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Abstract: Potassium is one of the indispensable nutrient elements for plant growth, fruit development,
and yield. The research and application of potassium nutrition diagnosis technology is the premise of
scientific potassium management. However, potassium deficiency in tomato leaves, from vegetative
to reproductive growth, is not easy to diagnose. To alleviate this problem, this paper proposes a
suitable method of supplying potassium to tomatoes via a nutrient solution and diagnosing potassium
abundance and deficiency through diagnosis methods based on ecological morphology, biological
accumulation, and the photosynthetic characteristics of tomato plants. The relationship between the
ecological morphology and biomass accumulation of tomatoes cultivated in the nutrient solution
with potassium supply levels of 1, 4, 8, and 16 mmol/L is also discussed, and the potassium supply
in the nutrient solution was studied 21 days after transplanting. The results showed that there was a
significant quadratic correlation between the potassium supply in the nutrient solution and plant
height and biomass accumulation, respectively. The most suitable level of potassium supply via the
nutrient solution was deemed to be 10~13 mmol/L. However, if irreversible damage or severe stress
to tomato plants has occurred because of potassium deficiency, there will be serious differences in the
growth status of plants, and the diagnosis results will deviate greatly. In addition, the photosynthetic
induction characteristics responding to the dark–light conversion of tomato leaves with potassium
contents of 0.9%, 2.1%, 3.1%, and 3.3% cultivated with potassium supply amounts of 1, 4, 8, and
16 mmol/L in the nutrient solution were investigated. The results showed that tomato leaves with
potassium contents of 3.1% and 3.3% had a more rapid response to dark–light conversion and higher
first-order derivatives of net photosynthetic rate compared to those with potassium contents of 0.9%
and 2.1%, but the first-order derivative of intercellular CO2 concentration showed an opposite trend.
Additionally, a quadratic correlation between leaf potassium content and CO2 assimilation during
5 min of photosynthetic induction was established (R2 > 0.99). According to this correlation, the
suitable leaf potassium content was estimated to be 2.3~2.7%, similar to that of tomatoes cultured
in the nutrient solution with a 4~8 mmol/L potassium supply. Therefore, this method can realize
the rapid, non-destructive, and real-time detection of potassium content in tomato leaves based on a
portable photosynthetic measurement system by establishing the relationship between leaf potassium
content and net CO2 assimilation during the photosynthetic induction period, therefore helping to
avoid the irreversible damage caused by potassium deficiency at the later stages of plant cultivation
and providing technical support for the precise fertilization of potassium in actual cultivation.

Keywords: photosynthetic induction; nutrient diagnosis; net CO2 assimilation; nondestructive
detection; light–dark conversion
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1. Introduction

In the context of horticultural production, potassium plays an extremely important
role in promoting crop photosynthesis, growth, yield, and quality [1,2]. The potassium
content in plants is second only to nitrogen and plays an important role in maintaining
cellular osmotic pressure, improving photosynthetic performance, promoting substance
transport, and enhancing stress resistance [3,4]. Different from calcium, phosphorus, and
other elements, potassium is more mobile in plants [4,5]. Potassium deficiency tends to
cause plant dwarfing, leaf chlorosis, decreases in leaf area and net photosynthetic rate, and,
ultimately, the inhibition of plant growth and yield [6,7]. However, the limitation of plant
growth is closely related to the regulation of potassium in leaf photosynthesis because
potassium can regulate stomatal movement, activate key photosynthetic enzymes, and
maintain the structure of the chloroplast thylakoid membrane [8,9]. The net photosynthetic
rate of leaves with potassium deficiency decreased significantly, accompanied by the down-
regulation of stomatal conductivity, mesophyll conductance, and electron transport rate [10].
Although the potassium content in plants exceeds 4% of dry weight [11–13], the influences
of potassium deficiency are inconspicuous and difficult to distinguish at the early stages
of vegetative growth [14–16], which can adversely affect their reproductive growth at the
later stages of cultivation. Conversely, plants have the capacity to carry out the “luxury
absorption” of potassium, resulting in a great waste of potassium if too much potassium is
applied. Therefore, effectively diagnosing the abundance and deficiency of potassium in
plants at the early stage of vegetative growth is the key to promoting high yields and the
quality of plants and improving potassium utilization efficiency.

The research and application of potassium nutrition diagnosis technology is the
premise of scientific potassium management. Potassium diagnosis based on crop growth
status and leaf symptoms is currently commonly used by most growers, and this method
can help to quickly make a clear diagnosis and give general fertilization suggestions be-
cause of its intuitive, simple, and convenient characteristics [17,18]. However, potassium
deficiency can also occur when the crop’s appearance shows no traces of potassium defi-
ciency. Under such circumstances, this method cannot play an active preventive role [19].
Moreover, plant growth is susceptible to environmental factors such as the climate, pests,
and diseases, which can cause interference and confusion in appearance diagnosis. The
traditional methods used to diagnose potassium nutrition in plants mainly include soil anal-
ysis (or nutrient solution analysis) and plant analysis (chemical analysis of plant tissue and
interstitial fluid analysis) [20,21]. Soil or nutrient solution analysis can reflect the physical
and chemical properties of soil and the composition of nutrient elements. However, due to
many interference factors, the accuracy of the diagnostic results is relatively low [20]. Plant
analysis involves determining the abundance and deficiency of nutrient elements in plants
by measuring the content of nutrient elements in plant tissues and interstitial fluid. This
method can directly and accurately reflect the nutritional status of horticultural crops to
provide accurate nutrient information to adjust the nutrient supply scheme in time [17,21].
However, it takes a lot of time, labor and material resources from sampling to measuring
results, and it is not possible to diagnose the nutrition of horticultural crops in the field.
In addition, post-analysis in the laboratory requires professional analysts, many chemi-
cals, and expensive equipment, inconveniencing real-time diagnosis. There are also some
other modern diagnostic techniques, including characteristic spectral detection [22,23], ion-
selective electrode detection [24], and robot vision detection [25]. Although these diagnosis
methods for nutrient elements in plants have the characteristics of simplicity, rapidity, and
high timeliness, they are still nascent and in need of further research.

