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Abstract: The physical implementation of quantum information processing (QIP) is an emerging
field that requires finding a suitable candidate as a quantum bit (qubit), the basic unit for quantum
information, which can be organised in a scalable manner to implement quantum gates (QGs) capable
of performing computational tasks. Supramolecular chemistry offers a wide range of chemical
tools to bring together, with great control, different molecular building blocks in order to grow
supramolecular assemblies that have the potential to achieve the current milestones in the field. In this
review, we are particularly interested in the latest research developments on the supramolecular
chemistry approach to QIP using {Cr7Ni} wheels as qubits for the physical implementation of QGs.
Special emphasis will be given to the unique high degree of chemical tunability of this unique class of
heterobimetallic octanuclear rings, which results in an attractive playground to generate aesthetically
pleasing supramolecular assemblies of increasing structural complexity and interesting physical
properties for quantum computing.

Keywords: {Cr7Ni} heterobimetallic rings; quantum information processing; supramolecular
chemistry; qubits; quantum gates

1. Introduction: Molecules as Qubits

The physical implementation of quantum information processing (QIP) is currently a subject
of intense research in chemistry, physics, materials science, and nanotechnology because of the
thrilling potential technological applications that chemical and physical systems may exhibit in
quantum computing [1–4]. QIP offers the possibility to outperform conventional computers in some
computational tasks, such as searching unsorted directories and factoring large numbers in primes [5,6].
However, a major challenge in developing devices for quantum computation relies on finding suitable
candidates for use as quantum bits (qubits), the basic units used for quantum information, which can
be brought together in an organised, scalable, and addressable way to build quantum gates (QGs)
capable of performing useful logic algorithms [3,4].

Magnetic molecules [7–24] could present some disadvantages in comparison with other quantum
systems for QIP. For example, as individual units, molecular electron spin-based qubits may not
have such long phase memory times [25–29]. However, we could take advantage of the two-fold
degree of the chemical tunability of molecules, at the molecular and supramolecular levels, to improve
their performance as qubits. At the molecular level, this has been well demonstrated in the last few
years by the careful chemical design of tailor-made molecules, where the number of protons and
other atoms with a nuclear magnetic moment have been minimised in order to increase the phase
memory times [14,18,21,22]. This has been recently extended to the chemical design of molecules with
crystal field ground states possessing large tunneling gaps that give rise to atomic clock transitions,
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at which the quantum spin dynamics become protected against dipolar decoherence [24]. Yet the main
advantage of molecular qubits resides in their further chemical engineerability at the supramolecular
level. The potential applicability of supramolecular chemistry [30–34] make molecules unique quantum
systems where we could precisely tune the intermolecular interaction between qubits in terms of their
spatial orientation, strength, and homo-/heterogeneous nature. Thus, this represents a key feature to
be exploited by chemistry, in order to build supramolecular arrays of molecular qubits in a controlled
manner, which could efficiently implement multiple qubit-based QGs.

During the last few years, a large effort has been put forth by several research groups worldwide
with the intention of increasing the phase memory times of molecular qubits. Several quantum
systems that have been proposed as qubits exhibit excellent performance as individual sites, such as
13C sites near nitrogen vacancies in diamond, but often such qubits are difficult to link controllably
into useful arrays [27]. In a pioneering work, Leuenberger and Loss proposed the use of molecular
nanomagnets, such as [Mn12O12(O2CCH3)16(H2O)4], abbreviated as {Mn12} [7], as electron spin-based
qubits. Since then, a wide range of magnetic molecules have been synthesised, either small mono- and
dinuclear complexes or large polynuclear clusters with transition metals and lanthanide ions [12,14–24].
A measure of the quality of a qubit against decoherence processes is provided by the spin-spin
relaxation time (T2) and the phase memory time (TM), measured through pulsed EPR spectroscopy [35].
Strictly speaking T2 and TM are not the same, but frequently in the literature they are used indistinctly.
In fact, TM is a generic term that encompasses all processes that cause the loss of electron spin phase
coherence. T2 is just one of the contributors. Only in the case where the phase memory decay function is
a monoexponential can both parameters be considered as equivalents. In this respect, the latest results
obtained with square planar copper(II)-phthalocyaninato and bis(maleonitriledithiolato), [Cu(pc)]
and (Ph4P)2[Cu(mnt)2] are remarkable [16,18]. T2 values in the range of 2.6 µs to 1.0 µs at 5 and 80 K,
just above the boiling temperatures of liquid He and N2, respectively, have been reached for a diluted
thin-film of the [Cu(pc)], while TM values of about 0.6 µs at room temperature have been observed
for a doped matrix of (Ph4P)2[Cu(mnt)2]. Additionally, the latest results obtained with octahedral
vanadium(IV)-tris(2,5-dithioxobenzo[1,2-d:3,4-d′]bis[1,3]dithiolene-7.8-dithiolato), (Ph4P)2[V(dbmit)3],
and square pyramidal vanadyl(IV)-phthalocyanine, [VO(pc)], with TM values up to 700 µs at 10 K and
0.8 µs at 300 K, respectively, clearly reflect the progress being made in the field [21,22].

