at room temperature for 1 to 2 h before performing the test.
Pre-test speed was 1 mm s−1, test speed was 2 mm s−1, post-test speed was 10 mm s−1,
and trigger force was 0.1 N. Firmness was reported in N mm −1 as the mean and standard
deviation of 50 samples.

2.6. Statistical Analysis

Statistical analyses were conducted in the R statistical environment version 4.0.5 [37].
We used the R meta-package tidyverse version 1.3.0 [38] for generic data analysis, weather-
can [39] for historical weather data, and ggmap [40] for spatial visualization. There were 13
dependent variables including seven yield predictors, as follows: flower counts, number of
reproductive uprights, number of flowers per reproductive upright, berry counts, number
of fruiting uprights, berry counts per fruiting upright, and fruit set. Other dependent
variables were quality indices (TAcy, Brix, firmness, and berry moisture), marketable yield,
and berry weight. The experimental setup was analyzed as a mixed model with treatments
as fixed factors and years, sites, and replications as random factors [41]. Ammonium sulfate
(21-0-0) was set as the reference fertilizer treatment to run the nlme model. Outliers were
removed by Z-score test [42] if they exceeded 5 times the standard deviation (5.85% of total
observations).

Tests of significance (p = 0.05) were used to reject the null hypothesis, but not to accept
it as true [43]. Non-significant results did not mean that there was no difference between
groups or there were no treatment effects [44]. For each primary outcome, we computed
95% compatibility intervals [44].

There were twelve soil properties and six cranberry performance indicators. The
dataset of matrix Y (cranberry yield and quality indices) and explanatory matrix X (pH, N,
P, K, Mg, Cu, Ca, Zn, Mn, Fe, Al, and C) was explored by redundancy analysis (RDA) to
analyze the impact of “explanatory variables” on “response variables”. The R packages
to run RDA were the vegan version 2.5-7 [45] for RDA, R meta-package for ordination,
and compositions for clr transformations to avoid spurious correlations. A permutation
procedure was performed (anova.cca function in vegan package) [45] to test the significance
of RDA models. Soil test nutrient concentrations were transformed into centered log-
ratios [46] before conducting RDA due to Euclidean geometry. The centered log-ratios (clr)
were computed as follows [27,28]:

clr(xi) = ln
(

xi
g(xi)

)
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where xi is the ith nutrient soil concentration and g(xi) is the geometric mean. The clr trans-
formation allows for computing Euclidean distances between any two compositions [29].
Redundancy analysis (RDA) related matrix Y (cranberry performance) to explanatory
matrix X (soil test) based on Euclidean distance between observations [47,48]. Indeed,
due to closure to the bounded measurement unit, compositional data should be log-ratio
transformed before running linear univariate or multivariate statistical analyses [49].

3. Results
3.1. Effect of Nitrogen Source on Berry Yield and Quality

Berry quality was impacted significantly (p < 0.05) by N sources (Figure 2). The
effects of SCU and fish emulsions differed compared to ammonium sulfate depending
on the variable tested. Berry counts, flower counts, number of fruiting and reproductive
uprights, and percentage of fruit set tended to decrease adding amino acids (8-0-0). Organic
fertilizers (6-1-1 and 8-0-0) had similar effects on berry yield (p > 0.05). Fish emulsions and
SCU decreased TAcy by four to six units while fish emulsions increased firmness by 11%,
indicating delayed maturity. Compared to ammonium sulfate, SCU increased berry yield
by 13% (p < 0.05) but reduced TAcy (p < 0.05). TAcy responded differently than firmness
and ◦Brix to fish emulsions. Overall, average anthocyanin content decreased (7.23 mg
TAcy 100 g−1) significantly with the organic fertilizer (6-1-1). The ◦Brix and berry moisture
showed no significant differences between nitrogen sources.
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3.2. Effect of N, P, and K Regimes on Yield Parameters and Fruit Quality

