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Abstract: Historically, little attention has been paid to the resemblance between seed silhouettes to
geometric figures. Cardioid and derivatives, ellipses, heart curves, lemniscates, lenses, lunes, ovals,
superellipses, waterdrops, and other figures can be used to describe seed shape, as well as models for
quantification. Algebraic expressions representing the average silhouettes for a group of seeds are
available, and their shape can be described and quantified by comparison with geometric models.
Bidimensional closed-plane figures resulting from the representation of Fourier equations can be used
as models for shape analysis. Elliptic Fourier Transform equations reproduce the seed silhouettes for
any closed-plane curve corresponding to the contour of the image of a seed. We review the geometric
properties of the silhouettes from seed images and discuss them in the context of seed development,
plant taxonomy, and environmental adaptation. Silene is proposed as a model for the study of seed
morphology. Three groups have been recently defined among Silene species based on the structure of
their seed silhouettes, and their geometric properties are discussed. Using models based on Fourier
Transform equations is useful in Silene species where the seeds are homogenous in shape but don’t
adjust to described figures.

Keywords: cardioid; convexity; curvature; ellipse; geometry; oval; ovule; seeds; silhouettes; solidity

1. Introduction

Seed shape description is usually mixed with size observations (see, for example, [1]).
Measurements derived from size often distract attention from the absence of quantification
data from the seed shape itself. Size measurements have been a constant in seed science,
finding published databases of both seed size and weight [2,3]. On the other hand, the
descriptions of seed shape contain terms without correspondence to precisely defined
geometric objects (calycine, cuneiform, globoid, globose, globular, obovate, piriform, renifo,
etc.), lacking in shape measurements. Seed shape quantification is infrequent in the botani-
cal literature, and only a preliminary seed shape dataset has been recently published [4].
Nevertheless, the seeds of many plant species resemble geometric objects, and their images
can be described by their similarity to geometric figures. This property can also be used in
the process of seed shape quantification that may be useful for phenotype characterization.

The seeds of the Silene species resemble in their lateral views the cardioid and related
figures, which can be used as models for the quantification of seed shape. The models
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used in the quantification of lateral and dorsal views of Silene can be obtained by the
representation of diverse algebraic equations [5–9], thus switching the morphological
description of seeds from purely descriptive to a quantitative, analytical method.

The following sections focus on describing some of the approaches to get the geometric
forms that define better seed images. We also include the connection between seed shape
and developmental processes and provide a review of the distribution of geometric seed
forms on Angiosperms. Seed form is related to the type of ovule development, as well
as with the relationship between the ovules in fruit and with diverse adaptations to seed
dispersal [10]. While seed shape usually remains relatively constant for each species, it
can vary notably in some families. In certain plant families, like the Arecaceae and the
Vitaceae [11,12], seeds resemble multiple types of geometric figures, while in others, a
reduced number of morphological types are predominant, such as ellipses in the Cam-
panulaceae [13] and Oleaceae [14], ovals in the Cucurbitaceae [15], Euphorbiaceae [16,17],
and Rutaceae [13]. Seeds of the Caryophyllaceae present interesting features, with ovules
hemianatropous to campylotropous [18–20], and the embryo corresponds to a peripheral
type [21]. The genus Silene L. has an interesting diversity of seed shapes and is proposed
here as a model for studying variations in seed morphology [5–9].

A Historical Anecdote

The absence of data based on seed shape quantification linked to geometric models
may be due to the influence of animal biologists and paleontologists on plant morphologists.
For example, in an article published in the journal Human Evolution, Professor Dwight
Read stated [22]:

“I first consider—and then discard as inadequate—two commonly used represen-
tations of form. The first one makes the strong theoretical assumption that the
empirical form can be idealized and replaced by a geometric figure.”

Nevertheless, it is not incorrect to compare seed images with geometric figures. On the
contrary, looking at seed images, or at their silhouettes, as geometric objects is a direct way
to achieve mathematical accuracy in seed shape description. This is required to combine
morphology with genetics, ecology, or taxonomy.

2. Geometric Properties of Seed Silhouettes

Solidity is an important property of closed-plane curves. It is related to convexity and
expresses the ratio of two areas: the area of an object to the area of its convex Hull [23]
(Figure 1). The convex Hull is the smallest convex set that contains a plane figure.

