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Abstract: One-dimensional (1D) magnetic systems offer rich phenomena in the quantum limit, prov-
ing more chemically accessible than zero-dimensional or higher-dimensional frameworks. Single-
walled carbon nanotubes (SWCNT) have recently been used to encapsulate trimetric nickel(II) acety-
lacetonate [Nanoscale, 2019, 11, 10615–10621]. Here, we investigate the magnetization on spin chains
based on nickel trimers by Matrix Product State (MPS) simulations. Our findings reveal plateaus
in the exchange/magnetic-field phase diagram for three coupling configurations, showcasing ef-
fective dimeric and trimeric spin-ordering with similar or staggered entanglement across chains.
These ordered states allow the qubit-like tuning of specific local magnetic moments, exhibiting
disengagement or uniform coupling in entanglement plateaus. This behavior is consistent with the
experimental transition from frustrated (3D) to non-frustrated (1D) molecules, corresponding to large
and smaller SWCNT diameters. Our study offers insights into the potential of 1D-confined trimers
for quantum computation, extending beyond the confinement of trimetric nickel-based molecules in
one dimension.

Keywords: molecular magnets; entanglement entropy; matrix product states; magnetization plateaus

1. Introduction

The realization of quantum computation has found a promising playground on molec-
ular magnetism [1]. Single-molecule magnets (SMMs) have garnered significant attention
due to the unprecedented high-density information storage they offer, as well as to their
quantum-tunneling of the magnetization [2], factorizing interactions [3] and a wide range of
functionalizations that promise to improve the writing/reading in terms of computational
times and decoherence [1,2,4]. The realization of molecular qubits [5] and phenomena such
as quantum entanglement [6,7], optical/field control of spin dynamics, and molecular-gate-
based quantum computation [8], in addition to magnetothermal effects [3,9,10], are already
within reach.

Artificial SMMs can integrate multiple quantum resources and reduce the computa-
tional costs of certain applications [1,2]. Chemical design, guided by theoretical modeling
and ab initio-based material informatics, allows further embedding of non-trivial quantum
functionalities into each molecular unit, which could then act as a microscopic quantum
processor capable of encoding error protected logical qubits or implementing quantum
simulations [1]. Nevertheless, further scaling requires “wiring-up” multiple molecules,
leading to a large Hilbert/Fock space and more complex degrees of correlation [5,11,12]. In
this context, large-scale quantum computation would require suitable configurations of
negligibly or slightly interacting molecular processors.

One-dimensional (1D) magnetic systems have been extensively studied over the last
few decades because they are more chemically tractable compared to zero-dimensional
systems and two- or three-dimensional frameworks [2,11,13,14] and are a rich source of new
phenomena in the quantum limit, such as magnonic physics [15], Peierls instabilities [16],
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Tomonaga–Luttinger liquids [17], and quantum phase transitions [18,19]. On the other
hand, powerful methods for treating many-body systems such as Matrix Product States
(MPSs) can work quasi-exactly in one dimension while allowing us to handle relatively large
systems [20–22]; advances in digital experiments implementing these techniques and new
paradigms based on variational quantum eigensolvers (VQE) in quantum chemistry [23]
have prompted the search for new 0D–1D systems that can be realized in the nanoworld.
Such low-dimensional systems could be formed from qudits, which provide more states
to switch between compared to qubits [24,25], and multiple quantum states of diverse
systems, including photons, trapped ions, impurity nuclear spins in semiconductors,
embedded/encapsulated SMMs, and superconducting circuits [1,8,26] have already been
used to exemplify feasible quantum units.

Here, we focus on 1D systems resulting from the coupling of several SMMs with quasi-
one-dimensional exchange–interaction topologies that mimic their encapsulation by using
carbon nanotubes, as recently achieved by Domanov et al. [26]. Encapsulation, embedding,
and/or tailored confinement/deposition of molecular magnets is a cutting-edge path in
SMM-based material prototypes [27–29] and, in particular, several Ni-based molecules have
been synthesized from similar methods so far [26,30–32]. The aforementioned molecules
revealed qualitatively different tunneling features from typical molecular magnets, such
as Mn12 acetate or Fe8 [1,2,5]. For example, Ni4 has no tunneling in a zero magnetic field,
and the electron paramagnetic-resonance EPR spectra exhibited unusual double sets of
low-temperature peaks corresponding to slightly different easy magnetization axes [31].
Unlike Mn12 acetate and Mn4 dimer or Fex (x = 4, 8), encapsulated Ni molecular magnets
seemed not to be equally spaced from each other [31,33] and did not have effective giant
spins. Furthermore, the couplings of Cr-Ni molecular rings were studied by using different
ligand-transition metal bridges, and the different sizes of the ligands could tailor the
intermolecular interactions in Ni-based molecules as well [32,34,35].

Additionally, the magnetization behavior of the spin-1 tetrameric Ni4Mo12 molecule
was studied within a post-Hartree–Fock approach, taking into account the contribution of
delocalized electrons involved in complex exchange processes [36]. These contributions are
favored when intricate exchange-bridge structures are present. Although such contributions
are beyond the scope of this present study, they could be relevant within a framework that
considers interactions between SMMs and the confining nanotubes’ electronic degrees of
freedom or focuses on other ferroic order parameters.

In this work, we study the encapsulation of trimetric nickel(II) acetylacetonate within
a many-body approach, in which we effectively model the changes in the proximity of the
molecular spins that result from being confined into a uni-axial arrangement, as it gives
rise to the appearance of an intermolecular exchange interaction and to the quenching of
the intramolecular exchange.

The intermolecular interaction is modulated within a framework that considers
three different arrangements of molecules inside the nanotubes, and the intramolecu-
lar interaction ranges between the values of the so-called 3D and 1D systems, associated
with the different diameters of the nanotubes in the experimental results, i.e., 2.1 and 1.3
nm, respectively [26]. Using MPS simulations, we characterize the magnetization of the
resulting spin chains and their entanglement entropy, paying particular attention to the
presence of magnetization plateaus and their response to the application of a magnetic
field.

The presence of magnetization plateaus in magnetic systems is a fingerprint of, for
example, quantum-level crossing and spin tunneling [35,37], competing metastable states
in triangular-lattice arrangements of one-dimensional chains [38], geometrically frustrated
layered systems [39,40], factorizing fields in coupled trimers [3], and effective spin fraction-
alization in spin trimer chains [10,12,27].

Through the analysis of the plateaus, we show the existence of effective dimeric and
trimeric spin orders formed by intermolecular neighboring spins. Such orders possess
constant/staggered entanglement for specific ranges of magnetic fields at which local



Magnetochemistry 2024, 10, 10 3 of 24

magnetic moments can be tuned in a qubit-like manner; effective dimers or trimers are
either disengaged or uniformly coupled in such entanglement plateaus while protecting the
tunable spins. These results can provide further insights into the potential of the different
effective 1D confined trimers for quantum computation.

This work is organized as follows: In Section 2, we describe the molecular models
and the quantum methods that were used. In Section 3, an overview of the general exact
solution for the coupling of two molecules is presented. In Section 4, the MPS solutions for
the ground state properties, such as local/total magnetization and entanglement entropy
corresponding to the aforementioned spin chains, are discussed for a series of magnetic
fields, coupling parameters, and number of molecules. Section 5 presents the conclusions
of this work.

