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Abstract: Organic amendments are important sources of nutrients that release upon organic matter
degradation, yet the stability of these organics in arid and semi-arid regions is relatively low. In
contrast, humic substances (HS) are resistant to biodegradation and can keep nutrients in the soil
available for the plant over a long time. Combinations between humic substances (HS) and mineral-
N fertilizers are assumed to retain higher available nutrients in soils than those recorded for the
sole application of either mineral or organic applications. We anticipate, however, that humic
substances might not be as efficient as the organics from which they were extracted in increasing
NP uptake by plants. To test these assumptions, faba bean was planted in a pot experiment under
greenhouse conditions following a complete randomized design while considering three factors:
two soils (calcareous and non-calcareous, Factor A), two organics (biogas and compost, Factor B)
and combinations of the organics and their extracts (HA or FA) together with complementary doses
of mineral-N ((NH4)2SO4) to attain a total rate of 50 kg N ha−1 (the recommended dose for faba
bean plants) (Factor C). Results indicated that nitrogenase activity increased significantly due to
the application of the used organics. In this respect, compost manure caused higher nitrogenase
activity than biogas manure did. Humic substances raised NP-availability and the uptake by plants
significantly; however, the values of increase were lower than those that occurred due to the compost
or biogas manure. Moreover, the sole application of the used organics recorded the highest increases
in plant biomass. Significant correlations were also detected between NP-availability, uptake and
plant biomass. This means that HS could probably retain nutrients in available forms for long time
periods, yet nutrients released continuously but slowly upon decomposition of organics seemed
more important for plant nutrition.

Keywords: humic substances; sandy soils; faba bean; NP-uptake; NP-availability

1. Introduction

Faba bean (Vicia faba L.) is an important legume crop in Egypt [1] that belongs to the
family Fabaceae [2]. Its seeds are the edible parts that may partially replace meat and dairy
products in the human diet [3] because they are rich in complex carbohydrates, proteins,

Horticulturae 2021, 7, 205. https://doi.org/10.3390/horticulturae7080205 https://www.mdpi.com/journal/horticulturae

https://www.mdpi.com/journal/horticulturae
https://www.mdpi.com
https://orcid.org/0000-0002-1905-1241
https://orcid.org/0000-0001-5684-2061
https://orcid.org/0000-0002-5600-7477
https://orcid.org/0000-0003-2717-9250
https://doi.org/10.3390/horticulturae7080205
https://doi.org/10.3390/horticulturae7080205
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/horticulturae7080205
https://www.mdpi.com/journal/horticulturae
https://www.mdpi.com/article/10.3390/horticulturae7080205?type=check_update&version=1


Horticulturae 2021, 7, 205 2 of 13

dietary fiber and several bioactive compounds [4]. This crop can be grown successfully
on poor light-textured soils [5]; yet these soils need major improvements to raise their
productivity [6,7]. Accordingly, organic applications are guaranteed to attain these aims [8].
These amendments not only improve soil physical and chemical characteristics [9–12]
but also chelate nutrients [13] and increase their availability, especially in alkaline and
calcareous soils [14]. Even in acid soils, organic amendments can maintain the optimal pH
for nutrient availability [15].

Moreover, organic amendments lessen nutrients losses through leaching from top
layers [16] of light-textured soils [17] and hence increase their uptake by plants [10]. In
the case of P, organic amendments can also diminish P-sorption in soil [18]. Despite that,
Guppy et al. [19] mentioned that researchers ignored the release of P during organic matter
degradation in their calculations, which is the main reason for such reductions in P-sorption.
Therefore, this area still needs further investigation.