Among the different molecular qubit approaches proposed in the literature, this review focuses
on the studies of {Cr7Ni} wheels performed by Winpenny’s group in Manchester, UK, where this
two-fold degree of chemical engineering has been conveniently exploited, first with single wheels at
the molecular level, and then at the supramolecular level to obtain dimeric and eventually oligomeric
wheel assemblies.

2. Individual {Cr7Ni} Wheels as Single Qubits

{Cr7Ni} wheels consist of anionic fluoridebis(carboxylate)-bridged octanuclear chromium(III)-nickel(II)
complexes with ring topology of the general formula A[Cr7NiF8L16], where L could be
diverse carboxylate bridging ligands such as acetate (ac), trichloroacetate (tcac), propionate
(prop), pivalate (piv), 1-methylcyclohexanecarboxylate (mcyca), 1-adamantylcarboxylate (adca),
3-thiophenecarboxylate (thca), benzoate (bz), or pentafluorobenzoate (pfbz), and A+ is a central
templating cation, either organic or inorganic such as R2NH2

+ (R = Me, Et, and Pr) or Cs+

(Figure 1) [36–38]. These {Cr7Ni} wheels were prepared by adapting the method previously
reported for the parent neutral octanuclear homometallic chromium(III) wheels of formula [Cr8F8L16],
abbreviated as {Cr8}, by replacing one CrIII ion with a NiII ion through the aid of a counterbalancing
dialkylammonium, such as Pr2NH2

+, which simultaneously acts as templating agent [38]. In contrast
to the parent antiferromagnetically coupled {Cr8} wheels, which possess a diamagnetic ground state
(S = 0), these {Cr7Ni} wheels exhibit a S = 1/2 ground state resulting from the non-compensation of
the intramolecular antiferromagnetic coupling between the seven CrIII ions (SCr = 3/2) and the single
high-spin NiII ion (SNi = 1).
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Figure 1. (a) Crystal structure of {Cr7Ni} wheels, shown with Pr2NH2 as the templating cation. Colour
code: Cr, green; Ni, purple; N, blue; O, red; C, grey; F, pale green. H atoms and tertiary butyl
groups from the carboxylate bridging ligand are omitted for clarity (reproduced with permission
from (C. J. Wedge et al.), (Physical Review Letters); published by (American Physical Society), (2012));
(b) Chemical structures of some possible variants of both the central templating cation and the
carboxylate bridging ligand of {Cr7Ni} wheels (blue and red boxes, respectively).

Winpenny has proposed using {Cr7Ni} wheels as a molecular qubit for QIP [9]. In fact, the S = 1/2

ground state of {Cr7Ni} wheels is a two-level quantum system (0 and 1 of the qubit are then mS = +1/2

and mS = −1/2 levels, respectively) which meets the criteria required for qubits, e.g., it is possible to
initialise them and the scale of energies is appropriate [9]. {Cr7Ni} wheels have sufficient TM values to
allow gate operation before state degradation can occur [14], and thus it is possible to have control of
the interaction between the entangled states [39].

Besides their high chemical stability in solution, the most striking feature is the vast chemical
versatility that {Cr7Ni} wheels possess at the molecular level. This has allowed for the synthesis of
a plethora of wheels with different templating cations and carboxylate bridging ligands, which make
them an extraordinary platform to study the influence of the nature of different components on their
phase memory times, through pulsed EPR spectroscopic measurements in toluene [38].