A figure is convex when the segment that joins any pair of its points is contained.
Then solidity of any convex figure equals one. The tangent at any point of a convex curve
leaves the complete figure on one side of it. In addition, a closed plane curve is convex if,
and only if, its signed curvature does not change sign [23].

Solidity is linked to the ratio of perimeter/area in plane figures and represents an
estimation of the surface/volume ratio of the corresponding tridimensional objects. In
seeds, surface/volume ratio has a role in regulating metabolic aspects from the gas exchange
and oxygen availability to nutrient uptake or water imbibition and evaporation [24]. Given
the importance of this ratio, we may consider solidity as an important property of seeds
and their relative value as a candidate for taxonomic plant studies.

A measurement related to solidity is the ratio between the perimeter of a plane
curve and the perimeter of the corresponding convex hull. Comparing this measurement
with the solidity value gives information about the irregularities on a surface. High
values of solidity may be combined with low perimeter ratios in curves with many small
surface irregularities.
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cases, the process requires a manual seed image-model adjustment, which does not im-
pede achieving objective and reproducible values. Seed shape quantification by compar-
ing seed images with canonical models has been applied to various plant species [5–9,11–
17,25–34]. 

Multivariate analysis based on Fourier coefficients has been used for shape analysis 
in Zoology and Palaeontology [35,36], as well as for leaf shape description on trees [37] 
and seed shape comparison in diverse species [38–43]. Nevertheless, the continuous, 
closed curves represented by Fourier equations can also be used as models for seed shape 
quantification. 

3.1. Quantification by Comparison with Known Geometric Figures as Models 
The cardioid is a good model for the description of seed shape in the model legume 
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and, also in many species of Silene L. (Caryophyllaceae) [5–9]. Slight modifications in the 
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9]. 

Seed shape has been described for several species in the Arecaceae. Seed images in 
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ovals, lemniscates, superellipses, and others allowed us to compare figures with different 
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the models described for Arecaceae, such as lenses and superellipses, were also found in 
Vitaceae [12]. The introduction of further variations in the equation of the ellipse resulted 

Figure 1. (Left) The image of a seed of A. natalia (Balslev & A.J. Hend.) Barfod (Arecaceae). (Right) the
corresponding convex Hull.

3. Quantification of Seed Shape by Comparison with Models

Seed shape quantification can be done by estimating the percentage surface shared
between the seed image and a given model [13,25]. The resulting measurement has been
termed the J index. The models used can be either a canonical geometric figure or any
other mathematically defined closed curve, such as those from Fourier equations. In both
cases, the process requires a manual seed image-model adjustment, which does not impede
achieving objective and reproducible values. Seed shape quantification by comparing seed
images with canonical models has been applied to various plant species [5–9,11–17,25–34].

Multivariate analysis based on Fourier coefficients has been used for shape analysis
in Zoology and Palaeontology [35,36], as well as for leaf shape description on trees [37]
and seed shape comparison in diverse species [38–43]. Nevertheless, the continuous,
closed curves represented by Fourier equations can also be used as models for seed
shape quantification.

3.1. Quantification by Comparison with Known Geometric Figures as Models

The cardioid is a good model for the description of seed shape in the model legume
Lotus japonicus (Regel) K. Larsen [26], species of Capparis Tourn. ex L. (Capparaceae) [27],
Searsia tripartita (Ucria) Moffett (Anacardiaceae) (as Rhus tripartita (Ucria) Grande, [28]),
and, also in many species of Silene L. (Caryophyllaceae) [5–9]. Slight modifications in the
cardioid resulted in curves similar to the seed silhouettes of Medicago truncatula Gaertn.
(Fabaceae) and Arabidopsis thaliana (L.) Heynh. (Brassicaceae) [26,29,30]. Mean values of
percent similarity (J index) superior to 90 for samples containing at least 20 well-oriented
seeds have been reported for many species of Silene choosing the cardioid as a model [5–9].