Humic substances (HS), which comprise up to 70% of soil organic matter (SOM) [20],
retain longer in soils [21] and resist, to a higher extent, against biodegradation [22]. Their
functional groups increase nutrient retention in soil [23]; consequently, HS can be used as
nutrient reservoirs [24]. This may, in turn, lessen P-sorption in soil [25]. This study explored
the impacts of easily decomposed organic matter versus the more resistant organics (humic
and fulvic acids that act as chelates). It is thought that organic amendments, which are
highly decomposable in soil, stimulate the activities of beneficial microbiota [26] and also
enrich soils with nutrients [13]; however, their stability in arid and semi-arid soils are
relatively low [11]. On the other hand, humic substances (HS) are relatively more stable in
soil and form coatings on sand particles [27]. This mechanism may play a more significant
role in retaining available nutrients within the topsoil via surface complexation, e.g., phos-
phate [25], especially when these organics are combined with mineral fertilizers [28]. The
relatively high molecular weights of the humic substances may, on the other hand, lessen
nutrient mobility and therefore decrease their potential loss by leaching from soils [29].
Specifically, we assume that combinations between organic amendments, particularly
FA/HA and mineral-N fertilizers, retain higher available P in soils than those recorded for
the application of mineral-N or its organic forms when applied solely. Furthermore, these
amendments may lead to indirect positive effects on N-availability. Accordingly, these
extracts probably increase nutrient availability to extend beyond those attained for the
organic amendments themselves (Hypothesis 1). Even though the implications of amending
soils with humic substances are probably lower than the consequences of the organic
amendments on increasing NP-uptake by faba beans because organic amendments act as
slow release fertilizers that supply plants continuously with nutrients (Hypothesis 2). A
controlled greenhouse investigation is recommended to test these hypotheses in order to
avoid the consequences of heavy rains (if they occur) on nutrient leaching from the topsoil
when this investigation takes place under field conditions.

The current study aims at investigating the effectiveness of using organic amendments
from different sources (compost and biogas) and their extracts (HA and FA) for improving
NP-availability and uptake by faba bean plants grown on poor fertile light-textured soils
(calcareous and non-calcareous ones) for 80 days. Implications of these organic amend-
ments and their extracts on plant growth parameters were also a matter of concern. Results
obtained herein might improve our knowledge about the roles of organic amendments in
improving nutrients availability in soil; hence, increasing their uptake by plants.

2. Materials and Methods
2.1. Materials of Study
2.1.1. Soils of Study

Surface soil samples (0–30 cm) were collected from both sandy (El Dair, Qalubia
Governorate) and calcareous soils (Nubaria, Beheira Governorate, Egypt). These samples
were then air-dried, grounded to pass through a 2 mm sieve and analyzed for physical and
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chemical properties outlined by Klute [30] and Sparks et al. [31]. The obtained results are
presented in Table 1.

Table 1. Physical and chemical properties of the investigated soils.

Property El Dair (Non-Calcareous Soil) Nubaria (Calcareous Soil)

Particle size distribution %
Sand 91.80 94.90
Silt 2.20 2.27
Clay 6.00 2.83
Textural class Sand Sand
Soil pH * 7.65 8.20
Soil EC **, dS m−1 1.39 5.00
Organic matter content, g kg−1 3.30 7.10
CaCO3 content, g kg−1 15.00 223.00
Available N, g kg−1 12.70 16.80
Available P, g kg−1 1.35 2.52
Available K, g kg−1 15.50 20.70

* pH was determined in 1:2.5 soil: water suspension; ** EC was determined in soil paste extract.

2.1.2. Organic Manures Source

Compost and biogas manure weas obtained from the Training Center for Recycling
Agricultural Residues at Moshtohor (TCRAR), Agricultural Research Center (Egypt). Hu-
mic substances were extracted from both amendments as outlined by Sanchez-Monedero
et al. [32], i.e., 0.5 N KOH was added to the organic amendment, then filtrated, and the
supernatants were acidified with HCl to reach pH 2.0 and left overnight. The precipitate,
known as humic acid (HA), was separated from soluble fulvic acids by centrifugation at
6000 rpm for 15 min.

Humic acid precipitates were then washed several times with 0.05 N H2SO4, then purified
by electrodialysis, as Chen et al. [33] mentioned. In the case of fulvic acid, its purification was
carried out according to the method described by Kononova [34] and Susilawati et al. [35],
i.e., the fulvic acid extract was passed through activated charcoal followed by elution of the
charcoal. Then, the solution was transferred to membrane filter and eletrodialyzed until the
dialysate was free of Cl-. Elemental analysis for C, H, N and S in organic amendments and
their extracts were performed by gas chromatography on a Hewlett-Packard 185 Analytical
Center, Faculty of Science, Cairo University. Oxygen was calculated by subtracting total
amounts of C, H, N and S (expressed as percentages) from 100. Physical and chemical
characteristics of the used organic amendments are presented in Table 2.