The N and K fertilization impacted significantly berry yield and quality while the
effect of P fertilization was not significant (Figures 3 and 4). The effects of Mg, B, and Cu
regimes were also not significant (Appendix A, Figures A2 and A3). Berry yield responded
non-linearly to N fertilization (p < 0.05) and tended to plateau between 30 and 60 kg
N ha−1. The highest yield of 33 Mg ha−1 was reached at 45 kg N ha−1 under organic
farming. The highest yield average of 48 Mg ha−1 was reached at 30 to 45 N ha−1 under
conventional farming.
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Fruit set increased linearly between 0 and 60 kg N ha−1 and between 0 and 120 kg
K ha−1 (Figure 3). Likewise, counts of fruiting uprights increased linearly from 95 to 123
by adding N and K. Berry count per fruiting upright increased from 205 to 257 with K
additions between 0 and 120 kg K ha−1. Berry weight was highest with 30 to 45 kg N ha−1

and 40 to 120 kg K ha−1. There was no significant yield response (p > 0.05) to added K
in 2015, where the maximum yield was 36 Mg ha−1, but there was a significant response
(p < 0.05) in 2014 and 2016 where yields reached 54 and 44 Mg ha−1, respectively. Hence,
yield response to K fertilization was apparently related to yield level.

There were 3.9 flowers per reproductive upright, 2.1 berries per fruiting upright, and
48% of fruit set at N application rate of 45 kg N ha−1. Each kg of N per ha increased berry
moisture by 0.023% unit in the range of 0 to 60 kg N ha−1 (Figure 4). Cranberry responded
negatively to added N for ◦Brix, TAcy, firmness, and positively for the percentage of berry
moisture (Figure 4). There was a non-linear response to added N for berry weight and berry
yield. The K positively impacted ◦Brix, TAcy, and firmness, increasing gently between 0
and 120 kg K ha−1. Response to added P was not significant. Response to Mg, B, and Cu
regimes was also not significant (Appendix A, Figures A2 and A3).

3.3. Correlations among Berry Yield and Quality Parameters

Relationships among yield parameters are presented in Figure 5. There were close
correlations between the number of reproductive uprights, flower counts, number of fruiting
uprights, and berry counts (Figure 5). Flower counts and the number of reproductive uprights
(r = 0.95), as well as berry counts and number of fruiting uprights (r = 0.93) were closely
related with marketable yield. Fruit set showed moderate correlation (r = 0.77) with berry
counts and flower counts. Fruit set fluctuated between 33% to 59% in 2014 and 36% to 41% in
2015. The relationship between fruit set and berry yield was thus inconsistent across years.
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3.4. Redundancy Analysis

Relationships between soil test and cranberry performance are illustrated in Figure 6.
The first RDA axis was significant (RDA1: F = 19.44, p = 0.001), and explained 85.9% of the
total variation. The anova.cca ranking was Ca (F = 11.98, p < 0.001), K (F = 3.92, p < 0.05),
Fe (F = 2.57, p < 0.05), and pHCaCl2 (0.01 M CaCl2) (F = 4.53, p < 0.05). Soil pHCaCl2 was the
most important soil factor affecting cranberry performance. The optimum pHCaCl2 was
4.14 ± 1.66. Among soil nutrient tests, Ca ranked first, explaining 56.3% of the cumulative
variance. The second key factor was K with 18.4% of the cumulative variance, followed by
Fe, and Mg. The K and Ca were negatively related.

Berry yield and quality indices were related to soil tests. Arrows in RDA illustrated
the complex relationships between them (Figure 6). Berry weight was related negatively to
TAcy. The ◦Brix was negatively related to berry moisture. Berry moisture was positively
related to pH. There was a positive relationship between soil test Ca and TAcy. Soil test
K, Fe, and Mg were related positively to ◦Brix. Berry yield was negatively related to soil
test K, Fe, and Mg. Berry weight was related negatively to soil test Ca and Zn. Yield and
berry moisture were located in the lower right quadrant, and were positively related to pH.
Berry firmness and weight were closely related to each other. The Ca and TAcy located in
the upper right quadrants were positively related. In contrast with K fertilization applied
as potassium sulfate (Appendix A, Table A1), soil test K was positively related to ◦Brix but
negatively related to berry yield.
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4. Discussion
4.1. Impact of Fertilization on Berry Quality