Seed shape has been described for several species in the Arecaceae. Seed images
in this family resemble a compendium of geometric figures serving as models for shape
quantification [11]. General equations with variable coefficients corresponding to ellipses,
ovals, lemniscates, superellipses, and others allowed us to compare figures with different
proportions adjusted to the seed shape of different species [11]. Seeds resembling some of
the models described for Arecaceae, such as lenses and superellipses, were also found in
Vitaceae [12]. The introduction of further variations in the equation of the ellipse resulted in
curves well adapted to seed shape in members of this latter family, including the agricultural
grape varieties, and seeds in other species having more complex shapes [12,31,32].
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3.2. Closed Curves from Fourier Equations as Models

For seed shape quantification, Fourier curves reproducing the shape of seed images
represent an alternative to canonical geometric figures. Fourier analysis is a mathematical
method for reducing complex curves into their component spatial frequencies. The paramet-
ric functions representing a closed plane curve may be approximated by sums of trigono-
metric functions and their truncated Fourier expansions [37,44]. In particular, when the
parametric components are piecewise linear functions x(t) = ∑K

i=1 ∆xi , y(t) = ∑K
i=1 ∆yi,

these expansions are:
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N

∑
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where A0 and C0 define the mean size of the contour, and the coefficients an, bn, cn, dn are
calculated as
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The position of any point on the outline is approximated by the displacement of a point
traveling around a series of superimposed and successively smaller ellipses, corresponding
to successive harmonics. For each harmonic, two Fourier coefficients are computed for
both the x- and y-projections resulting in a total number of coefficients of 4N, where N is
the number of harmonics used to fit the outline. Departing with basic ellipses obtained
with four coefficients, the complexity of the figure increases. The coefficients of the lower
order correspond to the overall shape, and the higher order harmonics correspond to the
smaller details of the outline [37,44].

Based on the elliptic Fourier analysis described above, it is possible to obtain a figure
that reproduces the silhouette of a given seed or the average silhouette for a population
of seeds. For example, Figure 2 presents the images corresponding to Fourier equations
for a seed silhouette of Aphandra natalia (Balslev & A.J. Hend.) Barfod (Arecaceae) with
2, 6, 10, and 20 harmonics (a Mathematica code for obtaining the Fourier expansion and
the corresponding figure from any set of points approximating a closed-plane curve is
available at Zenodo; see Supplementary Materials).
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curves corresponding to Fourier equations with 2, 6, 10, and 20 harmonics, respectively. 

In the example of the seed of A. natalia shown in Figure 1, the images corresponding 
to the equations calculated with different harmonics are represented. For convex figures, 
a low number of harmonics may give an accurate shape representation. The representa-
tion of partial concavities requires a larger number of harmonics. Figure 3 shows the su-
perposition of the convex Hull (see later) with the silhouette obtained with 20 harmonics. 
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3.3. Curvature Analysis 
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ponents allow for calculating the curvature values along the curve ([45–48]; Figure 4). The 
maximum curvature value at the apex is observed. 

Figure 2. To obtain a Fourier equation corresponding to the silhouette of a seed of Aphandra natalia
reference points are taken along the seed profile, and the information related to the coordinates
corresponding to the points is transformed into Fourier coefficients. The entire process is done in
Mathematica 12.3®. From left to right: The seed with points marked (bar equals 0.5 cm) and the
curves corresponding to Fourier equations with 2, 6, 10, and 20 harmonics, respectively.

In the example of the seed of A. natalia shown in Figure 1, the images corresponding
to the equations calculated with different harmonics are represented. For convex figures, a
low number of harmonics may give an accurate shape representation. The representation of
partial concavities requires a larger number of harmonics. Figure 3 shows the superposition
of the convex Hull (see later) with the silhouette obtained with 20 harmonics.
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Figure 3. Superposition of the convex Hull with the silhouette image of A. natalia (in red, left) and
with the silhouette obtained with 20 harmonics (right). Partial concavities correspond with small
white areas between the silhouette and the convex Hull.

3.3. Curvature Analysis

The trigonometrical polynomials obtained as approximations to the parametric com-
ponents allow for calculating the curvature values along the curve ([45–48]; Figure 4). The
maximum curvature value at the apex is observed.
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4. Seed Shape Diversity Linked to Embryogeny and Fruit Development
4.1. Embryogeny