Table 2. Elemental analysis of the investigated amendments (compost manure and biogas manure)
and their extracted humic (HA) and fulvic (FA) acids.

Character
Compost Biogas

Manure HA FA Manure HA FA

C% 49.46 50.71 50.40 51.40 49.90 46.00
N% 2.83 3.10 2.72 2.60 2.85 2.75
H% 1.45 1.93 1.84 2.12 2.10 3.89
S% 3.76 3.96 3.14 3.68 4.15 3.46
O2% 42.50 40.30 41.90 40.20 41.00 43.90
P% 0.23 0.17 0.15 0.30 0.15 0.27
K% 8.82 5.83 6.93 7.97 5.21 6.60
C/N ratio 17.50 16.40 18.50 19.80 17.50 16.70
C/H ratio 34.10 26.30 27.40 24.20 23.80 13.30
C/O ratio 1.20 1.30 1.20 1.30 1.20 1.05
O/H ratio 29.30 20.90 22.80 19.00 19.50 11.30
N/H ratio 1.95 1.60 1.47 1.23 1.36 0.71
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2.1.3. Faba Bean Seeds

Seeds of faba bean (Vicia faba, c.v Giza-2) were obtained from the Field Crops Research
Institute, Agricultural Research Center, Giza, Egypt. These seeds were inoculated with
Rhizobium leguminosarium (ICARDA441) inoculum using Arabic gum (16%) as an adhesive
agent; afterward, seeds were then air-dried for an hour before sowing.

2.2. The Greenhouse Study

A pot experiment was conducted under the greenhouse conditions of the Training
Center for Recycling Agricultural Residues at Moshtohor (TCRAR), Qalubia Governorate,
Egypt. The mean values of temperature, humidity and daylight during the experimental
work were 19.1 ◦C, 61%, 10.7 h in November, 15.4 ◦C, 61% and 1.2 h in December, and
18.9 ◦C, 59% and 10.5 h in January, respectively.

This experiment comprised three factors: (1) soil type (calcareous vs. non-calcareous
soil), (2) two organic sources (biogas and compost) and (3) different combinations between
the organic amendments and the mineral N, i.e., a control treatment with no organic
additions (the recommended dose of N was applied in the mineral form, i.e., 21 mg N kg−1

equivalent to 50 kg N ha−1) (T0), 50% of the recommended dose of N in the organic
form plus 50% in the mineral form (T1), 100% of the recommended dose of N in the
organic form (T2), 5 mL HA kg−1 plus a complementary application of the mineral N to
satisfy the recommended N dose (T3), 10 mL HA kg−1 plus a complementary dose of the
mineral N to satisfy the recommended N dose (T4), 5 mL FA kg−1 plus a complementary
application of the mineral N to satisfy the recommended N dose (T5), 10 mL kg−1 of FA
plus a complementary dose of the mineral N to satisfy the recommended N dose (T6). Two
kilogram soil portions were mixed thoroughly with any of the abovementioned treatments,
in addition to the recommended PK doses, i.e., 31.5 mg P kg−1 (equivalent to 75 kg P ha−1 as
calcium superphosphate, 8.5%P) and 20 mg K kg−1 (equivalent to 48 kg K ha−1 potassium
sulfate, 48%K), while considering PK contents in organic amendments; afterward, soil
portions were packed in plastic pots (21 cm diameter × 16 cm depth). Supplementary
applications of ammonium sulfate (20.5%N) were considered to bring up N content in
all treatments to the recommended dose (equivalent to 50 kg N ha−1). Pots were then
arranged, under the greenhouse conditions, in a complete randomized design in triplicates.

Faba bean seeds were cultivated in November 2019 at a rate of five seeds per pot and
thinned to four plants per pot two weeks after seed planting. Irrigation was carried out
every 5–7 days to bring soil moisture to the field capacity. At the flowering growth stage,
the rhizosphere of each pot was sampled to determine nitrogenase (N2-ase) activity, using
the acetylene reduction technique according to Dilworth [36], then determined using gas
chromatography (Hewlett-Packard 5890, Wilmington, DE, USA). Plants were removed
from soils 80 days after planting, placed on plastic sieves, washed with tap water several
times to remove dirt, and rewashed with deionized water twice. Plant materials were then
oven-dried at 70 ◦C for 48 h, and their weights were determined. Soil samples were also
collected from the rhizosphere of each pot during plant harvest to measure the available
NPK contents.