Diagnosing potassium contents in plants involves determining the potassium concen-
tration in the diagnostic site of the plant and establishing a regression equation through
using the biomass or economic yield to determine the critical value [18,26]. However,
potassium is easy to transfer and reuse in plants, so potassium deficiency in plants is a
dynamic process [25]. Although there are many studies on potassium diagnosis in plants,
few methods can achieve efficient, rapid, and non-destructive detection. As we all know,
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potassium can influence CO2 assimilation in a short time by affecting the activity of key
photosynthetic enzymes, the formation of photosynthetic intermediates, and stomatal
opening and closing [27–29]. Consequently, potassium significantly affects the biological
accumulation and photosynthesis of plant leaves. Thus, we set out to determine whether
the potassium contents of plant leaves can be diagnosed via plant photosynthetic accumu-
lation or photosynthetic rate to provide an early indication of possible potassium deficiency
in plant leaves. Few studies have focused on the diagnosis of potassium contents in plant
leaves by using photosynthetic characteristics or CO2 accumulation. To establish whether
there is a relationship between leaf potassium content and plant biomass accumulation,
photosynthetic characteristics, CO2 assimilation and to achieve accurate, efficient, real-
time, and non-destructive potassium diagnosis, this experiment explored the changes in
growthform, biomass accumulation, photosynthetic induction characteristics, and CO2
accumulation in tomato leaves caused by leaf potassium abundance and deficiency during
the transition from the vegetative growth period to the reproductive growth period to
provide a rapid and non-destructive method for the diagnosis of potassium abundance and
deficiency in early-cultivation-stage tomato leaves.

2. Materials and Methods
2.1. Experiment Materials

This experiment was conducted in a Chinese sunlight greenhouse, and the tomato
seedlings used (Solanum lycopersicum L. cv. Ouguan) were provided by Monsanto Vegetable
Seed Division. The tomato seedlings were cultivated in an artificial climate chamber for one
month and then transplanted in a greenhouse. In this experiment, quartz sand was used
for trough cultivation with a cultivation density of 4 plants/m2 and regular irrigation with
steady-pressure drip irrigation belts. The nutrient solution for irrigation was adjusted to
potassium concentrations of 1, 4, 8, and 16 mmol/L using K2SO4, and the missing nitrogen
was supplemented by Ca(NO3)2·4H2O, while other nutrients remained unchanged in the
Japanese garden experimental nutrient solution (Table 1). The micronutrients in the nutrient
solutions were prepared according to a common formula, with pH ranging from 6.0 to
6.5. Tomatoes were grown with different levels of potassium in each of the four nutrient
solutions mentioned above, and all tomato plants were cultivated in a Chinese sunlight
greenhouse to ensure that all tomato plants were grown in the same environment that
external environmental conditions would not affect experimental results for anything other
than the potassium contents in the nutrient solutions.

Table 1. Fertilizer contents of nutrient solution in different potassium treatments.

Fertilizers
K1 K4 K8 K16

mg/L mg/L mg/L mg/L

KNO3 101 404 808 808
K2SO4 0 0 0 696

Ca(NO3)2·4H2O 1771 1416 944 944
MgSO4·7H2O 492 492 492 492
NH4H2PO4 153 153 153 153

2.2. Measurement Methods
2.2.1. Plant Growth of Tomato Plants

Plant height was measured from the stem base to the terminal bud using a ruler until
the tomato plant was topping. The fresh weights of the roots, stems, and leaves of tomato
plants in each treatment were measured using electronic scales (YP402, Shanghai Precision
Scientific Instrument Co., Ltd., Shanghai, China). After the fresh weight of each organ was
weighed, it was put into a numbered kraft envelope, blanched in the oven at 105 ◦C for
3 h, and dried to constant weight (more than 72 h) in the oven at 80 ◦C. The dry weight of
each organ was measured using electronic scales (FA1204B, Shanghai Precision Scientific
Instrument Co., Ltd., Shanghai, China).
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2.2.2. CO2 Exchange Rate of Tomato Leaves

A portable photosynthesis measurement system (LI-6400XT, LI-COR Inc., Lincoln, NE,
USA) was used as a measuring instrument. Eight tomato plants in each treatment were
randomly selected, and the photosynthetic characteristics, including net photosynthetic
rate, stomatal conductivity, intercellular CO2 concentration, and transpiration rate of the
5th or 6th leaves from the top, were measured. The photosynthetic characteristics were
measured at 9:30~11:30 a.m. on a sunny day using a leaf chamber with a red and blue light
(6400-02B). The measurement parameters of the leaf chamber were set as follows: light
intensity—800 µmol/m2·s, CO2 concentration—500 µmol/mol, leaf chamber temperature—
25 ◦C, and airflow rate—500 µmol/s. The continuous CO2 exchange rate of tomato leaves
was measured using a continuous photosynthetic measurement system on a sunny day,
and the measurement conditions were consistent with the plant growth environment. The
measurement method used was based on the method of Zhang et al. [30].