Davis [19] and Johri and collaborators [20] reviewed how the categories of orthotropous,
anatropous, hemianatropous, amphitropous, and campylotropous ovules were distributed
among 315 families of angiosperms. Of all of them, 204 had anatropous, 20 orthotropous,
13 hemianatropous, and 11 campylotropous or amphitropous ovules [19,20]. Both the
orthotropous and the anatropous types are found in the basal angiosperms and were pro-
posed to have independent origins [49]. In addition, multiple ovule types with differences
among genera, or even species, were found in 67 families [19,20]. This number could
probably be underestimated, considering that many families were incompletely studied,
and their taxonomic value throughout families supports their study [50]. The four main dif-
ferent types of ovules can be classified into two different groups (anatropous-orthotropous
vs. campylotropous-amphitropous), depending on the aspect of the nucellus. Anatropous
and orthotropous are both characterized by a straight nucellus, which is bent or curved for
the campylotropous and amphitropous ovules [51]. These differences might influence seed
development, specifically on certain features of the seed morphology.

Orthotropous ovules are found, for example, in some basal angiosperms and magnoli-
ids as the families Amborellaceae, Chloranthaceae, Piperaceae, and Saururaceae, as well as
in some eudicots as Casuarinaceae, Juglandaceae, Myricaceae, and Polygonaceae [19,20].
Conversely, the anatropous type is the predominant ovule in most of the angiosperm
families [52], including Aristolochiaceae, Bromeliaceae, Lauraceae, Cannaceae, Plumbagi-
naceae, Tamaricaceae, Anacardiaceae, Vitaceae, Dilleniaceae, among others [19,20]. Campy-
lotropous and amphitropous ovules mostly occur in the families Cactaceae, Caryophyl-
laceae, Amaranthaceae, Capparaceae, Berberidaceae, and also in some species of the
families Brassicaceae, Geraniaceae, Malvaceae (e.g., Hibiscus cannabinus L. [53]), and Menis-
permaceae [19,20].

However, two-three types of ovules often occur within some families, such as Fabaceae
and Caryophyllaceae, which mostly includes campylotropous or anatropous ovules [51],
though rare amphitropous ones are also present [54]. The family Arecaceae is a notable
example of a high intra-familiar diversity of ovule type. The different Arecaceae subfamilies
can show anatropous, orthotropous, hemianatropous, and campylotropous ovules [55],
which would be associated with a high diversity of seed shapes [11]. In this respect, the
preliminary observations between ovule and seed shape suggest that the anatropous and or-
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thotropous ovules develop oval and/or ellipse-shaped seeds. In contrast, campylotropous
and amphitropous ovules seem more similar to a C-shaped morphology related to the
cardioid seed shape (Figure 5). Nevertheless, variations in seed shape are also related to
changes in developmental processes during seed maturation, with the presence of extended
hilum [20,56]. Modifications based on the funiculus in species of Opuntia Mill. (Cactaceae)
led Archibald to give the denomination of circinotropous specifically to this genus [56].
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Figure 5. Seed images and their corresponding silhouettes from species with diverse ovule types.
Above: Orthotropous: Piper nudilimbum C.DC. (Piperaceae); Chloranthus erectus (Buch.-Ham.) Verdc.
(Chloranthaceae). Anatropous: Cabomba aquatica Aubl. (Cabombaceae); Canna indica L. (Cannaceae).
Below: Amphitropous: Stellaria media (L.) Vill. (Caryophyllaceae). Campylotropous: Hibiscus sabdariffa
L. (Malvaceae); Silene noctiflora L. (Caryophyllaceae); Gypsophila elegans M. Bieb. (Caryophyllaceae).
The images were obtained and modified from [57], except S. media (https://plants.usda.gov/home/
plantProfile?symbol=STME2; accessed on 12 April 2021).

4.2. Variations in Seed Shape Related to Fruit Development

The relationships between seed shape and possible ecological, functional, and evo-
lutionary correlation have been less studied, mainly due to the difficulty of accurately
defining and quantifying seed shape [58]. Seed shape represents a remarkable feature
since it maximizes the efficiency of packing, dispersal, landing, and seedlings establish-
ment [1,10]. The number of seeds per fruit was positively correlated to the number of
ovules for many Fabaceae species [59]. Recently, the number of seeds is also strongly
correlated even with the flower size [60]. Therefore, the final seed shape depends on the
number of ovules and their distribution within the ovary, hence, the proximity among
ovules during their development. Seed shape is also related to the structure of mature
fruits that may, themselves, be similar to geometric figures. However, this aspect has
received more attention from an informational point of view than strictly academic in
the literature [61]. The seeds are closely bound within the fruits, and fruit shape might
determine the final seed shape for many genera.

