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Abstract: Nitrogen is one of the most important elements for improving potato yield. However,
excessive application of nitrogenous fertilizer not only produces river and other environmental
pollution but also increases agricultural production costs. In recent years, to explain the molecu-
lar mechanisms of nitrogen metabolites, some vital genes involved have been reported; however,
only limited success has been achieved in potato. Here, we report that the expression of cytosolic
glyceraldehyde-3-phosphate dehydrogenase 1 (StGAPC1) is increased under low-nitrogen stress.
StGAPC1-overexpressing potato seedlings had more biomass and a significant increase in total nitro-
gen content and root nitrate influx rate compared to the wild type. The overexpression of StGAPC1
also increased the expression of nitrate transporters and increased ROS system activity to reduce
hydrogen peroxide content under low-nitrogen stress. Our results provide a foundation for further
research on StGAPC1 function in nitrogen absorption and utilization mechanisms in potato.

Keywords: potato; StGAPC1; nitrogen; absorption; ROS system

1. Introduction

Potatoes (Solanum tuberosum L.) are the world’s fourth largest food crop after rice,
wheat, and corn, and have the advantages of strong adaptability, high yield, and rich
nutritional value. Nitrogen (N) is one of the most important elements in plant nutrition,
and its application plays a key role in improving crop yield. Although applying nitrogen
fertilizer can improve crop yields, excessive application not only increases agricultural
production costs, but also causes environmental pollution and ecological degradation [1,2].
Many studies have indicated that plants absorb nitrate (NO3

−) and ammonium (NH4
+) as

the two main nitrogen forms [3], with the nitrate peptide transporter family/transporters
(NPF/NRTs) playing a role in NO3

− absorption and ammonium transporters (AMTs) ab-
sorbing NH4

+ in roots [4,5]. In addition, NO3
− and NH4

+ are recognized as signalling
molecules that interact with a variety of phytohormone signalling pathways to regulate N
uptake, transport, and assimilation in plants [6]. Yang et al. reported that the N, potassium
(K), phosphorus (P), sodium (Na), and iron (Fe) contents were reduced, meanwhile, magne-
sium (Mg), calcium (Ca), zinc (Zn), and copper (Cu) contents were increased in blueberry
under nitrogen deficiency stress [7].

In recent years, some vital genes involved in N nutrition have been reported; for
example, Dof daily fluctuations 1 (RDD1) improved N uptake and accumulation to increase
grain productivity in rice [8]. Jia et al. reported that mild N deficiency induces key genes
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for BR biosynthesis; for example, the overexpression of DWF1 increases N accumulation
to promote plant growth [9]. RNA-sequencing analysis results suggested that bHLH
transcription factors, phosphatase 2C, sugar transporters, high-affinity nitrate transporters,
proline-rich proteins, etc., probably play crucial roles in enhancing nitrogen use efficiency
(NUE) in potato [10]. In potato, differences in N metabolism among different varieties were
found using transcriptome analysis of three potato cultivars, “Yanshu 4”, “Xiabodi”, and
“Chunshu 4”. The upregulated DEGs in “Yanshu 4” related to N metabolism were closely
related to N-utilization efficiency [11]. In rice, Luo et al. reported that the co-overexpression
of genes for nitrogen transport, assimilation, and utilization improved rice grain yield and
nitrogen use efficiency [12]. For example, the overexpression of an important ammonium
transporter from flowering Chinese cabbage (BcAMT1;5) increased the NH4

+ and NO3
−

contents compared to those in the wild type under low N concentrations. The findings
indicate that BcAMT1;5 may be vital for the N metabolic process [13].

A previous study reported that cytosolic glyceraldehyde-3-phosphate dehydrogenase
(GAPC) mainly regulated the glycolysis process in the cytoplasm [14]. Further studies re-
vealed that GAPC was vital for normal fertility and root development in Arabidopsis [15,16].
Anoman et al. reported that a lack of GAPCp activity influenced nitrogen, carbon, and
mineral nutrition metabolism using transcriptomic and metabolomics analyses [17]. In-
terestingly, the downregulation activities of phosphorylating GAPC in transgenic potato
also decreased the 3-phosphoglycerate content and increased the sucrose and UDP glucose
content in leaves [18]. Liu et al. reported increased sucrose and glucose content in potato
tubers, resulting in more and longer buds in StGAPC1 gene-silenced transgenic potato [19].
Further research suggested that the overexpression of StGAPC1 in potato delayed tuber
sprouting [20]. Zhang et al. reported that reducing the use of N in field production signifi-
cantly prolonged the dormancy period of tubers [21]. Therefore, these data indicate that N
content is closely related to sprouting in potatoes, but few studies have reported the role
of StGAPC1 in nitrogen nutrition in potatoes. Therefore, we wanted to explore whether
StGAPC1 functions in the N absorption and assimilation processes in potato.