2.2.3. Photosynthetic Induction Curve

Photosynthetic induction curves of tomato leaves with different potassium contents
were measured on days 21 and 22 after planting using a standard light source leaf chamber
of a portable photosynthesizer. Tomato plants cultured in the four nutrient solutions were
selected from the 4th or 5th matured leaf from top to bottom. Before measurement, the
leaves to be measured were completely wrapped with tinfoil, and the tinfoil was removed
after 2 h of dark adaptation, and the leaves were rapidly clamped into the leaf chamber
for more than 5 min of dark adaptation, and the taking of measurements started following
the stabilization of all photosynthetic parameters. The measurements were performed
automatically, and data were recorded every 2 s. The length of measurement time was
73 min, and the light intensity was set to 0 µmol/(m2·s) from 0 to 9 min, 1000 µmol/(m2·s)
from 10 to 69 min, and 0 µmol/(m2·s) from 70 to 73 min. The other measurement parameters
were set as follows: leaf chamber temperature at 25 ◦C, airflow velocity at 500 µmol/s, CO2
concentration at 500 µmol/mol, and relative humidity at 40~50%.

2.2.4. Net CO2 Assimilation at a Given Time

The net CO2 assimilation at a given time is the net CO2 uptake per unit area of the leaf
at a given time, which is calculated as follows:

∆CO2 =
1

(t2 − t1)

∫ t2

t1

Pndt

Note: ∆CO2 is the net CO2 assimilation during the photosynthetic induction period,
mmol/(m2 h); Pn is the net photosynthetic rate, µmol/(m2 s); t1 and t2 are the onset and
termination times of photosynthetic induction, respectively, min.

2.2.5. Potassium Contents of Tomato Leaves

Tomato leaves were randomly selected from top to bottom. On the 21st day after
transplanting, 4~5 leaves were dried, ground, and decocted using the H2SO4-H2O2 method
(X20A, Shanghai Shengsheng Automatic Analytical Instruments Co., Ltd., Shanghai, China),
and the resulting decoction solution was used to measure the potassium contents of the
leaves using an atomic absorption emission spectrophotometer (AA-7002, Beijing East-West
Analytical Instruments Co., Ltd., Beijing, China).

2.3. Data Statistics and Analysis

The analysis of experimental data was completed using Microsoft Excel 2019 and SPSS
21.0 software, and Origin 9.1 software was used for graph drawing. An analysis of variance
for the data was performed at the 0.05 significance level using the LSD method for multiple
comparisons.
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3. Results and Analysis
3.1. Diagnosis of Potassium Abundance and Deficiency Based on Plant Growth Morphology
3.1.1. Relationship between Plant Height and Potassium Supply in the Nutrient Solution

Plant growth morphology is an apparent index that reflects the effect of potassium
supply in the nutrient solution on the growth and development of tomatoes. Potassium
in the nutrient solution had a significant effect on plant height (Figure 1). Plant height
increased first and then decreased with the increase in the potassium supply levels in
the nutrient solution, especially during the flowering period and fruit set period. During
the fruit set period, in the K8 and K12 treatments, the plant height of the tomato plants
was significantly higher than that in the K1 and K4 treatments. However, there was no
significant difference in plant height between the K8 and K12 treatments. According to
the binomial fitting relationship between the potassium supply in the nutrient solution
and plant height, the optimum potassium supply levels in the nutrient solution during
the seedling, flowering, and fruit set periods were 10.81 mmol/L, 8.87 mmol/L, and
10.41 mmol/L, with a mean value of 10.03 mmol/L.
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Figure 1. Effect of different potassium supply levels in the nutrient solution on the plant height of
tomato plants during different periods. The letters above the mark indicate the results of the analysis
of variance (tested using LSD method for multiple comparisons; p < 0.05), and different letters in the
same growth period represent significant differences. The quadratic equation indicates the correlation
between the potassium supply level in the nutrient solution and tomato plant height in a certain
period (n = 8).

3.1.2. Relationship between Biomass Accumulation and Potassium Supply in the
Nutrient Solution

The biomass accumulation of tomato plants mainly refers to the fresh weight and dry
weight of leaves, stems, and roots. The effects of potassium supply via the nutrient solution
on the biomass accumulation of the tomato plants were different (Figure 2). The biomass
accumulation of tomato plants increased significantly with the increase in potassium supply
levels in the nutrient solution during the seedling and flowering periods. However, there
was no significant difference in the biomass accumulation of the tomato plants between the
K4, K8, and K16 treatments during the seedling, flowering, and mature periods. Tomato
plants mainly grow vegetatively during the seedling and flowering period, but insufficient
potassium supply cannot meet the growth demand of tomato plants.
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Figure 2. Effect of potassium supply in the nutrient solution on the dry weight of tomato plants.
The letters above the histogram indicate the results of our analysis of variance (tested using the LSD
method for multiple comparisons; p < 0.05), and different letters in same growth period represent
significant differences.