2.3. Plant and Soil Analyses

Dried plant samples were ground, and samples were digested using a mixture of
H2SO4 and HClO4 (1:1), as described by Peterburgski [37]. Nitrogen was analyzed in
plant digest using the micro Kjeldahl method, while P was determined by ammonium
molybdate and ascorbic acid reagents, as outlined by Page et al. [38], then measured by
spectrophotometer (Jenway 6705 UV/Vis. Spectrophotometer, Staffordshire, UK). Available
N was extracted from the soil by K2SO4 (1%), then determined using micro Kjekdahel
apparatus in the presence of Devarda alloy, and available P was extracted with NaHCO3
(0.5 N, pH 8.5) and determined calorimetrically, as outlined by Sparks et al. [31].
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2.4. Statistical Analysis

Data were statistically analyzed by SPSS statistical software 18 following three-way
ANOVA (p < 0.05) and Duncan’s multiple range tests. All graphs were plotted using
SigmaPlot10 software.

3. Results and Discussion
3.1. Effect of the Used Organics and Their Extracts on the Activity of Nitrogenase Enzyme

Biological nitrogen fixation (BNF) is a key reaction of the nitrogen cycle [39], in which
the nitrogenase enzyme is the dominant catalyst of dinitrogen reduction [40]. This enzyme
changes N2 to NH3 [41,42]. Our results indicate that the activity of this enzyme increased
significantly owing to organic applications following the order of T2 > T1 ≈ T4 > T6 >
T3 ≈ T5 > T0 (Figure 1). Although the organic component HS was more resistant to
biodegradation than the amendments that they were extracted from; yet, HS applications
probably increased the decomposition rate of soil organic matter to provide substrates for
soil biota [22]. This can effectively enhance their activities, especially the N-fixers [43,44].
Concerning the effect of the organic source on the activity of this enzyme, it was found
that compost treatments were more effective than biogas manure ones in enhancing the
activity of this enzyme. Generally, the activity of nitrogenase was higher in calcareous than
in non-calcareous soil.

Interactions among the abovementioned three factors were of further significant effect
on the nitrogenase enzyme activity (Figure 2). In this concern, compost application, at a
rate of 100% to satisfy N-needs, recorded the highest increases in the activity of nitrogenase
enzyme and generally, organics that originated from compost were more efficient than the
corresponding ones that originated from biogas manure in stimulating the activity of such
an enzyme in both the sandy calcareous and non-calcareous soil.

3.2. Effect of the Used Organics and Their HA and FA Extracts on Nutrient Availability and
Uptake by Plants
3.2.1. Availability and Uptake of N

Application of organic amendments and their extracts raised significantly N availabil-
ity in soil, which consequently increased its uptake by faba bean plants (Figure 2). The
highest increases were attained for the application of either compost or biogas to satisfy
100% of the recommended N-dose (T2), followed by the application of 50% org-N (T1),
then 10 mL HA kg−1 (T4) or 10 mL FA kg−1 (T6), with no significant variations between
the last two treatments. It is well known that these organic amendments are rich in N
(Table 2) that was released upon organic matter degradation [6] to increase the availability
and uptake of this nutrient by plants [45]. In the case of humic substances, they may
effectively decrease ammonium loss through volatilization from the soil [46] because they
are negatively charged [47]. Moreover, HS is involved in increasing nitrate transcription to
plant roots [48]. Despite that, the HS results were lower than the expected ones. Organics
that originated from biogas manure exhibited lower N-uptake than those that originated
from compost. This is because compost contained a higher N content than biogas manure
(Table 2). Furthermore, ammonium fertilizers underwent oxidation in sandy soil [49].
They also contained more positive functional groups, i.e., NH2- groups (amines), than
those found in biogas manure (Table 2), which can chelate nitrate ions and prevent loss by
leaching in light-textured soil [50].