For some plants, seeds have different shapes depending on their position within
the mature fruit. A notable example corresponds to the maize (Zea mays L., Poaceae), in
which the seeds from the most distal row have a more spherical shape than those that
remain immersed in the cob. In other cases, seeds also adopt the shape of different types
of polyhedrons, whose silhouettes in bi-dimensional images are polygons, or their shape
resembles what is known as “lune” (moon). In geometry, lunes are plane figures bounded
by two circular arcs of unequal radium [62]. The seeds of Peganum harmala L. (Nitrariaceae)
represent a remarkable example of these lune-like and polygonal shapes of the seeds within
the same fruit (see Figure 6).
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5. Variations in Seed Shape Related to Environmental Adaptations

Variation in seed shape occurs along all taxonomic levels, and fruit and ovary develop-
ment could be considered important factors on the origin of the shape variations in a given
species, as we have reported in the previous section, but not the only ones. On the one hand,
different seed morphotypes characterized by different aspect ratios (AR) corresponding to
the ratio length/width have been observed in wild populations of Silene diclinis (Lag.) M.
Laínz (Caryophyllaceae) [5], Echinocactus platyacanthus Link & Otto (Cactaceae) [33], and
diverse species of Capparis Tourn. ex L. (Capparaceae) [27] (data not shown). On the other
hand, the process of plant cultivation during hundreds of generations in wheat (Triticum L.,
Poaceae) has resulted in more rounded seed forms. The old cultivars were characterized
by models based on lenses (AR = 3.2), whereas ellipse-based models (AR = 1.8) better
define more recent cultivars [34]. Another relevant case corresponded to the remarkable
intraspecific variation in seed shape among cultivars of Vitis vinifera L. [31,32].

Many aspects of seed shape can be explained by particular adaptations in some
species of the family Hydrangeaceae (Hydrangea integrifolia Hayata, H. barbara (L.) Bernd
Schulz) [63], the family Alzateaceae (Alzatea verticillata Ruiz & Pav.), the family Petrosavi-
aceae (Petrosavia sinii (K.Krause) Gagnep.), and the family Ericaceae (Orthilia secunda (L.)
House), whose seeds are fusiform undulated, and resemble the seeds of the family Or-
chidaceae [64]. These seed forms could be the result of adaptations to seed dispersal.
In addition, certain morphological structures of the seed have also been associated with
hydrochory and zoochory, as has been reported for the Cactaceae [65].

Seed development includes testa outgrowths, modifications of the funicle, and the
incorporation of extra ovular structures, such as the carpel walls in the dispersal units.
Some develop plumes (Epilobium ciliatum Raf., Onagraceae; Bombax L., and Gossypium
herbaceum L., Malvaceae) that have their origin in the testa, the funiculus (Populus L.
and Salix L., Salicaceae), or the carpel walls (Ceiba pentandra (L.) Gaertn, Malvaceae).
Other seeds develop wings (Oroxylum indicum (L.) Kurz, Bignoniaceae; Spergularia (Pers.)
J.Presl & C.Presl, Caryophyllaceae; Rhinanthus L., Orobanchaceae; Dioscorea Plum. ex L.,
Dioscoreaceae; Narthecium Huds., Nartheciaceae), and the origin and types of wings are
discussed by Stuppy and Kesseler [10]. These structures are mostly related to facilitating
their dispersal by air (anemochory).

6. Silene as a Model System for Seed Geometry

Seed images from 95 populations belonging to 52 species of Caryophyllaceae (49 species
of Silene and three related species belonging to the genera Atocion Adans. and Viscaria
Bernh.) were classified according to the layout of their silhouettes in three groups: smooth,
rugose, and echinate [5]. Hereafter, we expose the application of the Fourier analysis to the
average silhouettes of representative seeds for each of these three groups and a description
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of their general morphological properties. Figure 7 shows the images used in the analysis,
which correspond to the average silhouettes of the species S. apetala, S. conica, and S. dioica
(named hereafter S. apetala AJ283, S. conica AJ300 and S. dioica Pol., respectively). Each one
was calculated from 20 seed images of a specific population of the corresponding species in
both dorsal and lateral views.
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Figure 7. Dorsal and lateral average silhouettes for the images of 20 seeds of S. apetala AJ283, S. conica
AJ300, and S. dioica Pol.