There was a significant quadratic correlation between the biomass accumulation of
tomato plants and the potassium supply in the nutrient solution during the different growth
periods (Table 2). Based on the maximum point of the regression equation, the suitable
potassium supply in the nutrient solution was inferred, which was the optimal potassium
content in the nutrient solution for promoting biomass accumulation increases during
the different growth periods. According to the experimental results, the most suitable
potassium supply level in the nutrient solution was 11~15 mmol/L.

Table 2. Relationships between biomass accumulation and potassium in tomato leaves during
different growth periods.

Growth Period Correlation Equation R2
Maximum Value

Point
(mmol/L)

Seedling period y = −0.0798X2 + 2.2998X + 5.3718 0.9990 14.41
Flowering period y = −0.3073X2 + 7.6114X + 22.316 0.9727 12.39
Fruit-set period y = −0.4474X2 + 10.286X + 50.652 0.9665 11.50
Mature period y = −0.1931X2 + 5.8245X + 52.508 0.8856 15.08

Note: y represents the dry weight of tomato plants, and X represents the potassium supply in the nutrient
solutions.

3.2. Diagnosis of Potassium Abundance and Deficiency Based on the Photosynthetic Characteristics
of Tomato Leaves
3.2.1. Photosynthetic Characteristics of Tomato Leaves

The changing trend regarding the net photosynthetic rate of the tomato leaves in each
treatment was basically the same during the different growth periods (Table 3). The net
photosynthetic rate of the tomato leaves, upon treatment with a high potassium supply in
the nutrient solution, was significantly higher than that in treatment with a low potassium
supply. The net photosynthetic rate of tomato leaves in the K1 treatment was the lowest,
while there was no difference between the K8 and K16 treatments. The changing trend
regarding the stomatal conductivity of the tomato leaves during the different growth
periods was similar to that of the net photosynthetic rate. There was also no significant
difference in stomatal conductivity between tomato leaves in the K8 and K16 treatment,
except for in the flowering period. There was no significant difference in the intercellular
CO2 concentrations of the tomato leaves in each treatment, which may be due to the
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large measurement error. The change in the transpiration rate was similar to the stomatal
conductivity.

Table 3. Effect of potassium supply in the nutrient solution on photosynthetic characteristics of
tomato leaves.

Growth
Periods

Treatments

Net
Photosynthetic

Rate

Stomatal
Conductivity

Intercellular CO2
Concentration

Transpiration
Rate

µmol/m2 s mol/m2 s µmol/mol mmol/m2 s

Seedling Period

K1 9.0 ± 2.0 c 0.151 ± 0.075 c 364 ± 30 a 3.08 ± 1.07 b
K4 13.3 ± 3.1 b 0.246 ± 0.061 b 375 ± 8 a 4.62 ± 0.84 ab
K8 14.4 ± 1.2 ab 0.272 ± 0.097 ab 366 ± 36 a 4.57 ± 1.15 ab

K16 15.8 ± 1.2 a 0.333 ± 0.036 a 379 ± 13 a 5.66 ± 0.36 a

Flowering Period

K1 11.7 ± 2.1 c 0.233 ± 0.018 c 389 ± 15 ab 2.77 ± 0.14 c
K4 13.1 ± 1.1 bc 0.229 ± 0.049 c 373 ± 14 b 2.79 ± 0.41 c
K8 13.4 ± 0.4 b 0.295 ± 0.059 b 392 ± 17 a 3.45 ± 0.50 b

K16 16.7 ± 1.0 a 0.387 ± 0.035 a 392 ± 8 a 4.14 ± 0.20 a

Fruit-set
Period

K1 12.8 ± 0.4 c 0.390 ± 0.095 b 407 ± 14 a 6.60 ± 0.89 a
K4 14.6 ± 1.4 b 0.409 ± 0.077 ab 401 ± 11 a 6.15 ± 0.77 a
K8 16.1 ± 0.9 a 0.445 ± 0.043 a 399 ± 4 a 6.79 ± 0.66 a

K16 15.1 ± 1.1 ab 0.429 ± 0.081 a 401 ± 12 a 6.79 ± 0.79 a

Mature
Period

K1 11.0 ± 3.4 c 0.304 ± 0.046 b 388 ± 34 a 4.15 ± 1.8 b
K4 14.9 ± 3.0 b 0.371 ± 0.078 a 377 ± 9 a 4.88 ± 0.94 b
K8 16.4 ± 2.1 ab 0.376 ± 0.097 a 371 ± 35 a 4.85 ± 1.30 b

K16 17.6 ± 2.2 a 0.388 ± 0.063 a 386 ± 12 a 6.23 ± 0.25 a

Note: The letters after data in the table above indicate the results of analysis of variance (tested using the LSD
method for multiple comparisons; p < 0.05), and different letters represent significant differences in the same
growth period.