In our study, we found that the expression of StGAPC1 was inducible under N starva-
tion. The overexpression of StGAPC1 promoted potato seedling growth and N accumu-
lation under N starvation stress. Further research suggested that the overexpression of
StGAPC1 increased the root nitrate influx rate and the expression of nitrate transporters.
Finally, we report that the overexpression of StGAPC1 increases ROS system activity to
reduce hydrogen peroxide content under N starvation stress, implying that StGAPC1 is
a valuable candidate for developing crops with more efficient N use.

2. Materials and Methods
2.1. Preparation and Detection of Transgenic Potato

The coding region of StGAPC1 (PGSC0003DMG400017433) was obtained using an
RT-PCR experiment. Then, StGAPC1 was inserted into the PBI1221 vector with XbaIand
SmaIendonucleases; the map of the constructed vector is provided in Figure S1. Then,
the StGAPC1-PBI1221 vector was transformed into Agrobacterium tumefaciens GV3101.
‘Chuanyu 10’ potato cultivar plants were propagated in MS medium at 24 ◦C in a growth
chamber under a 16 h light (100 µmol·m−2·s−1)/8 h dark cycle [22]. Microtubers with di-
ameters of ~5 mm were cut into slices (~1–2 mm) to conduct gene transformation following
a previously described method [22]. Three StGAPC1 transgenic potato lines were identified
using real-time reverse transcription–PCR (qRT-PCR) experiments. The primers used in
this study are listed in Table S1.

2.2. Potato Seedling Culture

Seedlings of the wild type (WT, Chuanyu 10) and the transgenic lines OE1, OE2, and
OE3 were used in the hydroponic culture experiments. The seedling growth conditions and
nutrient solution composition were described previously [23]. To analyse the expression
patterns of StGAPC1 in response to nitrate, WT seedlings and transgenic potato lines
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(grown on MS medium for 20 d) were grown in nutrient solution that contained 1 mM
Ca(NO3)2 (N-sufficient conditions) or 0.1 mM Ca(NO3)2 (low-N treatment, LN) for 15 d.
The nutrient solution composition was described previously [24]. At least three replicates
were used for each experiment. Seedlings from the WT and transgenic lines were obtained
for physiological index measurements and gene expression analysis.

2.3. Measurement of Physiological Parameters and Enzyme Activity

Potato seedlings were collected and dried, and a semiautomated Kjeldahl method was
used to measure the N content [24]. The activities of GS and NR were tested according
to a previously described protocol [25]. The activities of POD and SOD were determined
according to previously described methods [26,27]. H2O2 and superoxide anion radical
(O2−) contents were determined according to a previously described method [28]. The
GAPDH activity of seedlings was assayed according to the method described in [15].

2.4. Determination Method for Ion Flux Rate

The flux of NO3
− and NH4

+ in potato seedling tips was measured using a noninvasive
micrometer system (NMT) according to a method described previously [29]. A nitrogen
concentration of 1.44 mM NH4NO3 was used as a control, and 0.24 mM NH4NO3 was used
as the low-nitrogen concentration. Each sample was measured for 10 min.

2.5. Real-Time Reverse Transcription–PCR Analysis of Gene Expression

Total RNA from potato seedlings was extracted using TRIzol reagent (Invitrogen,
Carlsbad, CA, USA). Then, a reverse transcriptase kit (Thermo, Tokyo, Japan) was used to
create cDNA. qRT-PCR experiments were conducted using a 7500 Real Time PCR System
(Bio-Rad, Hercules, CA, USA). The elongation factor gene in potato was used as an internal
control, and the formula 2−∆∆Ct was used to calculate gene expression level.

2.6. Data Processing

In this study, all original data were obtained from at least three biological replicates.
The data were analysed using SPSS 14.0 (IBM Corporation, Armonk, NY, USA) and Excel
2016 statistical software (Microsoft Corporation, Redmond, WA, USA). Significant statistical
differences between treatments were determined using One Way ANOWA (p ≤ 0.01 and
p ≤ 0.05).