2. Trimetric Ni-Based Single Chain Magnets and Quantum Methods

This section describes the many-body magnetic model for the spin chains constructed
by coupling the trimetric SMMs described in the work of Domanov et al. [26]. Typical
SMMs have the coordination of supramolecular complexes consisting of a magnetic core
surrounded by a shell of organic ligand molecules [35]. In Domanov’s work, they initially
use molecules in which there are no atomic bridges between molecules in the crystal
lattices, and the closest transition metals are sufficiently distant so that intermolecular
spin–spin couplings, due to both exchange and dipolar interactions, are expected to be
negligible. However, this trimetric nickel(II) acetylacetonate [41] experienced a modulation
of their intramolecular interactions when encapsulated in carbon nanotubes of different
diameters [26]. Such modulation from a 3D- to 1D-like molecule turned from a frustrated
behavior to a non-frustrated state in which all the exchange couplings were partially
quenched, while the inter/intramolecular distances and local spin centers also changed.

The encapsulation of magnetic molecules within carbon nanotubes has been shown to
lead to intermolecular interactions in similar systems [42]. A full chemical description of
nickel(II) acetylacetonate units can be found in the references [26,41,43].

2.1. Spin Chains: Hamiltonian Modeling

Figure 1 displays the trimetric molecules used to form the spin chains. The differences
between the 3D and 1D SMMs are due to the full quenching of the coupling J13 between
two of the Ni ions (1 and 3 in Figure 1), which end up antiferromagnetically sharing the
“central” Ni while breaking the triangular symmetry for the smaller nanotube diameters; the
symmetric exchange coupling between the central Ni and its two nearest-neighbors, i.e., J12
and J23, are initially ferromagnetic, giving rise to a frustrated-like state for comparatively
larger nanotube dimensions [26].

Figure 1. 3D trimetric nickel(II) acetylacetonate (Ni(acac)2) (H atoms are not shown for sake of
simplicity). The spins of nickel ions are superexchange-coupled through oxygen ligands, with
exchange constant J12,23 between the nearest-neighbor spins and J13 between the terminal spins [26].
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We then connected the trimers by simulating the three one-dimensional-like exchange
topologies that are depicted in Figure 2. We considered the SMMs just close enough so that
the two closest spin centers between the nearest-neighbor (which are abbreviated as “nn”
from now on) molecules could interact while also considering a suitable distribution along
the nanotube, i.e., other Ni ions belonging to those nn molecules were always separated by
larger ligand distances.

The three configurations considered within this scope, labeled as “ linear” (L), “al-
ternated” (A), and “perpendicular” (P) are, respectively, shown in Figure 2a–c. In the L
configuration, the Ni ions are assumed to be closely aligned along the axis of the nan-
otube; in the A case, one molecule is arranged along the axis and the second along the
nanotube diameter; in the P case, the two sets of molecular spins are oriented perpendicular
to each other in two parallel planes transversal to the nanotube. Figure 2d displays a
schematic of the Ni(acac)2-filled SWCNTs (single-wall carbon nanotubes) as the SMMs
are being wrapped. To model the precise arrangement of the SMMs inside the SWCNTs
would likely require a mixture of experimental, ab initio, and/or Hamiltonian techniques;
however, there have been only a limited amount of approaches to form ordered structures
inside the nanotube channels [26,42], and recent experiments with magnetic molecules
still lack enough insight on this particular inquiry [44]. In this work, we explore three of
the highest-symmetry configurations with respect to the axis of the tube and the planes
perpendicular to it, which could be used to screen and/or interpret other energetically
stabilized molecular arrangements.

Figure 2. Nearest-neighbor Ni-trimers conforming the molecular chains; three types of exchange
interactions are considered to couple the single magnets in Figure 1, i.e., “linear” JL (a), “alternated”
JA (b), and “perpendicular” JP (c). (d) Single-wall nanotube-confined trimers, which give rise to
molecular spin chains described by Equation (1).

The intermolecular exchange couplings associated with the aforementioned configura-
tions follow the (L, A, and P) subscript notation from now on. Equation (1) describes the
Hamiltonian model that accounts for the magnetic interactions in the resulting single chain
magnets as modeled in this work:

HL,A,P =
N

∑
i=1

[HSM
i + HLocal

i ] + HChain
L,A,P , (1)
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where HLocal
i = −µBgh ∑3

j Sz
j=1,i, h corresponds to the magnitude of the external magnetic

field, g = 2 is the gyromagnetic factor [26], µB is the Bohr magneton, and HSM
i is presented

in Equation (2), such that for each of the N SMMs added to the chain we have

HSM
i = −2J(S1,i · S2,i + S2,i · S3,i)− 2J13(S1,i · S3,i). (2)

r The non-local (L, A, and P) interactions are represented by HChain
L,A,P , where the sum in

Equation (3) is carried out so that we have open boundary conditions.

HChain
L,A,P = −

N−1

∑
i=1

JL,A,P

(
S(3,2,2),i · S(1,1,2),i+1

)
(3)

In Equation (2), J = J12 = J23 = 1.49x meV, with x = 1 corresponding to the 3D
Ni(acac)2 case with a ferromagnetic superexchange coupling between (1, 2) and (2, 3)
local nickel atoms, and J13 = −0.89y meV, with y = 1 representing the antiferromagnetic
superexchange between (1, 3) local molecular spins [26]. Also, JL = J31, JA = J21, and
JP = J22, where the subscripts refer to two nn molecules, respectively. Note the difference
between the intra (J) and intermolecular (J ) couplings and that (x, y) are parameters that
allow us to follow the differences between the experimental exchange interactions and those
simulated here, which, without loss of generality, could represent other molecular systems.
In addition, the local magnetic moments for nickel are considered to have originated
on a 3D shell with two unpaired electrons, i.e., S = 1, as suggested in several previous
results [26,33,41].

2.2. Quantum Many-Body Methods: DMRG and MPS

To investigate the ground-state (“gs” from here on) properties of finite-length molec-
ular chains, as modeled in the previous section, we use MPS to represent the quantum
states of the spin chains |ψ⟩ = ∑s cs1,...,sN |s1...sN⟩ = ∑s As1

1 ...AsN
N |s1...sN⟩ (As1

1 factorizing
matrices) and employ density-matrix renormalization group (DMRG) techniques to reach
such gs [45]. DMRG has been successfully used in the investigation of, e.g., magnetization
plateaus and excitations in spin-1/2 chains [27] and antiferromagnetic spin-1/2 molecular
clusters in caged geometries [46], as well as in chains of coupled trimers [10] and mixed
spin-(1/2,5/2,1/2) chain models [47]. Moreover, matrix representations make it suitable for
the implementation of powerful time-evolving algorithms; for instance, time-dependent
variational principle (TDVP) [48,49] or time-evolving block decimation (TEBD) [50]. How-
ever, the time-dependent properties of Ni-based spin chains are outside our scope but will
be researched elsewhere.

Our simulations employ MPS and DMRG algorithms implemented in the Tensor
Network Python (TeNPy) package [51]. In this framework, we allow a maximum bond
dimension of χ = 3200 and consider our calculations converged within/below successive
energy differences of 10−12 [45,51].

As we will show in the next sections, representative magnetic/entanglement properties
are extracted from spin chains formed by 6–12 trimers, i.e., 18–36 S = 1 local spin sites. Such
systems represent a Hilbert space dimension that is too large to perform full diagonalization,
unpractical for analytical methods that could solve specific parts of the configurational
space considered here [31] and difficult to treat using Monte Carlo methods due to the local
and clustered frustrations present here [12,38,39].