Fruit quality characteristics are of prime importance in cranberry breeding pro-
grams [29]. Fruit quality depends on genetics, management, and the environment [50,51].
Berry quality traits comprise anthocyanin content (color), fruit texture characteristics (crisp-
ness, hardness, juiciness, and mealiness), fruit anatomy (skin, flesh, or air pocket), and
fruit external appearance (size and shape) [52]. Cultivar ‘Stevens’ showed the smallest
average berry size (1.51 cm) among commercial cultivars [8]. Stevens [53] first suggested
that factors such as temperature and rainfall could impact fruit keeping quality through
fungal infection and disturbed fruit physiology.
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The N and K fertilization regimes can also influence cranberry production. Increased
N dosage resulted in a linear decrease in ◦Brix, firmness, and TAcy, and increased moisture
content. In general, a high N dosage was found to reduce TAcy [4,54], firmness, [55] and
◦Brix [29]. In contrast, Davenport [56] found no significant effect on TAcy by applying up
to 44 kg N ha−1. As anthocyanins are located primarily in the fruit epidermal layers [57],
TAcy decreases as fruit size increases [58]. While TAcy increased [59], fruit firmness was
found to decrease as the fruit ripened [10]. Bourne [60] found that similar to cranberry,
apple firmness decreased with N additions. In contrast with previous research showing a
linear response of hybrid cultivars [61], we found a quadratic relationship between added
N and berry weight of ‘Stevens’. Cranberry quality indices showed a small but significant
response trend adding 80 to 120 kg K ha−1. Crop response to added K was found to be
related to yield level in eastern Canada, which was not necessarily the case across cultivars
and sites in North America [19,56].

4.2. Impact of Fertilization on Yield Parameters

The numbers of flowers per reproductive upright and number of berries per fruiting
upright were within the range of published values [7,62]. As the number of reproductive
uprights and flower counts m−2 are related to fruit yield, they provided performance
indices a few months before harvest [63]. Berry count m−2 was found to be the yield
parameter most closely related to berry yield. Fruit set is also an important indicator
of yield variation [5,64] as related to sunlight [65], pollination [64], and yield [66], but
the relationship between carbohydrate concentration, fruit set, and yield can be inconsis-
tent [64]. Carbon allocation between reproductive and vegetative parts [67] depends on
temperature [63,68] and is affected by excessive rainfall or drought [69].

Marketable yields were higher by 10% to 25% under the conventional vs. organic
systems as reported elsewhere [70,71]. In both conventional and organic farming systems,
the effect of N dosage on yield plateaued between 30 and 60 kg N ha−1, within the 20 to
65 kg N ha−1 range reported in Davenport [56] and the 39 to 56 kg N ha−1 range reported
in DeMoranville and Ghantous [21]. While ‘Stevens’ yield was found to plateau at 20 Mg
ha−1 after adding 22 to 44 kg N ha−1 [56], ‘Stevens’ yields up to 40 Mg ha−1 decreased
and stolon weight increased where N dosage exceeded 34 kg N ha−1 [20]. The N dosage
is site-specific. A too high N dosage (60 kg N ha−1) lead to plant crowding [15,50] and
overgrowth of the vegetative parts [72].

Slow-release N fertilizers such as SCU in conventional cranberry production and certi-
fied fish emulsions in organic production should be managed differently than ammonium
sulfate. Berry firmness increased by applying an organic source likely due to delay in
berry maturity. Anthocyanin content tended to decrease where ammonium sulfate was
replaced by organic nitrogen or SCU as also reported in [18]. Compared to ammonium
sulfate, SCU and fish emulsions should be applied earlier in the season to sustain N release
during the whole season and avoid delaying berry maturity and the reddening finish close
to harvest time.

4.3. Ranking of Soil Test Variables

Soil test calibration has been little addressed in cranberry production except for
P [23,24]. As first shown by Bray [73,74], soil tests for nutrients showing low mobility in the
soil as well as nutrient source and placement must show different coefficients of efficiency.
Crop response to fertilization dosage and soil test value are generally addressed separately
then assembled into a modified Mitscherlich equation. In this paper, we addressed crop
response to added nutrients separately using a mixed model and soil test using RDA.