All the silhouettes resemble some geometric models previously described for this
genus [5–9], except for the dorsal silhouette of S. apetala AJ283 (Figure 8). Models LM5,
LM1, and LM2 resemble, respectively, the lateral views of S. apetala AJ283, S. conica AJ300,
and S. dioica Pol.; while models DM5 and DM3 resemble the dorsal views of S. conica AJ300
and S. dioica Pol., respectively.

Horticulturae 2022, 8, x FOR PEER REVIEW 9 of 15 
 

 

6. Silene as a Model System for Seed Geometry 
Seed images from 95 populations belonging to 52 species of Caryophyllaceae (49 spe-

cies of Silene and three related species belonging to the genera Atocion Adans. and Viscaria 
Bernh.) were classified according to the layout of their silhouettes in three groups: smooth, 
rugose, and echinate [5]. Hereafter, we expose the application of the Fourier analysis to 
the average silhouettes of representative seeds for each of these three groups and a de-
scription of their general morphological properties. Figure 7 shows the images used in the 
analysis, which correspond to the average silhouettes of the species S. apetala, S. conica, 
and S. dioica (named hereafter S. apetala AJ283, S. conica AJ300 and S. dioica Pol., respec-
tively). Each one was calculated from 20 seed images of a specific population of the corre-
sponding species in both dorsal and lateral views. 

 
Figure 7. Dorsal and lateral average silhouettes for the images of 20 seeds of S. apetala AJ283, S. 
conica AJ300, and S. dioica Pol. 

All the silhouettes resemble some geometric models previously described for this ge-
nus [5–9], except for the dorsal silhouette of S. apetala AJ283 (Figure 8). Models LM5, LM1, 
and LM2 resemble, respectively, the lateral views of S. apetala AJ283, S. conica AJ300, and 
S. dioica Pol.; while models DM5 and DM3 resemble the dorsal views of S. conica AJ300 
and S. dioica Pol., respectively. 

 
Figure 8. Dorsal and lateral average silhouettes for the images of 20 seeds of Silene apetala AJ283, S. 
conica AJ300, and S. dioica Pol. with the corresponding models superimposed in red. Models LM5, 
LM1, and LM4 resemble, respectively, the lateral views of S. apetala AJ283, S. conica AJ300, and S. 
dioica Pol. DM5 and DM3 resemble the dorsal views of S. conica AJ283 and S. dioica Pol. The dorsal 
view of S. apetala AJ283 does not adjust to any model described. 

Fourier analysis provided new models for the quantitative description of seed imag-
ing. The models can be estimated both for seed images that do not resemble known geo-
metric figures, such as the average seed silhouette of S. apetala AJ283 in their dorsal views 
(Figures 7 and 8), and also for seed images that do not resemble accurately enough the 
available models. An equation fitting convex images, like the average dorsal silhouette of 
S. dioica Pol. (Figure 8), can be obtained with a reduced number of harmonics. On the other 
hand, equations fitting more complex curves, like the average dorsal silhouettes of the 
seeds of S. conica AJ300 and S. apetala AJ283, require more harmonics. 

  

Figure 8. Dorsal and lateral average silhouettes for the images of 20 seeds of Silene apetala AJ283,
S. conica AJ300, and S. dioica Pol. with the corresponding models superimposed in red. Models
LM5, LM1, and LM4 resemble, respectively, the lateral views of S. apetala AJ283, S. conica AJ300, and
S. dioica Pol. DM5 and DM3 resemble the dorsal views of S. conica AJ283 and S. dioica Pol. The dorsal
view of S. apetala AJ283 does not adjust to any model described.

Fourier analysis provided new models for the quantitative description of seed imaging.
The models can be estimated both for seed images that do not resemble known geomet-
ric figures, such as the average seed silhouette of S. apetala AJ283 in their dorsal views
(Figures 7 and 8), and also for seed images that do not resemble accurately enough the
available models. An equation fitting convex images, like the average dorsal silhouette
of S. dioica Pol. (Figure 8), can be obtained with a reduced number of harmonics. On the
other hand, equations fitting more complex curves, like the average dorsal silhouettes of
the seeds of S. conica AJ300 and S. apetala AJ283, require more harmonics.