3. Results
3.1. StGAPC1 Is a Nitrate-Inducible Gene

Examining the expression patterns of StGAPC1 in different organs, the qRT-PCR
experimental results suggested that the expression of StGAPC1 was higher in tuber pith
and roots than in flowers and seedlings (Figure 1A). Then, the mRNA levels of StGAPC1
were determined under LN conditions ranging from 0 to 24 h in roots; the expression of
StGAPC1 increased over time, reaching the highest level at 12 h (Figure 1B). Our results
indicated that StGAPC1 was nitrate inducible.

3.2. Overexpression of StGAPC1 Promotes Seedling Growth under LN Stress

StGAPC1-overexpressing transgenic potatoes were obtained in our previous studies [20].
The expression levels of StGAPC1 and GAPDH activity were higher in the three selected
transgenic seedlings than in the wild type (WT) (Figures S2 and S3). Then, the growth of
the WT and transgenic lines in solution culture at the seedling stage was examined under
N-sufficient and LN-stress conditions. Compared to the wild type, the three transgenic
lines grew significantly better under both N-sufficient and LN conditions for 15 days
(Figure 2A). At the same time, the three transgenic lines seedling had higher dry weights
and N concentrations than the WT (Figure 2B,C). In summary, the transgenic lines grew
better and had greater dry weights than the WT under both N-sufficient conditions and
LN stress.
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Figure 1. Expression pattern analysis of StGAPC1 in organs and under LN conditions. (A) Expres-
sion of StGAPC1 in different organs of potato plants. (B) StGAPC1 expression was increased in 
roots under LN stress. Potato seedlings were grown in nutrient solutions that contained 0.2 mM 
nitrate (low N) for 3, 6, 12, and 24 h, and nutrient solutions that contained 2 mM nitrate 
(N-sufficient conditions) were used as controls (0 h). The data are the means ± SEs of three repli-
cates. Different lowercase letters represent a significant difference at p < 0.05. 
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Figure 1. Expression pattern analysis of StGAPC1 in organs and under LN conditions. (A) Expression
of StGAPC1 in different organs of potato plants. (B) StGAPC1 expression was increased in roots under
LN stress. Potato seedlings were grown in nutrient solutions that contained 0.2 mM nitrate (low N)
for 3, 6, 12, and 24 h, and nutrient solutions that contained 2 mM nitrate (N-sufficient conditions)
were used as controls (0 h). The data are the means ± SEs of three replicates. Different lowercase
letters represent a significant difference at p < 0.05.

3.3. Overexpression of StGAPC1 Increases Enzyme Activity and Expression Level

To study the responses of transgenic lines to N concentration changes, seedlings of
the WT and transgenic potato lines OE1, OE2, and OE3 were cultured in nutrient solution
(N-sufficient conditions and LN conditions) for 15 days. First, the nitrate reductase (NR)
and glutamine synthetase (GS) activities were obviously higher in the transgenic lines than
in the WT under LN conditions; on the other hand, there were no significant differences
between the transgenic lines and the WT under N-sufficient conditions (Figure 3A,B).
Further analysis suggested that the expression levels of two enzymes were also increased
in the transgenic lines compared to the WT under LN conditions. Similarly, there were
no differences between the transgenic lines and the WT under N-sufficient conditions
(Figure 3C,D). Therefore, it can be inferred that the StGAPC1-overexpressing transgenic
seedlings were more adaptable to LN stress due to the promotion of NR and GS enzyme
activity and gene expression level.
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3.4. Overexpression of StGAPC1 Increases the Root NO3
− Influx Rates

The noninvasive microtest technique (NMT) is widely used for the study of NO3
−

and NH4
+ influx and efflux in plants. In our study, there was no significant difference

in NO3
− influx in the roots of the OE1 transgenic line and the WT under N-sufficient

conditions (Figure 4A), but under LN conditions the NO3
− influx of the transgenic lines

increased obviously compared to that of the WT (Figure 4B). On the other hand, there
was no significant difference in NH4

+ efflux between the OE1 transgenic line and the WT
under both N-sufficient conditions and LN stress (Figure 4C,D). The results indicated that
the overexpression of StGAPC1 increased the uptake of NO3

−, which coincided with the
increased N content in transgenic line seedlings.