3.2.2. Continuous CO2 Exchange Rate of Tomato Leaves

Single-point photosynthetic measurement or the net photosynthetic rate of tomato
leaves in a short time can only reflect the instantaneous response or the photosynthetic
potential of tomato leaves in response to environmental changes. However, it cannot
reflect the adaptability of tomato leaves to different potassium supply levels in the nutrient
solutions for a long time. To reveal the response of tomato leaves to the change in light
environment, the continuous changes in the net photosynthetic rate of the tomato leaves
were monitored for a whole day. The results showed that with an increase in the potassium
supply levels in the nutrient solution, the net photosynthetic rate of the tomato leaves in the
K16 treatment was significantly higher than that in the other treatments, followed by the
K8 treatment, while the K1 and K4 treatments were lower (Figure 3). The photosynthesis
effective time also increased with the increase in potassium supply, not just the net pho-
tosynthetic rate. Potassium deficiency significantly reduced the photosynthetic effective
time of the tomato leaves, and the net photosynthetic rate of the tomato leaves decreased
significantly under low-light conditions. Therefore, potassium significantly reduced CO2
assimilation by affecting the net photosynthetic rate and photosynthetic effective time of
the tomato leaves.

Regarding the total amount of CO2 absorbed for a whole day, the net CO2 assimilation
of the tomato leaves in each treatment increased significantly with increase potassium
supply levels in the nutrient solution. It is worth noting that there was a significant linear
correlation between the net CO2 assimilation and the potassium supply in the nutrient
solution (Figure 3), which indicates that increasing the potassium supply in the nutrient
solution can not only improve the photosynthetic activity of tomato leaves but also improve
the assimilation ability of tomato leaves to CO2. We set out to determine whether it is
possible to estimate the demand for potassium supply in the nutrient solution or diagnose
the abundance and deficiency of potassium in plants through the relationship between
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CO2 assimilation and potassium supply. However, from the linear correlation between
the potassium supply in the nutrient solution and net CO2 assimilation over a whole day,
it is clear that long-term net CO2 assimilation cannot be used to estimate the appropriate
supply of potassium in the nutrient solution.
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exchange rate of the tomato leaves was measured from 6:00 to 19:00, and the time interval of each
measurement was 5 min. The CO2 assimilation over the whole day was the integral value of net
photosynthetic rate over the whole day.

3.3. Diagnosis of Potassium Abundance and Deficiency Based on the Photosynthetic Induction
Characteristics of Tomato Leaves
3.3.1. Photosynthetic Induction Curves of Tomato Leaves with Different Potassium
Contents in Leaves

The potassium contents in the tomato leaves were detected before measuring the
photosynthetic induction curves, because the effect of potassium on the photosynthetic
characteristics of leaves was better explained by the potassium content in leaves than the
potassium supply in the nutrient solution [31]. The results showed that the potassium
contents in the tomato leaves grown in a nutrient solution with a potassium supply of
1 mmol/L reached 0.9% due to the uptake and accumulation of potassium by tomatoes
during the seedling period. Tomato leaves grown in a nutrient solution supplied with
4 mmol/L of potassium reached a potassium content of 2.1%. Tomato leaves grown in the
nutrient solutions supplied with 8 and 16 mmol/L of potassium did not show significant
differences, reaching 3.1% and 3.3%, respectively.

The photosynthetic induction curve of tomato leaves showed a multi-stage change
trend (Figure 4a). At the early lighting stage, the net photosynthetic rate showed a rapid
increase in a short time (0~3 min). There were no significant differences among the leaves,
except those with 0.9% potassium content, which had a lower net photosynthetic rate.
The correlation between the net photosynthetic rate and potassium content in leaves
reached a highly significant level with the extension of light duration (Figure 5a). The net
photosynthetic rate of leaves with potassium contents of 3.1% and 3.3% increased smoothly,
which was significantly higher than those of the leaves with a potassium content of 2.1%.
The net photosynthetic rate of the tomato leaves tended to be stable with the continuous
extension of light duration. However, the maximum net photosynthetic rate of tomato
leaves with different potassium contents also showed significant differences.



Horticulturae 2023, 9, 1225 9 of 17

Horticulturae 2023, 9, x FOR PEER REVIEW 9 of 17 
 

 

The net photosynthetic rate of the tomato leaves tended to be stable with the continuous 
extension of light duration. However, the maximum net photosynthetic rate of tomato 
leaves with different potassium contents also showed significant differences. 

 
Figure 4. Photosynthetic induction curves of tomato leaves with different potassium contents (n = 
6). Subfigures (a–d) are the photosynthetic induction curves of net photosynthetic rate, intercellular 
CO2 concentration, stomatal conductance, and transpiration rate. The point-line box in the figures 
represents the lighting, and light intensity was set to 1000 μmol/m2s. Data in figures were averaged 
every 15 points. The coarse line represents tomato leaves with a potassium content of 0.9%; the 
coarse dotted line represents tomato leaves with a potassium content of 2.1%. The fine line repre-
sents tomato leaves with a potassium content of 3.1%, and the fine dotted line represents tomato 
leaves with a potassium content of 3.3%. 