For instance, the variation of the dialkylammonium cation and the carboxylate ligand allows for
the modification of the values of TM at 5 K following the trend 0.38 (Me2NH2

+) < 0.62 (Pr2NH2
+) <

0.73 µs (Et2NH2
+) and 0.34 (prop) < 0.44 (ac) < 0.62 µs (piv) along the two related series of the general

formula R2NH2[Cr7NiF8(piv)16] and Pr2NH2[Cr7NiF8L16], respectively (Table 1) [14]. Moreover,
the TM value can be further optimised to 0.93 µs at 5 K after complete deuteration of the pivalate
ligand and/or the Et2NH2

+ cation for the {Cr7Ni} wheels with dialkylammonium cations, while TM

values up to 15.3 µs at 1.5 K have been reached for the {Cr7Ni} wheels with Cs+ as a templating cation
and perdeuterated pivalate in deuterated toluene (Table 1).

Kaminski et al. have further attempted to investigate the effect of replacing hydrogen atoms with
deuterium and halogens, such as fluorine and chlorine, at the acetate and benzoate bridging ligands,
respectively, on the quantum coherence properties of the corresponding Cr7Ni wheels, both in toluene
and deuterated toluene solutions [40]. For instance, the values of TM at 5 K along the series of {Cr7Ni}
wheels of general formula Pr2NH2[Cr7NiF8L16] follow the trend 0.4 (tfbz) < 0.9 (d-bz) < 1.0 µs (bz) in
deuterated toluene (Table 1).
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Overall, the unique chemical flexibility of {Cr7Ni} wheels at the molecular level have allowed us
to obtain control of the phase memory time, as well as to identify the coupling between electron and
nuclear spins for these types of molecular nanomagnets as the main source of decoherence, even if other
sources of decoherence ligated to molecular motions (spectral diffussion) cannot be totally neglected.

Table 1. Selected phase memory times for different {Cr7Ni} wheels.

Compound a T/K TM
b/µs

Me2NH2[CrIII
7NiIIF8(piv)16] c 5.0 0.38

1.8 0.55
d-Me2NH2[CrIII

7NiIIF8(d-piv)16] c 1.8 3.8
Et2NH2[CrIII

7NiIIF8(piv)16] c 5.0 0.73
Et2NH2[CrIII

7NiIIF8(d-piv)16] c 5.0 0.93
d-Et2NH2[CrIII

7NiIIF8(d-piv)16] c 5.0 0.93
Pr2NH2[CrIII

7NiIIF8(piv)16] c 5.0 0.62
Cs[CrIII

7NiIIF8(piv)16] c 5.0 0.74
Cs[CrIII

7NiIIF8(d-piv)16] c 5.0 0.89
Cs[CrIII

7NiIIF8(d-piv)16] d 5.0 15.3
Pr2NH2[CrIII

7NiIIF8(prop)16] c 5.0 0.34
Pr2NH2[CrIII

7NiIIF8(ac)16] c 5.0 0.44
Pr2NH2[CrIII

7NiIIF8(bz)16] d 5.0 1.0
Pr2NH2[CrIII

7NiIIF8(d-bz)16] d 5.0 0.90
Pr2NH2[CrIII

7NiIIF8(pfbz)16] d 5.0 0.40
a Ligand abbreviations: ac = acetate; prop = propionate; piv = pivalate; d-piv = deuterated pivalate;
bz = benzoate; d-bz = perdeuterated benzoate; pfbz = pentafluorobenzoate (see Figure 1); b Value of the phase
memory time determined through pulsed EPR spectroscopic measurements; c In a 0.1 mM solution of toluene;
d In a 0.1 mM solution of deuterated toluene.

3. Dimeric Assemblies of {Cr7Ni} Wheels as Double Qubit-Based Quantum Gates

In addition to the quantum coherence properties of molecular qubits, another key parameter for
QIP is the timescale to perform a two-qubit gate. This time is inversely proportional to the strength
of the interaction between the individual qubits. Performing quantum computation is then vital to
possess a precise control of the inter-qubit interaction. This has to be strong enough to obtain a gate
time shorter than the phase memory time of qubits, otherwise the information will be lost through
decoherence. However, it cannot be too strong, otherwise the gate time would be shorter than the time
needed to manipulate a single spin—in pulsed EPR spectroscopy this time is around 10 ns [41].

A close analysis of the chemical structure of {Cr7Ni} wheels clearly reveal three possible synthetic
routes to functionalise single wheels at the molecular level in order to link them together into
a supramolecular dimeric assembly, which could eventually give rise to a two-qubit quantum gate.
The first route would involve the creation of an accessible metal site with which a bis(monodentate)
bridging ligand could coordinate. The second route would require functionalisation within the
carboxylate ligands that allow {Cr7Ni} wheels to act as metalloligands towards other metal complexes
acting in turn as central linkers. Finally, the third route would involve the synthesis of more complex
templating ammonium cations acting as the threads of {Cr7Ni} wheels in the resulting rotaxanes.