6.1. Fourier Analysis of Seeds: Calculation of Equations Corresponding to New Models

After applying Fourier analysis, we got the equations adjusting to the average silhou-
ettes of the dorsal and lateral views of S. apetala AJ283, S. conica AJ300, and S. dioica Pol.
Several points between 100 and 200 were taken along the silhouettes, and the corresponding
Fourier equations were obtained. Figure 9 shows the results of the Fourier analysis for the
lateral and dorsal seed views of the sample S. apetala AJ283, using 4, 12, and 20 harmonics.
With 12 harmonics, the resulting figures reproduced well the lateral views of the seeds,
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while in the dorsal views, higher similarity with the average silhouette was obtained with
20 harmonics (Figure 9).
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Figure 9. Silhouettes of seeds of S. apetala AJ283. L: Lateral view; D: Dorsal view; SI: Seed image;
AS: Average silhouette of 20 seeds; M: Model calculated, LM5; H: Curves obtained by Fourier
equations with 4, 12, and 20 harmonics.

In the case of the sample S. conica AJ300, the results of the Fourier analysis yielded
reasonably good models with 12 harmonics for both the lateral and the dorsal views
(Figure 10).
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Figure 10. Silhouettes of seeds of S. conica AJ300. L: Lateral view; D: Dorsal view; SI: Seed image;
AS: Average silhouette of 20 seeds; M: Models calculated LM1 and DM5; H: Curves obtained by
Fourier equations with 4, 8, and 12 harmonics.

In S. dioica Pol., the Fourier analysis achieved remarkably good models with only
4 harmonics for the dorsal and lateral views (Figure 11); however, for the lateral view, the
adjustment notably improved up to 12 harmonics.
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The seeds of S. dioica Pol. could be represented by dorsal and lateral models (named
DM3 and LM2, respectively, Figure 11), and similarly, those of S. conica AJ300 by the models
DM5 and LM1 (Figure 10). However, for S. apetala AJ283, good modeling resulted from the
combination of the lateral model LM5 and a new dorsal model (DM) (Figure 9). In the first
case, seeds of S. dioica Pol. are convex in both views, whereas the seeds of S. conica AJ300
present concavities in both the lateral and dorsal views. Finally, the sample of S. apetala
AJ283 is characterized by marked concavities, especially on the dorsal view, and a good
model could be obtained by Fourier transform analysis with 20 harmonics.

6.2. A Classification According to the Geometric Properties of the Seeds

Concerning the classification of Silene seeds in three groups (smooth, rugose, and
echinate [5]), differences between these groups were found in all the measurements (area,
perimeter, length, width, aspect ratio, circularity, roundness, and solidity). Solidity was
the most conserved index among them, being unique with no differences for the lateral
views in these three groups of seeds. Regarding the dorsal view, the highest values of
solidity corresponded to the species with echinate seeds (most species of this group belong
to S. subg. Behenantha) and the lowest solidity to the smooth seeds (most of the species of
this group are included in S. subg. Silene). These higher solidity values were associated
with the rounded shape of seeds and the lack of a dorsal channel that was notably marked
in the smooths seeds [5,7].

Figure 12 represents the silhouettes of the dorsal view for the smooth, rugose, and
echinate seeds. The images show the average silhouettes of 20 seeds from one species
population with their corresponding convex hull superimposed.
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While there is a remarkable difference between the average silhouette and the convex
hull in S. apetala, there is little difference between S. conica and S. dioica. The values of
solidity corresponding to the three sample seeds are 0.834 (S. apetala), 0.972 (S. conica),
and 0.968 (S. dioica). In the same images, the values of the ratio perimeter of the convex
hull/ perimeter are 0.852 (S. apetala), 0.967 (S. conica), and 0.914 (S. dioica). The values
of solidity obtained here agree with the results obtained for the populations of different
species [5]. At the same time, the calculations of the perimeter ratio are shown here for the
first time. Table 1 contains the mean value for solidity and perimeter ratio in the dorsal
views of three individual seeds of each species. Statistics were done on IBM SPSS Statistics
v28 (SPSS 2021) and R software v. 4.1.2 [66]. Non-parametric Kruskal–Wallis tests were
applied to compare populations, followed by stepwise step-down comparisons by the ad
hoc procedure developed by Campbell and Skillings [67]; p values inferior to 0.05 were
considered significant. The coefficient of variation was calculated as CVtrait = standard
deviation trait/mean trait × 100 [68].