Figure 4. Photosynthetic induction curves of tomato leaves with different potassium contents (n = 6).
Subfigures (a–d) are the photosynthetic induction curves of net photosynthetic rate, intercellular
CO2 concentration, stomatal conductance, and transpiration rate. The point-line box in the figures
represents the lighting, and light intensity was set to 1000 µmol/m2s. Data in figures were averaged
every 15 points. The coarse line represents tomato leaves with a potassium content of 0.9%; the
coarse dotted line represents tomato leaves with a potassium content of 2.1%. The fine line represents
tomato leaves with a potassium content of 3.1%, and the fine dotted line represents tomato leaves
with a potassium content of 3.3%.
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The change in intercellular CO2 concentration is the basis for analyzing the stomatal
and non-stomatal limitations of leaf photosynthesis. The intercellular CO2 concentration
in tomato leaves showed a rapid decreasing trend within 0 to 15 min of the beginning
of lighting (Figure 4b). The correlation between the intercellular CO2 concentration and
leaf potassium content gradually increased (Figure 5b). Among all the treatments, the
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greatest decrease was observed in the leaves with a potassium content of 3.1%, and the
slowest decrease was observed in the leaves with a potassium content of 0.9%. From 15 to
35 min after lighting, the intercellular CO2 concentration of tomato leaves showed a slowly
increasing trend, particularly in leaves with a potassium content of 3.1%. However, the
difference between leaves with different potassium contents decreased gradually. With the
further extension of light duration, the intercellular CO2 concentration of tomato leaves
showed a stable trend, and there was no significant difference in all treatments.

Stomata is the main channel for gas and water exchange between plants and external
environments [31]. There was no significant change in the stomatal conductivity of the
tomato leaves at the early lighting stage (0~10 min), which was different from the change
in the net photosynthetic rate (Figure 4c). With the extension of light duration, the stomatal
conductivity began to rise rapidly, and that of the leaves with high potassium contents
was gradually greater than that of the leaves with low potassium contents. The correla-
tion between stomatal conductivity and leaf potassium content was relatively low at the
early stage but gradually increased (Figure 5c). The stomatal conductivity of leaves with
potassium contents of 3.1% and 3.3% increased rapidly, while those of leaves with low
potassium contents tended to stabilize when light duration was continuously extended.
The photosynthetic induction curve of the transpiration rate of tomato leaves had a trend
similar to that of stomatal conductivity (Figures 4d and 5d).

3.3.2. First-Order Derivatives of Photosynthetic Induction Curves of Tomato Leaves with
Different Potassium Content

The first-order derivatives of the photosynthetic induction curves for both the stomatal
conductivity and transpiration rate of the leaves in different treatments increased signifi-
cantly at the early lighting stage and then stayed close to zero. The first-order derivatives
started to rise above zero about 10 min after lighting (Figure 6c,d), while the first-order
derivatives of the net photosynthetic rate and intercellular CO2 concentration of leaves
showed significant differences at the early lighting stage (Figure 6a,b). The increase rate of
the net photosynthetic rate and the decrease rate of intercellular CO2 concentration indicate
the effect of potassium on the photosynthetic characteristics of the tomato leaves. The
potassium content of the leaves with a lower increase rate in terms of net photosynthetic
rate is lower, but the differences between leaves with potassium contents of 2.1%, 3.1%,
and 3.3% were insignificant. The increase rate in the net photosynthetic rate of the leaves
gradually decreased after 2 min of lighting, and the decrease was greater in tomato leaves
with low potassium contents (Figure 6).

There were significant differences in the decrease rate in the intercellular CO2 concen-
tration, with the greatest decrease occurring in leaves with a potassium content of 3.1%,
followed by leaves with a potassium content of 3.3%, and leaves with a potassium content
of 0.9% experienced the smallest decrease in this regard.

3.3.3. Diagnosis of Potassium Abundance and Deficiency in Tomato Leaves

The net CO2 assimilation in tomato leaves during the photosynthetic induction period
showed the same trend as the leaf potassium content. There was no significant difference
between leaves with potassium contents of 3.1% and 3.3%. The net CO2 assimilation
in leaves with a potassium content of 0.9% was 23.4% lower than that of leaves with a
potassium content of 3.1%, and the leaves with a potassium content of 2.1% also decreased
by 13.1%. In addition, there was a significant quadratic correlation between net CO2
assimilation and leaf potassium content during the photosynthetic induction period, with a
determination coefficient above 0.99 (Figure 7). Furthermore, there was a significant linear
correlation between the potassium content of tomato leaves, net CO2 assimilation during
the photosynthetic induction period, and potassium supply in the nutrient solution, with a
correlation coefficient of 0.99.
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Figure 6. First-order derivatives of photosynthetic induction curves of tomato leaves. Subfigures (a–d)
are the first-order derivatives of net photosynthetic rate, intercellular CO2 concentration, stomatal
conductance, and transpiration rate. Data in figures were averaged every 30 points. The coarse line
represents tomato leaves with a potassium content of 0.9%; the coarse dotted line represents tomato
leaves with a potassium content of 2.1%. The fine line represents tomato leaves with a potassium
content of 3.1%; the fine dotted line represents tomato leaves with a potassium content of 3.3%.
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of net photosynthetic rate within 5 min of the beginning of lighting in the photosynthetic induc-
tion curve, and the integral of intercellular CO2 concentration is the integral of intercellular CO2

concentration within 5 min of the beginning of lighting in the photosynthetic induction curve.