3.1. {Cr7Ni} Wheels with Open Metal Sites as Metal Complexes

The first avenue consists of replacing some of the bridging fluoride by adding
N-ethyl-D-glucamine (H5Etglu) as an additional proligand to the reaction between hydrated
chromium(III) fluoride and a nickel(II) source in pivalic acid. The resulting wheel has the formula
[Cr7NiF3(Etglu)(O2CtBu)15(H2O)], abbreviated as {Cr7Ni}′, where the polyalcohol proligand is
completely deprotonated and the five alkoxide groups replace five fluoride anions [42]. The most
striking feature of this {Cr7Ni}′ wheel is the presence of a labile terminal water molecule bound to the
nickel(II) site, which can be easily displaced by reaction with oligopyridines or related polyazines and
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polyazoles [41–45]. For instance, Bellini et al. have prepared a series of wheel dimers of the general
formula [{Cr7NiF3(Etglu)(piv)15}2L] [L = pyrazine (pyr), bis(dimethylpyrazolyl) (bpz), 4,4′-bipyridine
(4,4′-bpy), trans-bipyridylethene (bpe), and bipyridylbenzene (bpbz)], abbreviated as {Cr7Ni}′2L,
as depicted in Figure 2. In particular, the dimer of formula [{Cr7NiF3(Etglu)(piv)15}2(4,4′-bpy)]
constitutes the first example of the rational design of entangled double qubits [44].
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In order to decrease the EE interaction between {Cr7Ni} wheels, Ardavan et al. have prepared a 
related series of wheel dimers of general formula [{Cr7NiF3(piv)15(etglu)}2Ln], abbreviated as 
{Cr7Ni}′2Ln, with longer polypyridine bridging ligands functionalised with one (L1 and L2) or two (L3) 
low-spin iron(II)-tris(dioximato) complexes of boronic acid-capped clathrochelate-type as central 
diamagnetic linkers, as depicted in Figure 3. Within this series of wheel dimers, they could tune the 
Ni…Ni distance from 18.9 (L1) to 27.1 Å (L2) and up to 30.7 Å (L3). These {Cr7Ni}′2Ln wheel dimers do 
not show evidence of coupling by continuous wave-EPR, so in order to characterise such a small EE 

Figure 2. Crystal structures of the dimeric wheel assemblies {Cr7Ni}′2L, with L = bpbz (a); bpe (b);
bpz (c); 4,4′-bpy (d); and pyr (e) (adapted from References [43–45]). Colour code: Cr, purple; Ni, green;
N, blue; O, red; C, grey; F, pale green. H atoms and tertiary butyl groups are omitted for clarity.

The use of aromatic bridging ligands of varying length acting as additional bridging ligands
between the NiII ions along this {Cr7Ni}′2L series (L = pyr, 4,4′-bpy, and bpe) allows for the tunable
variation of the electron exchange (EE) interaction between the two {Cr7Ni}′ wheels separated by
inter-ring intermetallic distances in the range of 7.0–15.4 Å, as confirmed by very low-temperature
micro-SQUID magnetisation measurements. Therefore, an overall downward field shift of the
inflection points (Hc) in the isothermal magnetisation curves at 0.04 K occurs along this series of
dimers following the trend 30 (pyr) > 5 (4,4′-bpy) > 4 kOe (bpe), thus reflecting the weakening of
the intramolecular magnetic coupling constant [−J = 1.4 (pyr), 0.22 (4,4′-bpy), and 0.18 cm−1 (bpe)].
In fact, the gap between inflection points in the magnetization curves is directly related to the
energy gap between the ground singlet (S = 0) and excited triplet (S = 1) pair states of the dimer
[∆EST = E(S = 0) − E(S = 1) = J] [43–45]. Yet, these inter-ring magnetic interactions across the aromatic
bridging ligands within the ring dimers would give rise to gate times that are shorter than the
manipulation time of a single qubit, thus precluding their examination as candidates for a quantum
gate through pulsed EPR experiments.