On the other hand, entanglement entropy, along with related measures such as quan-
tum concurrence and mutual information, have become widely employed for assessing the
entanglement characteristics of complex many-body systems [6,52,53]. Various studies have
utilized these measures, exploring entanglement dynamics in confined spin chains [54], ex-
amining the localization of nuclear spin chains [55], and observing phase transitions in the
spin-1 Heisenberg model through tripartite entanglement [56]. Additionally, investigations
into bipartite entanglement have been conducted in tetranuclear Nickel complexes [33].
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The quantification and measurement of entanglement extends to diverse methods, such
as neutron scattering in quantum magnets [57] and many-body interference in ultracold
atoms [6].

In this work, in addition to local and total magnetization, we also show the behav-
ior of the entanglement entropy or von Neumann entropy (S) [58] as a function of the
system parameters. This S quantifies the entanglement between two subsystems of the
chains [53,59]. We have chosen to divide each chain into two parts, depending on the
particular site/bond being analyzed, with those two being called A or B, respectively. The
entanglement entropy is then calculated from the reduced density-matrix ρA of subsystem
A (or ρB for B) according to

S = −Tr(ρA ln ρA), (4)

with ρA = TrB(ρAB) (or ρB = TrA(ρAB)). We then use S to obtain further insight into the
spin chain magnetization behavior and to study the ground-state characteristics according
to the different intermolecular and intramolecular couplings that could be occurring with
the confinement of the molecules.

3. 3D and 1D Molecular Magnets

In this section, we present the quantum properties of the so-called 3D and 1D single
molecules and the solutions for two coupled molecules. Although we focus on the chain
magnets, the solutions in this section will allow us to have an intuition about the magne-
tization and entanglement responses to the confinement-promoted interaction between
several molecules. Finite-temperature solutions for the magnetization are also presented
in this section for discussion purposes regarding the thermal stability of the finite-size
magnetization plateaus. However, our chain magnet MPS simulations are performed
without considering the thermal effects.

3.1. SMM Solutions

Figure 3 displays the exact energy eigenvalues of Equation (2) plus the Zeeman term
(HLocal

i ) for (x = 1, y = 1) and (x = −0.0537, y = 0) corresponding to the single 3D
and 1D molecules, respectively. The lower-energy states appear in the insets of Figure 3,
having Sz

i−th = (2, 1, 0,−1,−2) (ith isolated molecule) in the case of 3D (lowest five) and
Sz

i−th = (1, 0,−1) for 1D (lowest three), correspondingly. For the global ground-state
in 3D, where the large ferromagnetic J (60% larger than J13) dominates promoting pair-
wise ferromagnetism (FM) between S(1,i),(2,i) and S(2,i),(3,i), providing us with larger Sz

projections than the 1D case, where the spins have an evenly promoted antiferromagnetism
(AFM) in either spin pair. Hence, local frustrations are satisfied in the subset states due to
nn AFM spins (S(1,i),(2,i) or S(2,i),(3,i)) or the resulting local Sz

j,i−th = 0. In Appendix A, we
have listed all the analytical eigenstates associated with the above energy spectra.

Figures 4 and 5 show the behavior of the magnetization and entanglement entropy of
3D and 1D SMMs as a function of the scaled experimental exchange interactions and the
magnetic field, respectively. Comparing Figure 4a,c we see that J13 provides the SMM with
a large magnetization for small magnetic fields, independent of whether it has either an
AFM or FM nature, while J allows the system to reach small magnetizations for AFM values
and larger ones for FM cases but requires a large magnetic field to saturate the system. The
plateaus in this paper are represented by constant magnetization/entanglement values for
the system’s response to certain magnetic fields and/or along the chain sites/bonds for
specific fields/exchange values.

Figure 4b,d shows that the 3D SMM is above a minimal entanglement phase diagram
region, where polarized states contribute to the “3”-plateau, and a small decrement of
J13 can quench the entropy while the magnetic field accelerates the appearance of such a
region. On the other hand, J promotes regions of larger entropies as more solutions for
a specific total Sz are possible by using different single-site states. Such regions exhibit a
lower magnetization compared to the x = 1 line in Figure 4d.
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Figure 3. Energy levels of 3D (a) and 1D (b) trimetric nickel(II) acetylacetonate (Ni(acac)2) [26].
Here, 3D corresponds to (x = 1, y = 1), whereas 1D corresponds to (x = −0.0537, y = 0) according
to notation in Section 2.1. Colorful lines are for visualization purposes respect to the field-driven
breaking of energy degeneration.

Figure 4. Three-dimensional SMM magnetization along the field (a,c) and von Neumann entropy
(b,d) as a function of y with x = 1 (a,b) and of x with y = 1 (c,b). We have used the notation
“Sz”-plateau to refer to the characteristic constant magnetization of the respective plateaus.

S(ρ) in Figure 4 has been evaluated for the bond between spins 1 and 3, with the molec-
ular dominant states given by 1√

3
(−|0 ↑ 0⟩ + |↓↑↑⟩ + |↑↑↓⟩) and 1√

6
(−|0 ↓↑⟩ + |0 ↑↓⟩ +

|↓ 0 ↑⟩− |↓↑ 0⟩− |↑ 0 ↓⟩+ |↑↓ 0⟩), respectively. If we use the notation given by Ginsberg [41]
for the total and z-projected magnetization, these correspond to (1, 0) and (0, 1), which
means that the magnetization difference between these two depends on the central S(2,i)
that we are tracing out, and we are left with the same total Sz for spin pairs 1–3 as the
entanglement entropy in Figure 4d shows.

Figure 5 for the 1D SMM shows that the AFM intramolecular couplings enrich the
phase diagram with more magnetization plateaus as a consequence of both the frustration
and competing factorizing fields that are no longer boosted by the J13 exchange; this, in
turn, extends the zones for finite entanglement entropy but slightly decreases the entropy
at each plateau (except the “3”-plateau) as spins 1–3 are not directly coupled anymore.
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Figure 5. One-dimensional SMM magnetization along the field (a) and von Neumann entropy (b) as
a function of x with y = 0.

The magnetization plateaus of 3D (x = 1, y = 1) and 1D (x = −0.0537, y = 0), and the
lowest-energy states associated with them, are depicted in Figure 6 for different values of
temperature. According to these figures, the first magnetization plateaus as a function of
the increasing magnetic field are robust against the temperature; they are also wider when
the spins S(1,i),(3,i) interact directly as in 3D, with larger fields required to reach the same
magnetization in the absence of such interaction. Therefore, having more plateaus before
saturation (more suitable if we were to look for switchable properties at lower fields) is
possible in the 1D SMM in contrast to the 3D one. This figure also suggests that shorter
plateaus (1D in this case) in systems with more molecules could be thermally wiped out or
easily switched by the field, for which not all the plateaus are to be of interest. Therefore,
nanostructures formed from these two SMMs, which could to some extent display all these
properties combined, are interesting, and such is the case of the Ni(acac)2-filled SWCNTs
simulated here.

Figure 6. Robustness of magnetization plateaus under different temperatures in (a) 3D and (b) 1D
structures. In the 3D structure, the switching occurs around 5 (T); meanwhile, in the 1D structure, it
occurs around 2.76 and 4.15 (T).