3.5. Overexpression of StGAPC1 Upregulates the Expression of Nitrate Transporters in Roots

Based on the above NO3
− and NH4

+ flux experimental results, we analysed the
effects of overexpressing StGAPC1 on the expression of 10 nitrate transporter genes. The
expression of NRT1.1, NRT2.1, NRT2.4, NRT2.5, NRT4.5, and NRT4.6 was obviously
higher in the OE1 transgenic line compared to the WT under LN stress. In contrast, the
expression of NRT1.5 and NRT2.7 was lower in the OE1 transgenic line root than the WT
(Figure 5). Therefore, we concluded that the overexpression of StGAPC1 resulted in strong
NO3

− uptake, possibly due to the higher expression of the six NRT genes involved in
nitrate transport.
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3.6. Overexpressing StGAPC1 Increases ROS System Elimination

To study the effect of overexpressing StGAPC1 on the ROS system under LN stress,
first, the seedlings of the WT and transgenic potato lines OE1, OE2, and OE3 were cultured
in nutrient solution (N-sufficient conditions and LN conditions) for 15 days. Then, we
measured the POD activity, SOD activity, and H2O2 and O2− contents. The results sug-
gested that overexpressing StGAPC1 significantly increased the activity of SOD and POD
(Figure 6A,B). On the other hand, the contents of both H2O2 and O2− in the transgenic lines
were also decreased compared to those in the WT (Figure 6C,D). All the results demon-
strated that overexpressing StGAPC1 increases antioxidant enzyme activity to reduce H2O2
and O2− accumulation under LN stress.
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4. Discussion

Applying N fertilizer can significantly promote photosynthesis, increase dry matter
accumulation, and significantly increase tuber yield [30]. Soualiou et al. reported that
a high nitrogen treatment significantly improved maize photosynthesis under cold stress
and enhanced the activity of nitrogen metabolism enzymes and nitrogen transport from
roots to aboveground parts, therefore, promoting a significant increase in maize root
and aboveground biomass compared to a low-nitrogen treatment [31]. Up to now, many
important N-efficiency genes such as GRF4 and MYB61 and gene loci such as TCP19 and
NAC42 have been identified in rice [32], but important N-efficiency genes in potato need
further exploration.

Nishizawa et al. reported that cytosolic GAPDH had a role in cell death and interacted
with ubiquitin ligase EL5 under high-nitrogen conditions to prevent root meristematic
cell death [33]. Downregulated GAPCp activity affected nitrogen and carbon metabolism,
especially glycerate and glutamine metabolites, and the ammonium assimilation pathway
in Arabidopsis [14]. In this study, StGAPC1 was expressed in tuber pith, roots, flowers,
and seedlings (Figure 1A). The expression of StGAPC1 increased continuously after the
LN treatment, reaching its peak at 12 h in seedlings. After the LN treatment for 15 d, the
StGAPC1-overexpressing lines had higher biomass and N concentration accumulation than
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the WT under N-sufficient conditions, but there was no significant difference between them
under N-sufficient conditions (Figure 2A–C). The findings suggest that the overexpression
of StGAPC1 can promote nitrogen accumulation, which may be similar to TaNAC2-5A as
a positive regulator [24].

As key enzymes in the N assimilation process, nitrate reductase (NR) and glutamine
synthetase (GS) activities were higher in the transgenic lines than in the WT under LN con-
ditions (Figure 3A,B). Similarly, the expression levels of two enzymes were also increased
in the transgenic lines compared to the WT under LN conditions (Figure 3C,D), suggesting
that the overexpression of StGAPC1 enhances N assimilation under low-nitrogen stress,
similar to PLDe function. Lu et al. reported that the overexpression of PLD lines increased
the activity of nitrite reductase under nitrogen deficiency [34]. Khan et al. reported that
transgenic rice overexpressing calcineurin B-like interacting protein kinase 2 (OsCIPK2) ab-
sorbed more NO3

− and Ca2+ compared to the WT under LN [30]. Further research reported
that the influx of NO3

− increased significantly in the roots of the StGAPC1-overexpressing
line compared to that in the roots of the WT plants under LN stress (Figure 4A,B). The
results suggested that the upregulation of StGAPC1 expression promoted the uptake of
NO3

− in roots under LN conditions. A similar result was found for apple bHLH130 [35].
There are 39 StNRT gene members in the potato genome, and different members

display different expression patterns in different tissues [36]. The transcript levels of eight
TaNRTs were significantly increased after N starvation treatment in wheat [37]. In maize,
the transcript expression of four N transporters was increased to promote N uptake after
brassinosteroid treatment [38]. In rice, six N transporters (OsNRT1.1A, OsNRT1.1B, Os-
NPF6.1, OsNRT2.1, OsNRT2.3b, and OsNAR2.1) could increase N uptake and NUE [39].
Ma et al. reported that the expression of the OsNRT2s gene was regulated by ARE4 and
exhibited a clear rhythmic pattern in response to the diurnal fluctuations of soluble sugar
content, and nitrogen utilization was reduced in the are4 mutant, resulting in obvious
defects in growth and development [40]. The expression of eight NRTs was higher in
StGAPC1-overexpressing roots than in CK roots after 12 h of LN (Figure 5). These re-
sults suggested that StGAPC1 promoted the uptake of NO3