In order to decrease the EE interaction between {Cr7Ni} wheels, Ardavan et al. have prepared
a related series of wheel dimers of general formula [{Cr7NiF3(piv)15(etglu)}2Ln], abbreviated as
{Cr7Ni}′2Ln, with longer polypyridine bridging ligands functionalised with one (L1 and L2) or two
(L3) low-spin iron(II)-tris(dioximato) complexes of boronic acid-capped clathrochelate-type as central
diamagnetic linkers, as depicted in Figure 3. Within this series of wheel dimers, they could tune the
Ni· · ·Ni distance from 18.9 (L1) to 27.1 Å (L2) and up to 30.7 Å (L3). These {Cr7Ni}′2Ln wheel dimers
do not show evidence of coupling by continuous wave-EPR, so in order to characterise such a small
EE interaction a pulsed-EPR technique called double electron–electron resonance (DEER) was used.
For the longest linker (L3) the two–qubit time of 550 ns is too long, as all these individual {Cr7Ni}′

wheels showed TM values around 600 ns at 2.5 K. In contrast, the shorter version (L1) shows a slow
gate time of 157 ns, which makes this compound suitable to implement a two-qubit conditional phase
gate [41].
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Thus, these examples exemplify how through supramolecular chemistry it is possible to tune,
with control, the EE interaction between qubits and the two-qubit gate time. These are remarkable
features that have not yet been achieved with other approaches of quantum computing.
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Figure 3. Crystal structures of the dimeric wheel assemblies {Cr7Ni}′2Ln featuring mono- and dinuclear
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3.2. {Cr7Ni} Wheels as Metalloligands

The second route implies the functionalisation of the {Cr7Ni} wheels at the carboxylate
ligand, which allow them to act as metalloligands towards other metal ions or complexes.
Carboxylate substitution has proven to be a well-established chemical approach to achieve a selective
functionalisation of {Cr7Ni} wheels and other polynuclear clusters [46–48]. The key feature of {Cr7Ni}
wheels is the presence of labile nickel(II) and kinetically inert chromium(III) ions. Then, any substitution
reaction on the carboxylates would take place on the Cr· · ·Ni edges, and not on the Cr· · ·Cr ones. Also,
it is worthy to note their chemical stability and remarkable solubility in non–polar solvents, which
simplify the purification of the resultant products by column chromatography.

The most studied carboxylate substitution reaction has been the selective functionalisation of
{Cr7Ni} wheels with iso-nicotinate (O2C-py) [46,49–51]. The reaction of iso-nicotinic acid with {Cr7Ni}
wheels in n-propanol yields a mixture of wheels of formula (Pr2NH2)2[{Cr7NiF8(piv)16−x(O2C-py)x}],
abbreviated as {Cr7Ni-(O2C-py)x}, where x = 0–4. In a second step the different substituted
wheels could be separated by column chromatography. The best performance takes place for the
monosubstituted compound, which could be obtained on the multi-gram scale with the iso-nicotinate
perpendicular to the main plane of the wheel.

The reaction of {Cr7Ni-(O2C-py)} as a metalloligand towards Cu(NO3)2 or
[Cu2(O2CtBu)4(HO2CtBu)2] generates the first two examples of wheel dimers of the general
formula (Pr2NH2)2[{Cr7NiF8(piv)15(O2C-py)}2M] [M = Cu(NO3)2(H2O) and Cu2(O2CtBu)4], in short
{Cr7Ni}2Cu and {Cr7Ni}2Cu2, respectively. In this work, Timco et al. experimentally demonstrated that
it is possible to control the coupling in molecular spin clusters [46]. In particular, when mononuclear
copper(II) is the central node, they observed the EPR spectrum of three weakly interacting S = 1/2

centers. Conversely, when the linker is the paddle-wheel dicopper(II) pivalate, where the strong
antiferromagnetic interaction between copper centers gives rise to a diamagnetic node, the EPR
spectrum of a single wheel is observed.