In Figure A1, we compare our results with experimental data from Ref. [26], finding
good agreement with the magnetic behavior at the temperature of 5 K at which the experi-
ment was carried out. This figure also suggests that for observing magnetization plateaus
in the experimental measurements, temperatures below 1 K and/or higher magnetic fields
would be required.

3.2. Two Coupled Molecules

We now couple two 3D or two 1D SMMs according to the configurations described
in Section 2 and focus on finding a phase-space region (formed by the strength of the
exchange interactions and the magnetic field) where the many-body calculations could
extract representative information. The magnetization as a function of the magnetic field
for the three different couplings, i.e., with JL, JA, and JP are displayed in Figure 7.
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Figure 7. Magnetization phase diagrams corresponding to JL, JA, and JP configurations for the 3D
molecules (a,c,e) (left column) and 1D ones (b,d,f) (right column), respectively.

The magnetization plateaus for a selection of exchange couplings are displayed in
Figures A2 and A3. In Figure A4, the phase diagrams for the entanglement entropy are
presented as well. Figure 7 shows that the configuration of the coupling between the nn
SMMs is crucial to the landscape of the plateaus (for simplicity, from this point on, we
abbreviate the “#”-plateau as “#p”). The plateaus appear distributed over a wide range of
magnetic fields/coupling strengths and are associated with several magnetization values
with a staggered-like behavior and ⟨Sz⟩-jumps for varying magnetic fields.

From our scope, the main characteristics to be pointed out in the magnetization
diagrams of Figure 7 are the following: in the 3D case, the FM couplings favor larger
magnetization plateaus when spins S(1,i) and/or S(3,j) are involved; the AFM couplings
favor larger magnetization plateaus if spin-2 interactions are not involved. For the JL
configuration, comparatively small fields trigger 4p in the whole range of JL. In the 1D
case, the FM couplings provide us with a similar progressive increment in the plateau’s
magnetization as the magnetic field increases, with quenching of the magnetization at
zero fields for a mixture of S(1,i),(2,j) spins in the JA case; the AFM couplings, on the other
hand, provide us with quenching of the magnetization at zero/low field for intermolecular
couplings that do not mix spins S(1,i),(2,j). For all the configurations of 1D, comparatively
small/intermediate fields trigger 2p and 4p in the whole range of J .

By comparing the zones in the magnetization phase diagrams where the plateaus
occur, with the entanglement entropy diagrams in Figure A4 (taken at the intermolecular
bonds JL,A,P), we see equivalent “#p” related to different entanglements between the
individual SMMs at each configuration. The involvement of the central spins S(2,i) favors
the increase in the magnetization while decreasing the entanglement between the two
SMMs at several magnetic fields; this partially occurs because the S(2,i) in the nn SMM
could be used to dimerize [41] and/or factorize the Hilbert space [31,41], for particular
cases of the exchange couplings in the same way that, for the single molecule, the total Sz
for spins S(1,i),(3,i) together with the total S for the whole trimer can be used to resolve the
gs [41].

Nonetheless, in the next section, we will see that such magnetization/entanglement
behavior seems to be more fruitful if the SMM exchange is quenched close to the 1D
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case. For JA,P, all in all, less entanglement for larger magnetization means setting FM
intermolecular couplings for the 3D SMM with JA (or a weak AFM if larger fields), whereas
the 1D SMM would favor the AFM coupling with JP (or a weak FM if larger fields). Hence,
Figures 7 and A4 suggest exploring small J values within a range where the interaction is
large enough to capture most of the interesting physics of the FM/AFM interaction between
two nn molecules but low enough compared to the initial 3D couplings (J six times and
J13 four times larger), which are the ones corresponding to larger SWCNT diameters prior
to quenching while being sufficient for the width of the 1D SMM magnetization plateaus
so as not to change with small variations of such an interaction. This should allow us to
obtain valuable insights into the physics of larger spin chains. According to this and for
the sake of simplicity, we consider the two values J = ±0.25 as plausible intermolecular
couplings and employ them in the calculation of finite-length molecular chains described
in the following section, where we will change the intermolecular/intramolecular coupling
ratio by applying 3D-to-1D SMM quenching.

4. Chain Magnets

In what follows, we study coupled SMMs from a many-body perspective while
artificially mimicking the confinement by quenching the intramolecular couplings from
the 3D molecules into 1D. We use two intermolecular coupling strengths (FM and AFM
for each configuration) as described in Section 3. There is no known adiabatic path to tune
the exchange interactions while the molecules are being confined through the shrinking of
the SWCNT diameters; hence, we propose a linear modulation of the (J, J13) interactions
through changes in (x,y) as modeled in Section 2.

4.1. Beyond Two SMMs

In Figure 8, the magnetization along the field for spin chains with different numbers
of SMMs is presented. We shall identify several molecules Nm that allow us to analyze the
changes in local spins along the chains, whereas it is large enough to represent what occurs
in large chains. For this analysis, in Figure 8, J and J13 correspond to the 3D SMM. As
the insets in the figure show, for chains with Nm = 6 (18 spins, S = 1), the magnetization
plateaus and the field-driving of the magnetization are already well-scaled. Below this
number of molecules, the chains are more sensitive to low/intermediate fields for AFM
couplings and the boundary conditions, especially for JA,P.

We focus on the wider plateaus because they are more stable when considering the
temperature effects illustrated in Figure 6. These plateaus are also well converged when
identified in the bipartite entanglement, as we can see in Figure 9, where the chains are
partitioned between two nn molecules. We will enumerate the molecules/spins from left to
right when convenient and without loss of generality while recalling the (1, 2, 3) convention
shown in Figure 2 for each SMM. Thence, if we move from one intermolecular partition,
i.e., spin 3(1) in one molecule to spin 1(3) in the nn molecule left-to-right (right-to-left), to
another and toward the center of the chains, the fields defining the width of the plateaus
are just slightly more defined from Nm ≥ 6.

In Figure 9, the only difference between a different Nm at a particular configuration is
given for AFM JP, which is due to odd Nm numbers, as for those, there are unpaired S(2,i)
at the borders that are not forming nn dimers (between adjacent molecules) and give rise to
small low-field plateaus as they are easy to align; the FM case does not present this behavior,
as spins-2 are already aligned with the J-dominated S(2,j) sublattice as the magnetization
suggests when comparing AFM and FM cases. Such FM cases are more interesting when
the entanglement is evaluated by partitioning the chain within a particular molecule, as
we can see in Figure A5, where the entanglement is evaluated at a partition between spins
S(1,i) and S(2,i) of molecule three (spins seven and eight along the chain).
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Figure 8. Magnetization along the field for JL,A,P = (0.25,−0.25) (top panels and below panels,
respectively) for a different number of coupled SMMs. Inset: scaled magnetization.

Figure 9. Entanglement entropy for the corresponding panels in Figure 8. The partitions of the chains
are made by cutting between molecules 3 and 4 in each case (left-to-right).