The significant correlation between net CO2 assimilation and leaf potassium content
during the photosynthetic induction period in tomato leaves can also be observed in Fig-
ure 2. However, the correlation between net photosynthetic rate and the intercellular CO2
concentration of the photosynthetic induction curve in tomato leaves and leaf potassium
content reached a highly significant level after 5 min of lighting. Consequently, the inte-
grals of net photosynthetic rate and intercellular CO2 level within 5 min of lighting were
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selected as the characteristic variables, and it was found that they were significantly and
quadratically correlated with the leaf potassium content. Suitable potassium content in
tomato leaves can promote leaf photosynthesis, resulting in maximum net CO2 assimilation
and the lowest integral of intercellular CO2 concentration. Therefore, according to the
extreme points of the correlation curves of leaf potassium content with the net CO2 assimi-
lation and the integral of intercellular CO2 concentration within 5 min of the beginning of
lighting during the photosynthetic induction period, the suitable content of potassium in
tomato leaves can be estimated. The results of this experiment show that the suitable levels
of potassium in tomato leaves, estimated using net CO2 assimilation and the integral of
intercellular CO2 concentration, approximately range between 2.3% and 2.7%, respectively.

4. Discussion
4.1. Diagnosis of Potassium Abundance and Deficiency Based on Plant Growth Morphology

Potassium, the most abundant cation in plant cells, maintains the physiological and
biochemical processes of plants in various ways [32]. Severe potassium deficiency leads
to insufficient potassium concentration in the intercellular substance, which affects the
growth morphology and physiological metabolism of plants [33,34]. The most intuitive
performance is the effect of potassium on plant growth morphology [35]. It was found
in this experiment that there was a significant quadratic correlation between the plant
height of tomato plants and the potassium supply in the nutrient solution, and the suitable
potassium supply was found to be 10 mmol/L, slightly higher than the potassium content
in the Japanese horticultural experimental nutrient formula. Therefore, plant growth
morphology can be used as an effective indicator to diagnose the potassium supply levels
in the nutrient solutions. However, if irreversible damage or severe stress to tomato plants
has occurred because of potassium deficiency, there will be serious differences in the growth
status of plants, and the diagnosis results will deviate greatly [20]. Therefore, plant growth
morphology can be used to characterize severe potassium deficiency stress in plants, which
reflects the effect of potassium deficiency to a certain extent [10].

Potassium deficiency will reduce the photosynthetic capacity of plant leaves, thus af-
fecting biomass accumulation [36]. The results showed that there was a significant quadratic
correlation between the biomass accumulation of tomato plants and the potassium supply
in the nutrient solution during different growth periods, and the suitable potassium supply
in the nutrient solution is 11~13 mmol/L, slightly higher than the diagnosis result based
on plant height. However, photosynthates are more transported to vegetative organs at the
early stage of vegetative growth, increasing the volume of tissue and organs. Therefore,
biomass accumulation can reflect the effect of potassium on the photosynthesis of plant
leaves. On the contrary, potassium content in leaves can be reflected by the change in
biomass accumulation. However, more photosynthates are transported to the fruit during
the reproductive growth period [6], and the potassium content in the leaves is not easy
to accurately diagnose. In addition, the calculation of biomass accumulation requires the
plant to be damaged; therefore, the non-destructive detection of potassium content in plant
leaves cannot be realized.

4.2. Diagnosis of Potassium Abundance and Deficiency Based on the Photosynthetic Characteristics
of Tomato Leaves

The photosynthetic characteristics of plant leaves are easy to obtain using the con-
temporary measurement techniques. However, CO2 concentration and Rubisco activity
in chloroplasts are the most important factors for determining leaf photosynthesis under
sufficient light conditions. A large number of studies have focused on how to improve
the transport capacity of CO2 from the leaf surface to the carboxylation site of the Rubisco
enzyme and the activity of the Rubisco enzyme to improve leaf photosynthesis [37]. In fact,
many environmental factors or stresses can affect the photosynthesis of plant leaves. An
increase in water stress will lead to the contraction of crop stomata, so the entry of CO2 into
the cell is blocked [38]. Additionally, 20% of the nitrogen in plants is used to synthesize the
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Rubisco enzyme [39], and increasing nitrogen in leaves can reduce abscisic acid content to
promote stomatal opening [40]. High-temperature stress can reduce the stomatal aperture
and promote the oxidation reaction of Rubisco, which eventually leads to an increase
in photorespiration and a decrease in CO2 assimilation [41,42]. There have been many
studies on the effects of potassium on the photosynthetic characteristics of plant leaves.
The results of this experiment are consistent with those of most researchers [9,43]. What we
want to express is that the potassium content of leaves will affect the CO2 assimilation of
leaves. The correlation between CO2 assimilation and potassium supply in the nutrient
solution within a certain period was used to estimate the suitable potassium content in the
nutrient solution. The results of this experiment showed that the net photosynthetic rate
and stomatal conductivity of leaves increased gradually with the increase in potassium
supply in the nutrient solution. However, unexpectedly, there was a linear correlation
between CO2 assimilation and potassium content in leaves throughout the day, so it is
difficult to estimate the suitable potassium supply in the nutrient solution. The main reason
for this may be that the potassium in leaves not only affects the photosynthetic activity of
leaves but also prolongs the photosynthetic effective time [44,45].