The availability and uptake of N also varied significantly between the two soils un-
der investigation (calcareous vs. non-calcareous soils), where N-availability and uptake
were higher in the non-calcareous soil vs. the calcareous one. Probably, N-losses through
volatilization increased from the topsoil of the calcareous soil [51]. Moreover, HS was
extensively adsorbed via the positively charged amine groups under the alkaline condi-
tions of the calcareous soil [52]; accordingly, N-availability decreased considerably in the
calcareous soil vs. the non-calcareous one.
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Interactions among the three factors under study also considerably affected
N-availability and uptake (Figure 2). Organic treatments significantly increased the avail-
ability and uptake of N in both the calcareous and non-calcareous soil, especially compost
and biogas manures. Decreasing the level of application of these amendments to a half
dose lead to the significant concurrent reductions in both the availability and uptake of
N by plants. Generally, the highest increases occurred in the non-calcareous soil when
compared with the ones recorded in the calcareous soil.
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Figure 1. Grand means of nitrogenase enzyme activity in plant rhizosphere (A), available N in soil (B), N-uptake by faba 
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Figure 1. Grand means of nitrogenase enzyme activity in plant rhizosphere (A), available N in soil (B), N-uptake by faba
bean (C), available P in soil (D) and P-uptake by faba bean (E) in light-textured soils as affected by application of organic
and mineral N-fertilizers, either solely or in different combinations. Treatments from T0 to T6: no organic additions (T0),
50% org (T1), 100% org-N (T2), 5 mL HA kg−1 (T3), 10 mL HA kg−1 (T4), 5 mL FA kg−1 (T5), 10 mL FA kg−1 (T6). Different
letters indicate significant variations among treatments.
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3.2.2. Availability and Uptake of P

The availability of P increased significantly in the two studied soils due to different
organic amendments (Figure 2). The highest increases occurred due to the application of
either compost or biogas manure to satisfy 100% of the recommended N-dose (T2), with
significant superiority for compost vs. biogas manure. Furthermore, the increases in both
P-availability and uptake were higher in the non-calcareous soil than in the calcareous one.

The investigated treatments can be arranged according to their effects on increasing
available P content in the following descending order: T2 > T4 > T6 > T1 > T3 ≈ (T5) > T0.
These findings can be attributed to the ability of organic amendments to form complexes
with soluble-P, hence increase P-availability in soil [25] noticeably. In HS, NH4

+ ions found
in these extracts might increase their polarity and mobility [53]; hence, adsorb or chelate
more ions from the soil. In this concern, it was found that P fractions in light-textured soils
existed mainly in association with fulvic and humic acids [54]. Most likely, phospho-humic
complexes are formed by bridging with di- and tri-valent cations [55]; however, the effects
of HS on P-availability levels were worth the expected ones.
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Likewise, P-uptake increased significantly in the non-calcareous soil than in the cal-
careous one. This uptake varied significantly according to the type of the organic treatment,
with a trend similar to that recorded in P-availability. Humic substances are reported to
increase apoplast acidification [56] and act as effective redox mediators [57,58] that decrease
P-precipitation via changing phosphate species into diprotonated monodentate mononu-
clear complexes [25]. Though, plants might not be efficient enough to extract P from their
organic complexes, probably because P existed in esaphosphate inositol (high-molecular
fractions) in soil [55]. Accordingly, it can be deduced that the increases in P-uptake by faba
bean plants were mainly attributed to the increases in P released during organic matter
degradation rather than the formation of organo-P complexes. These results agree to some
extent with Hartz and Bottoms [59], who found that humic acid recorded no significant
effect on P-uptake by plants.

Interactions among the three factors under study also significantly affected both P-
availability and uptake by plants (Figure 3). It seems that compost was preferred over
biogas manure for increasing P-availability when applied as a sole source of N in both the
non-calcareous and calcareous soils.
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3.3. Effect of the Used Organics and Their HA and FA Extracts on Plant Growth Parameters