Figures 9 and A5 show plateaus at the same field regions but with a staggered behavior
when compared to each other. In order to understand this difference, in Figure 10, we
present the results of the chains purposely partitioned between several nn intramolecular
spins pairs for different Nm; partitions between two nn SMMs yield slightly different
results for these lengths, as already mentioned above. In this last figure, we can observe
such staggered behavior for distinct odd and even chain longitudes. JL,P do not present
differences; however, JA displays two groups of chains that yield two different plateaus
in at least one region of field, i.e., Nm = (6, 10, 11) and Nm = (7, 8, 9, 12). What those
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chains have in common when tracking their partition points (caption in Figure 10) is that
the first group is cutting the chain in different points between spins S(1,i) and S(2,i) of a
molecule with a “perpendicular-like” (S(2,j) in the intermolecular coupling) topology. In
contrast, the second group is cutting them between S(1,i) and S(2,i) of a molecule with a
“linear-like” (S(1,i) or S(3,i) in the intermolecular coupling) topology. Analyzing that further,
we recognize that JL,P each have a period (with respect to moving in between pairs of
nn sites along the chains) for the coupling topology that is half of that of JA, i.e., the
aforementioned “perpendicular” partition for Nm = (6, 10, 11) is performed between a
S(1,i) with two local couplings and a S(2,i) with two local couplings plus an intermolecular
one or (S(1,i)ˆ2, S(2,i)ˆ3) (the other way around for “linear” (S(1,j)ˆ3, S(2,j)ˆ2)), which will be
repeated along the chain six intersites later (before) (three for (S(1,j)ˆ2, S(2,j)ˆ3) in JP and
(S(1,j)ˆ3, S(2,j)ˆ2) in JL).

Figure 10. Entanglement entropy for the corresponding panels in Figure 8. The partitions of the
chains are purposely made such that for even Nm, the cut is between spins 1 and 2 of the first molecule
of the right chain with respect to the middle intermolecular point; we call it half-bond+1. For odd
Nm, the middle molecules 4, 5, and 6 are included in the left chain for 7 and in the right chain for 9
and 11, respectively, with the half-bond+1 taken at that first molecule of the right chain similarly.

The entanglement in Figures 9 and A5 reflect two different types of exchange interac-
tion topologies given by the way two nn SMMs are coupled. An implication of this is that it
is likely that the way we confine the SMMs into the SWCNTs could be detected (among our
three configurations), i.e., the resulting configuration could be distinguished if we happen
to have thermal observables that witness the entanglement properties [3,9,10] along with
the plateaus on the magnetization.

The strength of the non-saturated entanglement plateaus for JL,P depends on whether
the partition is made at an intermolecular or intramolecular spin pair; meanwhile, for JA,
it depends also on the type of intramolecular spin pairs. The relation of such plateaus with
specific magnetization plateaus is more difficult to analyze from the above figures, as it
compares local sites along chains with the translation symmetry breaking within two nn
SMMs. Therefore, to obtain further insight in this regard, we will analyze the local sites
while the intermolecular coupling is being quenched in the next section.
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4.2. (J, J13) Quenching

In Figures 11–13, we present the entanglement entropy and corresponding local
magnetization for JL,A,P, respectively. The intramolecular couplings are being quenched
from top to bottom of such panels, as described above. In order to simplify the analysis for
the number of sites to be displayed, we use Nm = 6 in those figures (18 sites). Nevertheless,
the results described here apply to Nm > 6 as well, as illustrated in Figure A6. We will
describe the features of spins at the end of the chains for completeness. However, the main
characteristics reproducible in larger chains occur within the second and second-to-last
intramolecular spin pairs.

Figure 11. Entanglement entropy between each pair of molecular spins along the SWCNTs (columns
1 and 2, left-to-right) for JL = (0.25,−0.25), selected magnetic fields, and (J, J13) being tuned from
the 3D to 1D SMMs. Local magnetic moments at each molecular spin center along the spin chains
inside the SWCNTs (columns 3, 4).

4.2.1. JL Configuration
FM JL

Starting with ferromagnetically coupled 3D molecules in a linear arrangement (JL),
as depicted in Figure 11, the chain is organized FM, with spins S(2,j) polarized at 1, and
S(1,j) and S(3,j) simultaneously polarized between 0.5 and 1 depending on the field value
(the larger the field, the closer to 1), forming effective dimers. This can be understood
from the exact eigenstate of a single molecule (see Figure 6a), where the central spin can be
factorized from the entangled S(1,j)-S(3,j) pair. This picture, however, becomes distorted as
intermolecular couplings are introduced, where significant correlations between adjacent
molecules appear, as can be seen from their non-zero entanglement entropy.

As intramolecular couplings undergo quenching at specific field values, effective
dimers between adjacent molecules also experience a decrease in spin as long as J is ferro-
magnetic. When J becomes AFM for 1D molecules, the chain maintains the ferromagnetic
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arrangement between molecules as the intermolecular coupling dominates. At the same
time, the spins within each molecular unit align antiparallel (with S(2,j) taking negative
fractional values), opposing the dimers. In scenarios of low values of J13, where J and
the intermolecular coupling compete, dimers facilitate entanglement tuning across chain
sites at low fields. For 1D couplings, the magnetism of such dimers remains frozen at
very low fields, with the total magnetization relaxed by AFM-polarized S(2,j). Modulating
entanglement along the chains is feasible at low fields, but it quenches for moderate and
large fields.

Figure 12. Entanglement entropy between each pair of molecular spins along the SWCNTs (columns
1 and 2, left-to-right) for JA = (0.25,−0.25), selected magnetic fields, and (J, J13) being tuned from
the 3D to 1D SMMs. Local magnetic moments at each molecular spin center along the spin chains
inside the SWCNTs (columns 3, 4).

AFM JL

The AFM intermolecular coupling has a similar behavior to the FM case, with dimers
formed by S(1,i) and S(3,j) in neighboring molecules. Intermediate and large fields maintain
these dimers, with small fields decreasing the magnetization until they are destroyed.
This dimeric behavior dominates the first plateau in the magnetization landscape. The
quenching effect accelerates the demagnetization of the dimers, taking the FM to an AFM
system from 3D to 1D, respectively. AFM intermolecular coupling always competes with
J13, and for 1D, with the latter nullified, the chain ends are demagnetized unless the
field is high. The entanglement at these points is minimized during quenching, but
when J13 is turned off, it releases the chain to become AFM at low fields, dominating
the intermolecular entanglement.

The quenching allows lower fields to modulate the magnetization of the dimers, but
the polarization of edge sites is lost as J13 approaches zero. Throughout quenching from 3D
to 1D, the entanglement is very similar for intermediate and high fields, forming dimeric
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plateaus given by the points between intramolecular spins that dominate the landscape.
The latter shows maxima for intermolecular bonds (in the JL case; there is always a bond
between S(1,i) and S(3,j)) at low fields. This is more evident for 1D, where the intramolecular
entanglement decreases faster for intermediate and high fields.

Figure 13. Entanglement entropy between each pair of molecular spins along the SWCNTs (columns
1 and 2, left-to-right) for JP = (0.25,−0.25), selected magnetic fields, and (J, J13) being tuned from
the 3D to 1D SMMs. Local magnetic moments at each molecular spin center along the spin chains
inside the SWCNTs (columns 3, 4).