As shown by RDA, soil test K appeared to be the most discriminant nutrient for
cranberry performance, followed by Ca, Fe, and Mg. Soil test K is often low in cranberry
soils because K is easily leached at soil pH values less than 5.5 [75], and cation-exchange
capacity is low in sandy soils [76]. Soil K can also be supplied as non-exchangeable K by
primary and secondary soil minerals such as feldspar, mica, and illite, which are common
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in soils of eastern Canada [77–79]. Mica K is released much faster compared to phlogopite,
biotite, and muscovite [80]. The reactivity of soil minerals also depends on the grain-size
distribution, pH [81], and rhizosphere exploration of the soil [82]. Owing to the low clay
and high sand contents in cranberry soils, soil minerals are assumed to contribute little
to cranberry K requirements. It is thus difficult to maintain high soil test K values in
acidic cranberry sandy soils. Low soil test K results in low berry yield [19,22], requiring
fertilization.

The K fertilization should meet annual K requirements, at a rate that avoids affecting
the uptake of other cations. Added K may trigger Ca leaching and reduce Ca uptake [17,22,
26]. Since tissue K increases with K dosage or soil test K level while tissue Mg might
decline [4,17], the tissue K–Mg interaction should also be monitored [83]. The RDA
supported calibrating soil tests to provide minimum critical soil test values to sustain
the cranberry production on sandy soils. Nevertheless, our results supported the present K
recommendation of 54 to 92 kg K ha−1 at a low soil test K [84]. The minimum soil test K
value to be maintained in cranberry soils should be addressed in future research.

The RDA indicated that soil pH played a key role in cranberry nutrient manage-
ment [18,85]. High levels of Ca in cranberry soils can reduce the absorption of Mn, Fe,
and Zn, potentially reducing berry yield and size [83]. To address nutritional balance in
cranberry crops and predict cranberry yield and nutrient requirements, tissue testing is
complementary to soil testing [86].

5. Conclusions

This paper quantified the trade-off between berry yield and quality as driven primarily
by N fertilization. Berry count per fruiting upright, fruit set, and berry weight responded
consistently to N treatments. Berry yield could be predicted most accurately from berry
counts per fruiting upright. Nitrogen fertilization increased berry yield nonlinearly and
decreased berry quality indices linearly. The SCU and fish emulsions delayed berry
maturity and should thus be managed differently than ammonium sulfate through earlier
applications to account for the slow-release patterns.

Cranberry responded moderately to K where yield potential was high. As shown
by RDA, cranberry performance was related to soil pH and soil test nutrients. The K and
Ca were negatively correlated between them, indicating an upper limit for K additions.
The RDA indicated close relationships between cranberry performance indices and soil
properties, and thus supported the need for further soil test calibration.
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Figure A1. Monthly mean air temperature and total precipitation at the four experimental sites in Quebec, Canada.

Table A1. Fertilizer regimes applied during the 3-year experimental period.

Cropping
Systems 2014 2015 2016

N
Conventional Ammonium sulfate

(21-0-0)

Ammonium sulfate
(21-0-0)

Ammonium sulfate
(21-0-0)

Sulfur coated urea
(24-5-11)

Organic Amino acids
(8-0-0)

Fish emulsions
(6-1-1)

P
Conventional Triple superphosphate

(0-46-0)

Triple superphosphate
(0-46-0)

Triple superphosphate
(0-46-0)

Organic Bone meal
(0-13-0)

Bone meal
(0-13-0)

K
Conventional Potassium sulfate

(0-0-50)
Potassium sulfate

(0-0-50)
Potassium sulfate

(0-0-50)Organic

Mg Conventional Epsom salt (9% Mg)
Sulfate of potassium and

magnesium
(0-0-22)

Epsom salt (9% Mg)
Sulfate of potassium and

magnesium
(0-0-22)

Epsom salt (9% Mg)
Sulfate of potassium and

magnesium
(0-0-22)

Organic
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Table A1. Cont.

Cropping
Systems 2014 2015 2016

Cu
Conventional Copper sulfate

(25% Cu)
Copper sulfate

(25% Cu)
Copper sulfate

(25% Cu)Organic

B
Conventional Solubor

(20% B)
Solubor
(20% B)

Solubor
(20% B)Organic
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