− and NH4
+ in roots through

enhancing NRT function.
On the other hand, Krouk et al. reported that some N transporters transported

hormones; for example, NPF6.3/NRT1.1 transported auxin in addition to transporting
NO3

− in Arabidopsis [41]. Four NO3
− transporters had been found to transport abscisic

acid in yeast or insect cells [42]. Similarly, NPF3 and NPF2.10 were reported to transport
gibberellin in Arabidopsis [43]. Therefore, we speculated that the increased expression
of NRT transporters in StGAPC1-overexpressing lines changed the auxin, ABA, and GA
signalling pathways to improve low-nitrogen tolerance.

Previous studies suggested that LN stress promoted the accumulation of ROS, es-
pecially increased hydrogen peroxide (H2O2) content [44]. Similarly, cytosolic ascorbate
peroxidase 1 (CsAPX1) might, together with nitrogen regulatory protein P-II (CsGLB1),
promote ascorbic acid accumulation compared to the WT under N deficiency solution
condition in the tea plant [45]. In Arabidopsis, Chu et al. reported that transcription factor
HOMOLOG OF BRASSINOSTEROID ENHANCED EXPRESSION2 INTERACTING WITH
IBH1 (HBI1) was a vital regulator of nitrate signalling; meanwhile, it induced the expression
levels of some antioxidant genes, then decreased the content of reactive oxygen species
(ROS) under LN conditions [46].

Hancock et al. reported that GAPDH might also have a similar role in mediating ROS
signalling, and H2O2 activated the interaction of GAPC and PLD to regulate growth and
stress responses together in Arabidopsis [47]. In rice, the overexpression of the OsGAPC3
gene improved salt tolerance through increasing the activity of catalase and eliminating
oxidative free radicals [48]. Zhang et al. found that the overexpression of TaGAPC1
promoted H2O2 detoxification to increase drought tolerance in transgenic Arabidopsis [49].
The activities of POD and SOD were obviously higher in the StGAPC1 overexpression line
seedlings than in the WT seedlings (Figure 6A,B), and in contrast, the contents of both



Horticulturae 2023, 9, 1105 10 of 13

H2O2 and O2− in the transgenic lines were also decreased compared to those in the WT
(Figure 6CD), suggesting that the overexpression of StGAPC1 may contribute to enhanced
ROS pathway function under LN stress.

Many studies had reported that GAPC and interacting proteins worked together
in some important physiological processes. Han et al. reported that the overexpression
of GAPCs inhibited autophagy in tobacco, and oxidative stress inhibited the interaction
between GAPCs and autophagy-related protein 3 (ATG3) [50]. Zhang et al. reported
that glyceraldehyde 3-phosphate dehydrogenase (GAPDH) interacted with OsSRT1 to
regulate cell redox states and that OsSRT1 depressed GAPDH lysine acetylation and nuclear
accumulation under oxidative stress in rice [51]. In potato, StGAPC1 interacted with snakin-
2 to decrease its oxidative modification to inhibit sprout growth [20]. Summarising the
above results, we speculate that StGAPC1 may interact with some proteins to regulate N
nutrition pathways. GAPC also plays a role in gene transcription regulation, and GAPDH
directly regulates the transcriptional activation function of a series of glycolytic enzyme-
encoding genes in rice [51]. Kim et al. reported that in Arabidopsis, AtGAPC bound to the
transcription factor NF-YC10 to induce the expression of heat-tolerance genes and enhance
plant heat tolerance [52]. We believe that StGAPC1 may directly regulate the genes involved
in N absorption and assimilation, which requires more research in the future.

5. Conclusions

The results of this study indicated that the expression of StGAPC1 was increased after
low-nitrogen treatment. The StGAPC1-overexpressing transgenic potato seedlings had
higher shoot and root dry weights than the WT potato seedlings after LN treatment for
15 days. Meanwhile, the transgenic potato seedlings also had higher N accumulation, NR
and GS enzyme activity, and nitrate transporter expression. In addition, the activity of
SOD and POD increased; in contrast, the contents of H2O2 and O2− were also decreased
after the low-nitrogen treatment in the transgenic lines. In summary, our study provides
a foundation for the thorough analysis of StGAPC1 function in potato N signalling path-
ways and improving the utilization rates of potato N fertilizer.

Supplementary Materials: The following supporting information can be downloaded at: https://
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