4.2.2. JA Configuration
FM JA

The quenching does not significantly affect the FM-coupled chain with the alternated
configuration, as it maintains FM order unless J13 is zero for 1D. At very small fields, S(1,i)
and S(3,j) oscillate between 0.5 and 1.0 in a staggered manner while S(2,j) are polarized. The
quenching breaks the polarization for the S(2,i) in the locally “perpendicular-like” molecules
for very small fields. In 1D, the previous behavior is inverted as in the linear case, with a
larger magnetization for S(1,i) and S(3,j) being able to generate an AFM system at low fields
due mainly to the inversion of S(2,j). The entanglement also has a valley-type behavior,
showing small plateaus formed by intramolecular spin pairs, in this case asymmetrically,
with spin pairs within locally “linear-like” molecules showing less entanglement and spin
pairs coupling neighboring molecules being even less entangled. This behavior is notable
at low fields, though it disappears with quenching. In 1D, it is possible to find small
fields that generate entanglement plateaus along the chains, with a behavior similar to FM-
coupled linear chains. In contrast, the dominant behavior of 3D molecules is not observed
at intermediate/high fields. At intermediate and high fields, the system is easily polarized.
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AFM JA

The alternated chain with AFM coupling has a similar behavior with the quenching
for 3D-like spins, in which locally “linear-like” molecules are closer to being polarized
than locally “perpendicular-like” molecules, generating a valley-like magnetization. The
system is AFM for low fields and FM for intermediate and high fields, making it possible
to polarize with lower fields from 3D to 1D. For intermediate fields and close to 1D, we
have a zigzag-type magnetization with the polarization of the spins, starting from a locally
“perpendicular” molecule, such that intramolecular S(1,i) and S(3,i) are polarized for certain
intermediate and large fields, regardless of the local molecule, and quenched or negative
for small field values. S(2,i) are less polarized as the field goes down.

Therefore, the entanglement has two main zones depending on the field, one for a low
field with a staggered behavior similar to the FM case, while for intermediate and high
fields, plateaus are formed, which are then divided into two 1D plateaus for each set of three
molecules, i.e., “(linear–perpendicular–linear)-like”; a magnetization minimum is located
between two valleys. The 1D accentuates the previous behavior, and it is possible to have clear
plateaus formed by such sets of three molecules for a specific field range. The magnetization
corresponding to these plateaus can be FM for high fields, and for low fields, the system
can be AFM, again with S(2,i) opposing S(1,i) and S(3,i). In these entanglement plateaus, the
polarization in the “perpendicular-like” S(2,i) can be changed within a field range without
changing the entanglement while topologically protecting them with the linear molecules.

4.2.3. JP Configuration
FM JP

In the case of intermolecular FM exchange in a perpendicular chain, the quenching from
3D has no effect. The system is dimerized to tiny fields, with intramolecular S(1,i) and S(3,i)
at 0.5 while S(2,i) are polarized. The change to 1D reverses the behavior as in previous cases,
dominating the intermolecular coupling. A locally AFM system can be generated at a low
field with S(1,i) and S(3,j) dimerized, and S(2,i) can change polarization with the field. The
entanglement also has a staggered behavior, showing a quenching between S(1,i) and S(3,j)
for a wide field range, except at very small ones. When moving to 1D-like chains, the system
shows entanglement at low fields without a clear staggered behavior. It is also possible to find
fields for which the entanglement is similar between all spin pairs along the chain.

AFM JP

In the perpendicular AFM chain, the magnetization partially imitates the JA configu-
ration with respect to the local “perpendicular-like” molecules, and we have a zigzag-type
behavior for low fields for which the FM magnetization oscillates from site to site. In this
case, the system is more sensitive to the boundaries, and there seem to be two magnetization
valleys; however, this configuration has local inversion symmetry, and the magnetization
can only change due to the different coupling topologies of nn molecules.

The quenching causes non-polarized systems with slightly oscillating magnetization
between S(2,i) and S(1,i)-S(3,j) to become polarized in a dimeric manner, with S(1,i)-S(3,j)
polarized with a higher magnetization. There is a range of intermediate fields in which
only the S(2,i) magnetization changes with the field, where intermolecular couplings are
close to 1D. Near 1D, it is also possible to find fields for which the magnetization at each
site along the chain is approximately similar and close to zero. In 1D, we have a marked
dimeric magnetization given by the S(1,i)-S(3,j) pair that remains polarized over a wide field
range, with S(2,i) being modulated with the field between positive and negative values.

On the other hand, the entanglement has a staggered behavior with minima between
spin pairs of neighboring molecules. The entanglement decreases for a specific field and as
the system goes from 3D to 1D. As we reach 1D, the entanglement forms plateaus from
intermediate fields, with a staggered behavior at high fields similar to JA but for finite
entanglements. For intermediate fields, it is possible to find field values for which the
entanglement is uniform throughout the entire chain.
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Summarizing this section, the investigation into various configurations reveals intrigu-
ing possibilities for the magnetic ordering of molecular chains.

The linear configuration shows dominance of magnetization by dimers formed by
nearest-neighbor spins of adjacent molecules. Spins can be tuned when close to 3D coupling
or locally protected in the 1D limit. The entanglement across the chain can be tuned to be
nearly uniform for FM coupling between the molecules. This configuration could represent
smaller nanotube diameters for encapsulation.

Alternated chains effectively divide into trimers with a zigzag magnetization and
are susceptible to switching between FM/AFM (3D) for small fields. For 1D molecules, a
factorization of the central spins of such trimeric structures is possible at large fields. This
behavior, also characterized by entanglement plateaus, suggests an effective protection of
these trimers. From a structural viewpoint, this configuration would be the least stable.

In the perpendicular arrangement, a similar behavior to linear FM is possible when
intermolecular exchange is also FM, but with dimers formed within the molecule, while
the AFM case resembles an alternated chain. In the 1D limit, frozen intermolecular dimers
are found along tunable central spins, with a single entanglement plateau across the chain.
This configuration would be possible for larger diameters of the SWCNTs.

5. Conclusions

In this work, we have studied the magnetic and entanglement properties of one-
dimensional confined trimetric nickel(II) molecules using Exact Diagonalization and Matrix
Product States. We modeled the confinement of such molecules by mimicking the change
in the experimentally obtained intramolecular exchange interactions for different SWCNT
diameters with linear quenching. We also introduced intermolecular couplings considering
three different interaction topologies.

Using two representative intermolecular couplings, we performed many-body calcu-
lations. We found distinct signatures of the interaction topology of the molecules inside the
SWCNTs, reflected in the magnetism of the encapsulated molecular units.

We showed that the JL coupling offers tunability for 3D molecules and protects
magnetization in the 1D case, enabling FM/AFM switching. An effective protection with
FM/AFM switchability in a trimer structure is found in the alternated configuration. The
parallel configuration with FM JP behaves as a disentangled dimer structure but resembles
JA in AFM, presenting protection for 1D-like molecules.

Finally, these insights could provide versatile control strategies for molecular chains
and valuable information about the interplay between topology and confinement, particu-
larly in encapsulated molecular magnets in single-walled carbon nanotubes.
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Abbreviations

The following abbreviations are used in this manuscript:
Ni(acac)2 trimetric nickel(II) acetylacetonate
SMM single-molecule magnet
nn nearest-neighbor
L linear
A alternated
P perpendicular
SWCNT single-wall carbon nanotube
MPSs Matrix Product States
DMRG density-matrix renormalization group
Tenpy Tensor Network Python
TDVPs time-dependent variational principles
TEBDs time-evolving block decimations
S entanglement entropy or von Neumann’s
FM ferromagnetism
AFM antiferromagnetism

Appendix A. Exact Solution for One and Two SMM

Table A1. Energies (left) corresponding to the eigenstates (right) of the 3D Ni(acac)2 levels.