In addition, it is difficult to measure CO2 assimilation throughout the day and detect
the potassium content of leaves in real-time. The potassium supply in a nutrient solution is
different from that in leaves. Because of the influence of environmental factors and other
nutrient elements, the potassium content in a nutrient solution is not necessarily absorbed
in equal proportion [46]. Therefore, it may be easier to quickly establish the relationship
between potassium and CO2 assimilation by using potassium content in leaves.

4.3. Diagnosis of Potassium Abundance and Deficiency Based on the Photosynthetic Induction
Characteristics of Tomato Leaves

Lu et al. (2016) established the relationship between potassium deficiency in crop cyto-
plasm and crop growthform, photosynthetic characteristics, and dry matter accumulation,
indicating that the critical reason for the inhibition of crop growth and development caused
by potassium deficiency is that the potassium content in leaves is lower than its critical
concentration [10]. After a relatively long period of dark acclimation, it would take some
time for plant leaves to reach the maximum net photosynthetic rate under lighting, and this
delayed process is called photosynthetic induction [47,48]. There is also a photosynthetic
induction process in the net photosynthetic rate of plant leaves in response to light in
a changing light environment [49–51]. This photosynthetic induction process is closely
related to the activation of photosynthetic enzymes [52], the formation of photosynthetic
intermediates [47], and light-driven stomatal opening [53]. Photosynthetic induction has
the potential to be used to detect plants’ adaptation to light and rapid responses to changes
in other environmental conditions, such as light–dark transition [54,55], CO2 concentration
changes [56], temperature stress [53], and drought [57].

The photosynthetic induction of tomato leaves is a multi-stage physiological process.
Potassium deficiency in plant leaves leads to delayed chloroplast development and easy dis-
integration, which affects the primary reaction of plant photosynthesis [58]. In the process
of dark–light conversion, the CO2 in intercellular substance and vacuole was consumed
preferentially by plant photosynthesis due to stomatal closure [59]. With the extension
of lighting, K+ begins to flow inward because of the activation of the light signal, which
promotes plasma membrane hyperpolarization and makes the stomata open slowly [60].
In addition, potassium can increase the number of stomata in leaves [3]. Therefore, it was
found that non-stomatal limitation promoted a decrease in the net photosynthetic rate of
tomato leaves at the early stage of potassium deficiency through the dynamic change in the
photosynthetic induction curve, and potassium deficiency delayed the response of leaves to
light, resulting in a delay in photosynthetic induction and a difference in CO2 assimilation.

For this paper, the photosynthetic induction characteristics of tomato leaves with
different potassium contents were analyzed. It was found that the potassium content
of tomato leaves was significantly correlated with the net photosynthetic rate, stomatal
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conductivity, intercellular CO2 concentration, and transpiration rate during a short period
of photosynthetic induction. The first-order derivative of the photosynthetic induction
curve was analyzed to determine further the relationship between the potassium content
of tomato leaves and the photosynthetic induction curve. It was found that there was a
significant positive correlation between the change rate of net photosynthetic rate, stomatal
conductivity, intercellular CO2 concentration, transpiration rate, and leaf potassium content.
Of course, it is difficult to estimate the potassium contents in leaves using this correlation.
Therefore, a quadratic correlation between leaf potassium content and CO2 assimilation
during 5 min of photosynthetic induction was established, with a correlation coefficient
of 0.99. According to this correlation, the suitable leaf potassium content was estimated
to be 2.3~2.7%, similar to those of tomato plants cultured in the nutrient solution with
4~8 mmol/L potassium supply.

5. Conclusions

There are great disadvantages in the estimation of potassium supply in the nutrient
solution using growth morphology, biological accumulation, and photosynthetic char-
acteristics, and the diagnostic accuracy of leaf potassium content and CO2 assimilation
during the photosynthetic induction period is higher. Combined with the response of
each characteristic index of photosynthetic induction during the dark–light transition and
its first-order derivatives, the response of leaves with different potassium contents at the
beginning of the vegetative growth period to light during photosynthetic induction differs,
which in turn allows for the application of photosynthetic induction to make a timely
diagnosis of early potassium abundance and deficiency in tomato leaves. By integrating
the net photosynthetic rate and intercellular CO2 concentration within 5 min, the optimum
leaf potassium content was presumed to be 2.3~2.7%. Hence, the photosynthetic induc-
tion method at 1000 µmol/m2 s can be used to rapidly detect the potassium contents of
tomato leaves at the early stage of the vegetative growth period and make a diagnosis of
potassium abundance and deficiency in tomato leaves. This method can realize the rapid,
non-destructive, and real-time detection of potassium content in leaves through a portable
photosynthetic measurement system that has good application prospects.

However, the response of the photosynthetic induction characteristics of tomato leaves
to potassium abundance and deficiency was analyzed at the phenological level, and the
mechanism of potassium action on photosynthetic enzyme activity and electron transport
still needs to be explored further in order to determine the internal mechanism of the effect
of leaf potassium on photosynthetic induction characteristics. Moreover, the diagnosis
of potassium abundance and deficiency in tomato plants deserves further study in the
context of severe potassium deficiency or the reproductive growth period. It is foreseeable
that the combination of plant photosynthetic induction technology and plant nutrient
physiology will be an important direction for future research on the diagnosis of plant
element abundance and deficiency.
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