Faba bean dry weights varied significantly owing to the type of applied organic treat-
ment (Figure 4). In this concern, the application of 100% organic amendment (T2) recorded
the highest increases in plant dry weights, while the least dry weight value was attained
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for the non-amended control treatment (T0). These results can probably be attributed
to the findings that indicate that organic amendments raised soil fertility considerably,
especially in both light-textured [10] and calcareous soils [14]. They may also promote plant
growth bacteria as well, and this consequently stimulated plant development [60]. The
application of humic acid seemed to be preferred over fulvic acid in enhancing plant dry
weights, especially with increasing the application rate from 5 to 10 mL kg−1. Although
several reports highlighted the implication effects of HS on plant growth [10,61–63], the
results obtained herein indicate that these efficiencies were low when compared with the
corresponding ones attained due to the application of the organic amendments from which
they were extracted (compost and biogas). Most likely, these results highlight the need for
the application of higher amounts of HS, which is not a practical agricultural process and
at the same time requires additional costs. Furthermore, high application rates of HS may
potentially increase the leaching of the soil contaminants to the groundwater and transfer
these contaminants to the trophic chain [64].
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Figure 4. Dry weight (g pot−1) and plant height (cm) of faba beans (mean ± SD) as affected by
application of organic and mineral N- fertilizers, either solely or in different combinations. Effect of
different soil types is presented in (A,E). Effects of different organic sources are presented in (B,F),
while the effects of the different organic treatments are presented in (C,G). The interactions among
the three factors of study are presented in (D,H). Different letters indicate significant variations
among treatments.
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Further increases in plant dry weights were attained due to the source of the or-
ganic amendment, in which compost treatments recorded higher increases in plant dry
weights than biogas manure ones. Generally, plant dry weights were higher in the non-
calcareous soil than those in the calcareous one. Interactions among these three factors
(soil × organic source × organic treatment) were of further significant effect on plant dry
weights (Figure 4), where the highest dry matter yield was recorded for the treatment
that received 100% compost in the non-calcareous soil, while the least ones were the non-
amended control treatments. On the other hand, plant heights did not vary significantly,
whether due to the type of the applied organic source or the organic treatment; however,
the effect of the soil type seemed to be significant (Figure 4). Plants grown on the sandy
soil were taller than those grown on the calcareous soil. The combination between the three
factors was also of no significant effect on plant height.

3.4. A Correlation Study between NP-Availability and Uptake in Relation to Plant Dry Weights
and Nitrogenase Activity in Soil

Availability of N, and its uptake, were significantly and positively correlated with
each other, and both parameters were highly significantly correlated with the increases
that took place in activities of nitrogenase enzyme in soil (Table 3). Likewise, P-uptake
by faba bean plants was significantly and positively correlated with P-availability in soil.
Furthermore, the increases that occurred in faba bean dry weights were significantly
and positively correlated with the concurrent increases that occurred in the uptake of
both N and P nutrients. These results highlighted the positive roles of applying light-
textured calcareous and non-calcareous soils with organic amendments on stimulating the
activities of beneficial N-fixing bacteria, improving NP-availability and uptake by plants
and consequently enhancing their growth.

Table 3. Correlation coefficients between NP-availability and uptake in relation to plant dry weights and nitrogenase
activity in the soil.

N-Availability N-Uptake P-Availability P-Uptake Nitrogenase
Activity

Plant Dry
Weight

N-availability
N-uptake 0.834 **

P-availability 0.796 ** 0.777 **
P-uptake 0.906 ** 0.736 ** 0.806 **

Nitrogenase activity 0.715 ** 0.633 ** 0.654 ** 0.597 **
Plant dry weight 0.582 ** 0.649 ** 0.667 ** 0.544 ** 0.545 **

** Significant at p < 0.01.

4. Conclusions

Organic treatments seemed to be more efficient than their extracts (inorganic N-
fertilizer) in increasing nitrogen and phosphorus availability in both the calcareous and
non-calcareous light-textured soils. Moreover, increasing the application dose of compost
or biogas manure (100% rather than 50%) led to significant concurrent increases in nutrient
availability. These results did not support Hypothesis 1, indicating that combinations
between organic amendments, particularly FA/HA and mineral-N fertilizers, increased
NP’s availability in soils beyond those recorded for the application of either mineral or
organic forms when applied solely. Moreover, organic amendments stimulated effectively
symbiotic N-fixers and increased the activity of the nitrogenase enzyme. Furthermore,
these amendments recorded higher significant increases in NP-uptake and plant growth
than their extracts did. These results support Hypothesis 2. Most likely, plants and soil biota
cannot efficiently utilize nutrients chelated with humic and fulvic acids. Furthermore, it
can be deduced that nutrients released continuously but slowly upon the decomposition of
organic amendments might be more important for plant growth than those chelated by HS.
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