Energy (meV) State

−4.76 1√
2
(|↓↓ 0⟩ − |0 ↓↓⟩)

−4.76 1
2 (|↓ 00⟩+ |↓↓↑⟩ − |00 ↓⟩ − |↑↓↓⟩)

−4.76 1
2
√

3
(|0 ↓↑⟩ − |0 ↑↓⟩+ 2|↓ 0 ↓⟩+ |↓↑ 0⟩ − 2|↑ 0 ↓⟩ − |↑↓ 0⟩)

−4.76 1
2 (|00 ↑⟩+ |↓↑↑⟩ − |↑ 00⟩ − |↑↑↓⟩)

−4.76 1√
2
(|0 ↑↑⟩ − |↑↑ 0⟩)

−4.18 1√
3
(|0 ↓↓⟩+ |↓ 0 ↓⟩+ |↓↓ 0⟩)

−4.18 1√
15
(2|00 ↓⟩+ 2|0 ↓ 0⟩+ 2|↓ 00⟩+ |↓↓↑⟩+ |↓↑↓⟩+ |↑↓↓⟩)

−4.18 1√
10
(2|000⟩+ |0 ↓↑⟩+ |0 ↑↓⟩) + |↓ 0 ↑⟩+ |↓↑ 0⟩+ |↑ 0 ↓⟩+ |↑↓ 0⟩

−4.18 1√
15
(2|00 ↑⟩+ 2|0 ↑ 0⟩+ 2|↑ 00⟩+ |↓↑↑⟩+ |↑↓↑⟩+ |↑↑↓⟩)

−4.18 1√
3
(|0 ↑↑⟩+ |↑ 0 ↑⟩+ |↑↑ 0⟩)

−4.18 |↑↑↑⟩

−3.56 1√
3
(−|0 ↓ 0⟩+ |↓↓↑⟩+ |↑↓↓⟩)

−3.56 1√
3
(−|000⟩+ |↓ 0 ↑⟩+ |↑ 0 ↓⟩)

−3.56 1√
3
(−|0 ↑ 0⟩+ |↓↑↑⟩+ |↑↑↓⟩)

1.2 1
2 (|00 ↓⟩ − |↓ 00⟩+ |↓↓↑⟩ − |↑↓↓⟩)

1.2 1
2 (−|0 ↓↑⟩ − |0 ↑↓⟩+ |↓↑ 0⟩+ |↑↓ 0⟩)

1.2 1
2 (−|00 ↑⟩+ |↓↑↑⟩+ |↑ 00⟩ − |↑↑↓⟩)

4.18 1√
6
(−|0 ↓↑⟩+ |0 ↑↓⟩+ |↓ 0 ↑⟩ − |↓↑ 0⟩ − |↑ 0 ↓⟩+ |↑↓ 0⟩)

4.76 1√
6
(|0 ↓↓⟩ − 2|↓ 0 ↓⟩+ |↓↓ 0⟩)

4.76 1
2
√

3
(−|00 ↓⟩+ 2|0 ↓ 0⟩ − |↓ 00⟩+ |↓↓↑⟩ − 2|↓↑↓⟩+ |↑↓↓⟩)

4.76 1
2 (−|0 ↓↑⟩+ |0 ↑↓⟩+ |↓↑ 0⟩ − |↑↓ 0⟩)

4.76 1
2
√

3
(−|00 ↑⟩+ 2|0 ↑ 0⟩+ |↓↑↑⟩ − |↑ 00⟩ − 2|↑↓↑⟩+ |↑↑↓⟩)
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Table A1. Cont.

Energy (meV) State

4.76 1√
6
(|0 ↑↑⟩ − 2|↑ 0 ↑⟩+ |↑↑ 0⟩)

10.72 1
2
√

15
(−3|00 ↓⟩+ 2|0 ↓ 0⟩ − 3|↓ 00⟩+ |↓↓↑⟩+ 6|↓↑↓⟩+ |↑↓↓⟩)

10.72 1
2
√

15
(4|000⟩ − 3|0 ↓↑⟩ − 3|0 ↑↓⟩+ 2|↓ 0 ↑⟩ − 3|↓↑ 0⟩+ 2|↑ 0 ↓⟩ − 3|↑↓ 0⟩)

10.72 1
2
√

15
(−3|00 ↑⟩+ 2|0 ↑ 0⟩+ |↓↑↑⟩ − 3|↑ 00⟩+ 6|↑↓↑⟩+ |↑↑↓⟩)

Table A2. Energies (left) corresponding to the eigenstates (right) of the 1D Ni(acac)2 levels.

Energy (meV) State

−0.48 1
2
√

15
(−3|00 ↓⟩+ 2|0 ↓ 0⟩ − 3|↓ 00⟩) + |↓↓↑⟩+ 6|↑↓↑⟩+ |↑↓↓⟩

−0.48 1
2
√

15
(4|000⟩ − 3|0 ↓↑⟩ − 3|0 ↑↓⟩+ 2|↓ 0 ↑⟩ − 3|↓↑ 0⟩+ 2|↑ 0 ↓⟩ − 3|↑↓ 0⟩)

−0.48 1
2
√

15
(−3|00 ↑⟩+ 2|0 ↑ 0⟩+ |↓↑↑⟩ − 3|↑ 00⟩+ 6|↑↓↑⟩+ |↑↑↓⟩)

−0.32 1√
6
(−|0 ↓↑⟩+ |0 ↑↓⟩+ |↓ 0 ↑⟩ − |↓↑ 0⟩ − |↑ 0 ↓⟩+ |↑↓ 0⟩)

−0.16 1
2 (|00 ↓⟩ − |↓ 00⟩+ |↓↓↑⟩ − |↑↓↓⟩)

−0.16 1
2 (−|0 ↓↑⟩ − |0 ↑↓⟩+ |↓↑ 0⟩+ |↑↓ 0⟩)

−0.16 1
2 (−|00 ↑⟩+ |↓↑↑⟩+ |↑ 00⟩ − |↑↑↓⟩)

−0.16 1√
6
(|00 ↓⟩ − 2|↓ 0 ↓⟩+ |↓↓ 0⟩)

−0.16 1
2
√

3
(−|00 ↓⟩+ 2|0 ↓ 0⟩ − |↓ 00⟩+ |↓↓↑⟩ − 2|↓↑↓⟩+ |↑↓↓⟩)

−0.16 1
2 (−|0 ↓↑⟩+ |0 ↑↓⟩+ |↓↑ 0⟩ − |↑↓ 0⟩)

−0.16 1
2
√

3
(−|00 ↑⟩+ 2|0 ↑ 0⟩+ |↓↑↑⟩ − |↑ 00⟩ − 2|↑↓↑⟩+ |↑↑↓⟩)

−0.16 1√
6
(|0 ↑↑⟩ − 2|↑ 0 ↑⟩+ |↑↑ 0⟩)

0.0 1√
3
(−|0 ↓ 0⟩+ |↓↓↑⟩+ |↑↓↓⟩)

0.0 1√
3
(−|000⟩+ |↓ 0 ↑⟩+ |↑ 0 ↓⟩)

0.0 1√
3
(−|0 ↑ 0⟩+ |↓↑↑⟩+ |↑↑↓⟩)

0.16 1√
2
(−|0 ↓↓⟩+ |↓↓ 0⟩)

0.16 1
2 (−|00 ↓⟩+ |↓ 00⟩+ |↓↓↑⟩ − |↑↓↓⟩)

0.16 1
2
√

3
(|0 ↓↑⟩ − |0 ↑↓⟩+ 2|↓ 0 ↑⟩+ |↓↑ 0⟩ − 2|↑ 0 ↓⟩ − |↑↓ 0⟩)