Table 1. Values of solidity and perimeter ratio (perimeter of the convex hull/ perimeter of the image)
in three seeds for the dorsal views of the seed images of S. apetala AJ283, S. conica AJ300, and S. dioica
Pol. Values marked with the same superscript letter in each column correspond to populations that
do not differ significantly at p < 0.05 (Campbell and Skillings’s test). N indicates the number of
seeds analyzed.

N Perimeter Convex Hull Perimeter Perimeter Ratio Solidity

S. apetala AJ283 3 1.01 b (6.02) 0.86 a (6.02) 0.852 a (0.76) 0.834 a (1.78)
S. conica AJ300 3 0.88 a (2.78) 0.85 a (2.96) 0.967 c (0.31) 0.972 b (0.06)
S. dioica Pol. 3 1.13 c (1.90) 1.03 b (1.10) 0.914 b (1.54) 0.968 b (0.32)

In the lateral views (Figure 13), values of solidity for three sample seeds are 0.949 for
S. apetala AJ283, 0.970 for S. conica AJ300, and 0.961 for S. dioica Pol. (Table 2). Meanwhile,
the values of the ratio perimeter of the convex hull/ perimeter are 0.907 (S. apetala AJ283),
0.864 (S. conica AJ300), and 0.803 (S. dioica Pol.), and there are differences both in solidity
as well as in the perimeter ratio (Table 2). Here, the protrusions are also reduced by the
obtention of the average silhouette, and the effect is more notable in the seeds of S. dioica
Pol. than in S. apetala AJ283 or S. conica AJ300.
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Table 2. Values of solidity and perimeter ratio (perimeter of the convex hull/ perimeter of the image)
in the average silhouettes and as mean of three seeds for the lateral views of the seed images of
S. apetala AJ283, S. conica AJ300 and S. dioica Pol. Values marked with the same superscript letter in
each column correspond to populations that do not differ significantly at p < 0.05 (Campbell and
Skillings’s test). N indicates the number of seeds analyzed.

N Perimeter Convex Hull Perimeter Perimeter Ratio Solidity

S. apetala AJ283 3 0.53 a (1.31) 0.49 a (1.55) 0.924 b (0.33) 0.949 a (0.69)
S. conica AJ300 3 0.90 b (0.61) 0.88 b (1.00) 0.975 c (1.01) 0.970 c (0.16)
S. dioica Pol. 3 1.25 c (3.51) 1.12 c (4.02) 0.897 a (1.17) 0.961 b (0.24)

In summary and regarding dorsal views, a notable concavity was observed in the basal
side of the silhouettes of S. apetala AJ283, corresponding with the dorsal fold expressed by
the term “dorso canaliculata”, being this characteristic predominant in the group of smooth
seeds, except for S. littorea [5]. Thus, a concave region corresponding to the dorsal side of
the seed is more pronounced in S. apetala AJ283, intermediate in S. conica AJ300, and does
not exist in S. dioica Pol. and the other members of S. sect. Melandrium, whose dorsal views
are convex [5].

7. Conclusions

The shape of seeds is related to ovule types, fruit shape, and developmental conditions.
Quantification of seed shape is required for the phenotypical characterization in genetics as
well as for the application of seed morphology in taxonomy. An accurate and quantitative
form description can be achieved by comparison with geometric figures. Silene seeds show
inter-specific variation and constitute a good model for studying morphological variation.
Models used for Silene include geometric curves derived from the cardioid, but in some
cases (dorsal views), the seeds have a conserved shape that does not fit these models.
Images obtained from Fourier Transform analysis can be used as models for seeds that
don’t adjust well to canonical geometric figures. Morphological aspects of their silhouettes
can be of interest in taxonomy. Nevertheless, seeds are tri-dimensional figures, and the
Fourier transform is a step to obtain an accurate representation of seeds but not the final
step in the process.

Supplementary Materials: A Mathematica code for obtaining the Fourier expansion and the corre-
sponding figure from any set of points approximating a closed-plane curve is available at: https:
//zenodo.org/record/7122729#.YzUyhUxBxD8; accessed on 12 April 2021.
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