Chiesa et al. have extended this concept and reported a series of wheel dimers of the
general formula (Pr2NH2)2[{Cr7NiF8(piv)15L}2NiL′2] [L = iso-nicotinate (O2C-py) and pyridazine-4-
carboxylate (O2C-pydca); L′ = acetylacetonate (acac), 1,1,1-trifluoroacetylacetonate (tfacac),
and 1,1,1,5,5,5-hexafluoroacetylacetonate (hfacac)], abbreviated as {Cr7NiL}2NiL′2, and depicted in
Figure 4 [50]. In this case, the synthetic strategy is based on the use of {Cr7Ni} wheels with pyridine or
pyridazine-functionalized carboxylate bridging ligands (L) which are able to further coordinate in either
cis or trans disposition to coordinatively unsaturated nickel(II) complexes with two acetylacetonate or
their fluoro-derivatives as blocking ligands (L′), to afford the resulting ring dimers with orthogonal or
linear dispositions, respectively. The authors argued that the anisotropic nature of the mononuclear
nickel(II) complex acting as the central linker along this {Cr7NiL}2NiL′2 series may serve as a promising
candidate for the switching of the electronic interaction in an entangled double qubit-based QG.
Therefore, the effective magnetic coupling between the peripheral S = 1/2 {Cr7Ni} wheels and
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the central S = 1 NiII complex is given by Jeff = 1.13 JCrNi − 0.63 JNiNi (|Jeff| = 0.004–0.221 cm−1).
The feasibility of these QGs precisely rely on the weakness of this intramolecular EE interaction with
respect to the local magnetic anisotropy of the central linker (DNi = 2.18–5.81 cm−1).
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More recently, Ferrando-Soria et al. have definitely demonstrated the validity of this
supramolecular chemical approach for the physical implementation of double qubits-based QGs [52].
They have reported the assembly of a related pair of hetero- and homoleptic wheel dimers of
formula (Pr2NH2)2[{Cr7NiF8(piv)15L}{Cr7NiF8(piv)15L′)}Co(NCS)2] [L = iso-nicotinate (O2C-py) and
L′ = 4-carboxylate-2,2′:6′:2′ ′-terpyridine (O2C-terpy)] and (Pr2NH2)2[{Cr7NiF8(piv)15L′ ′}2Co](BF4)2

[L′ ′ = 4-carboxylate-2,2′:6′:2′ ′-terpyridine (O2C-terpy) or 4′-(4-phenylcarboxylate)-2,2′:6′:2′ ′-terpyridine
(O2C-Ph-terpy)], abbreviated as {Cr7Ni(L/L′)}2Co and {Cr7NiL′ ′}2Co, respectively, from the use
of (Pr2NH2)[{Cr7NiF8(piv)15L}, (Pr2NH2)[{Cr7NiF8(piv)15L′}, and/or (Pr2NH2)[{Cr7NiF8(piv)15L′ ′}
wheels as metalloligands toward cobalt(II) ions, as illustrated in Figure 5.Magnetochemistry 2016, 2, 36 8 of 15 
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Depending on the choice of the central linker, these {Cr7Ni(L/L′)}2Co and {Cr7NiL′ ′}2Co
assemblies would operate as either controlled NOT-gate (CNOT) (L = O2C-py and L′ = O2C-terpy) or√

iSWAP (L′ ′ = O2C-terpy or O2C-Ph-terpy) molecular logic gates for QIP, respectively, as depicted in
Figure 6. The effect of the CNOT and

√
iSWAP gate on the computational two-qubit basis are [52]:

CNOT: |00〉 → |00〉 ; |01〉 → |01〉 ; |10〉 → |11〉 ; |11〉 → |10〉√
iSWAP: |00〉 → |00〉 ; |01〉 → |01〉+i|10〉√

2
; |10〉 → |10〉+i|01〉√

2
; |11〉 → |11〉

Hence, for a QG initialised in the computational basis states |11> and |10>, the CNOT flips the
target qubit if the control is set to |1>; this implies that the two qubits have to respond unequally to
an external stimulus. Whereas for a QG initialised in the computational basis state |10>, the

√
iSWAP

brings it to the equal-weight superposition (|10> + i|01>)/
√

2 as soon as the inter-qubit interaction
is turned on; this requires an electro-switchable linker between identical qubits. When cobalt(II)
thiocyanate is used, the cis coordination of thiocyanate groups means that the linked {Cr7Ni-(O2C-py)}
and {Cr7Ni-(O2C-terpy)} qubits are arranged in an almost orthogonal orientation. Therefore,
the two qubits are symmetry inequivalent, as required for implementing a CNOT gate. Instead,
with cobalt(II) tetrafluoroborate the assembly is made up of two equivalent {Cr7Ni-(O2C-terpy)} or
{Cr7Ni-(O2C-Ph-terpy)} qubits separated by a redox-switchable centre, which makes these assemblies
the first reported examples that are suitable for the implementation of the

√
iSWAP gate [52].Magnetochemistry 2016, 2, 36 9 of 15 
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clarity. (d) Schematic representation of the operational mode of the CNOT (controlled NOT-gate) and√

iSWAP gates on a pair of qubits (adapted from Reference [52]).