0.16 1
2 (|00 ↑⟩+ |↓↑↑⟩ − |↑ 00⟩ − |↑↑↓⟩)

0.16 1√
2
(|0 ↑↑⟩ − |↑↑ 0⟩)

0.32 |↓↓↓⟩

0.32 1√
3
(|0 ↓↓⟩+ |↓ 0 ↓⟩+ |↓↓ 0⟩)

0.32 1√
15
(2|00 ↓⟩+ 2|0 ↓ 0⟩+ 2|↓ 00⟩+ |↓↓↑⟩+ |↓↑↓⟩+ |↑↓↓⟩)

0.32 1√
10
(2|000⟩+ |0 ↓↑⟩+ |0 ↑↓⟩+ |↓ 0 ↑⟩+ |↓↑ 0⟩+ |↑ 0 ↓⟩+ |↑↓ 0⟩)

0.32 1√
15
(2|00 ↑⟩+ 2|0 ↑ 0⟩+ |↓↑↑⟩+ 2|↑ 00⟩+ |↑↓↑⟩+ |↑↑↓⟩)

0.32 1√
3
(|0 ↑↑⟩+ |↑ 0 ↑⟩+ |↑↑ 0⟩)

0.32 |↑↑↑⟩
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Figure A1. Magnetization plateaus under different temperatures in 3D (left panel) and 1D
(right panel) structures, compared to the experimental values (red circles) reported in [26].

Figure A2. Magnetization along the field for JL, JA, and JP exchange-coupled pairs of molecules
with (a) 3D molecular unit (upper panel) and (b) 1D molecular unit (lower panel) at 0.0 (K).

Figure A3. Magnetization along the field for JL, JA, and JP exchange-coupled pairs of molecules
with (a) 3D molecular unit (upper panel) and (b) 1D molecular unit (lower panel) at 0.1 (K).
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Figure A4. Entanglement entropy phase diagrams corresponding to JL, JA, and JP configurations
for the 3D molecules (a,c,e) (left column) and 1D ones (b,d,f) (right column), respectively.

Appendix B. Entanglement of Chain Magnets

Figure A5. Entanglement entropy for the corresponding panels in Figure 8. The partitions of the
chains are made by cutting them between spins 1 and 2 at molecule 3 for the corresponding cases.
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Figure A6. Local magnetizations for a 36 spin chain (12 3D SMMs) and JL = (0.25,−0.25) for upper
two panels, respectively. Lower two panels have the local magnetizations for a 33 spin chain (11 3D
SMMs) and JA = (0.25,−0.25), respectively.
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47. Souza, F.; Veríssimo, L.M.; Strečka, J.; Lyra, M.L.; Pereira, M.S.S. Exact and Density Matrix Renormalization Group Studies of Two

Mixed Spin-(1/2,5/2, 1/2) Branched-Chain Models Developed for a Heterotrimetallic Fe-Mn-Cu Coordination Polymer. Phys.
Rev. B 2020, 102, 064414. [CrossRef]

48. Haegeman, J.; Cirac, J.I.; Osborne, T.J.; Pižorn, I.; Verschelde, H.; Verstraete, F. Time-Dependent Variational Principle for Quantum
Lattices. Phys. Rev. Lett. 2011, 107, 070601. [CrossRef] [PubMed]

49. Haegeman, J.; Lubich, C.; Oseledets, I.; Vandereycken, B.; Verstraete, F. Unifying Time Evolution and Optimization with Matrix
Product States. Phys. Rev. B 2016, 94, 165116. [CrossRef]

50. Vidal, G. Efficient Simulation of One-Dimensional Quantum Many-Body Systems, Guifre Vidal. Phys. Rev. Lett. 2004, 93, 040502.
[CrossRef]

51. Hauschild, J.; Pollmann, F. Efficient Numerical Simulations with Tensor Networks: Tensor Network Python (TeNPy). SciPost
Phys. Lect. Notes 2018, 5. [CrossRef]

52. Um, J.; Park, H.; Hinrichsen, H. Entanglement versus mutual information in quantum spin chains. J. Stat. Mech. Theory Exp. 2012,
2012, P10026. [CrossRef]

53. Amico, L.; Fazio, R.; Osterloh, A.; Vedral, V. Entanglement in many-body systems. Rev. Mod. Phys. 2008, 80, 517–576. [CrossRef]
54. Scopa, S.; Calabrese, P.; Bastianello, A. Entanglement dynamics in confining spin chains. Phys. Rev. B 2022, 105, 125413. [CrossRef]
55. Wei, K.X.; Ramanathan, C.; Cappellaro, P. Exploring Localization in Nuclear Spin Chains. Phys. Rev. Lett. 2018, 120, 070501.

[CrossRef]
56. Kam, C.F.; Chen, Y. Genuine Tripartite Entanglement as a Probe of Quantum Phase Transitions in a Spin-1 Heisenberg Chain with

Single-Ion Anisotropy. Ann. Phys. 2022, 534, 2100342. [CrossRef]
57. Scheie, A.; Laurell, P.; Samarakoon, A.M.; Lake, B.; Nagler, S.E.; Granroth, G.E.; Okamoto, S.; Alvarez, G.; Tennant, D.A.

Witnessing entanglement in quantum magnets using neutron scattering. Phys. Rev. B 2021, 103, 224434. [CrossRef]
58. Wootters, W.K. Entanglement of Formation of an Arbitrary State of Two Qubits. Phys. Rev. Lett. 1998, 80, 2245–2248. [CrossRef]
59. Saguia, A.; Sarandy, M.S.; Boechat, B.; Continentino, M.A. Entanglement entropy in random quantum spin-S chains. Phys. Rev. A

2007, 75, 052329. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1021/ic50063a018
http://dx.doi.org/10.1039/D1NR06179H
http://dx.doi.org/10.1143/JPSJ.5.48
http://dx.doi.org/10.3390/nano13040774
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.21468/SciPostPhys.12.5.143
http://dx.doi.org/10.1103/PhysRevB.102.064414
http://dx.doi.org/10.1103/PhysRevLett.107.070601
http://www.ncbi.nlm.nih.gov/pubmed/21902379
http://dx.doi.org/10.1103/PhysRevB.94.165116
http://dx.doi.org/10.1103/PhysRevLett.93.040502
http://dx.doi.org/10.21468/SciPostPhysLectNotes.5
http://dx.doi.org/10.1088/1742-5468/2012/10/P10026
http://dx.doi.org/10.1103/RevModPhys.80.517
http://dx.doi.org/10.1103/PhysRevB.105.125413
http://dx.doi.org/10.1103/PhysRevLett.120.070501
http://dx.doi.org/10.1002/andp.202100342
http://dx.doi.org/10.1103/PhysRevB.103.224434
http://dx.doi.org/10.1103/PhysRevLett.80.2245
http://dx.doi.org/10.1103/PhysRevA.75.052329

	Introduction
	Trimetric Ni-Based Single Chain Magnets and Quantum Methods
	Spin Chains: Hamiltonian Modeling
	Quantum Many-Body Methods: DMRG and MPS

	3D and 1D Molecular Magnets
	SMM Solutions
	Two Coupled Molecules

	Chain Magnets
	Beyond Two SMMs
	(J, J13) Quenching
	JL Configuration
	FM JL
	AFM JL

	JA Configuration
	FM JA
	AFM JA

	JP Configuration
	FM JP
	AFM JP



	Conclusions
	Appendix A
	Appendix B
	References