3.3. {Cr7Ni} Wheels as Inorganic Macrocyclic Subunits of Hybrid Rotaxanes

The requirement of ammonium cations that template the formation of {Cr7Ni} wheels have also
been exploited by Winpenny’s group to create hybrid inorganic-organic rotaxanes [53–57]. They have
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shown that it is possible to obtain in high yields [2]- and [3]-rotaxanes from the reaction in pivalic acid
of chromium(III) trifluoride, a nickel(II) pivalate salt, and a thread with one or two amines, respectively,
that would be protonated during the reaction and then act as template cations. Once again, the beauty
and simplicity of this approach has allowed them to achieve great control at the supramolecular level
that can yield a vast number of possibilities to construct different derivatives by changing the nature
of the thread, through simple organic chemistry or by changing the carboxylate bridging ligand used
to form the wheels.

Implementing two-qubits gates using hybrid rotaxanes has been done using two different
approaches (Figure 7). The first one involves directly growing [3]-rotaxanes, whereby variation of the
distance between the amine groups that template the formation of the wheels, it is possible to control
the interaction between the qubits. Ardavan et al. have demonstrated this concept for a related series
of [3]-rotaxanes proposed as candidates for entangled double qubit-based QGs (TM = 0.80–3.24 µs at
2.5 K) [45], whereby the through space inter-ring magnetic interaction between the two Cr7Ni wheels is
expected to be purely dipolar and modulated by the length of the thread. The second approach
involves growing [2]- or [3]-rotaxanes where one or both ends of the thread are functionalised
with a pyridine group as a stopper. Fernandez et al. have exploited this pathway through the
reaction of the [2]- and [3]-rotaxanes of formula [PyCH2NH2CH2CH2Ph][Cr7Ni(µ-F)8(O2CtBu)16]
and {PyCH2NH2(CH2)5}2][Cr7Ni(µ-F)8(O2CtBu)16]2}, in short {Cr7Ni-Py} and {Py-(Cr7Ni)2-Py},
respectively, with copper(II) hexafluoroacetylacetonate, [Cu(hfacac)2], to obtain the resulting
{Cr7Ni-Py}[Cu(hfacac)2] and {Py-(Cr7Ni)2-Py}[Cu(hfacac)2]2 derivatives [56]. These new organic-inorganic
[2]- and [3]-rotaxanes should not present interactions between the copper(II) centers and the wheels,
acting as dissimilar qubits, because the only through-bond EE interaction involves hydrogen bonds.
However, in both cases, a weak antiferromagnetic interaction is observed by EPR spectroscopy
between the wheels and the copper(II) ions. In addition, the different g factors of the qubits that
are brought together open the possibility of addressing each qubit individually, in the so called
g-engineering approach. Thus, the heterospin nature of {Cr7Ni-Py}[Cu(hfacac)2] together with the weak
EE interaction make this assembly a suitable candidate to implement the CNOT gate. More interesting
is the feasible scalability of such physical behavior by applying basic concepts in chemistry, as it is
well performed with {Py-(Cr7Ni)2-Py}[Cu(hfacac)2]2.
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two-qubit interactions of the right strength to implement logic quantum gates have been found. This 
work nicely exemplifies how through the application of basic concepts such as coordination and 
supramolecular chemistry we can create a supramolecular array of molecular qubits, where the 
individual qubits retain their coherence time, and the strength of inter-qubit interaction could be 
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4. Oligomeric Arrays of {Cr7Ni} Wheels as Multiple Qubits

Winpenny’s group keeps spinning the wheel by using supramolecular chemistry methods to
obtain new families of nanosized oligomeric wheel derivatives. Different shapes (planar or globular)
and degrees of polymerisation, from dimers to trimers, tetramers, hexamers, or even larger oligomers
with different polymerisation degrees (P = 2, 3, 4, 6, and 24). As well as, a variety of potentially
switchable, diamagnetic and paramagnetic linkers of either organic or metalloorganic nature.
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So, for instance, Fernandez et al. have recently prepared a unique series of linear and
branched, hybrid organic-inorganic polyrotaxanes, referred to as [n]-rotaxanes (n = 3–7), whereby
the functionalised organic thread component templates the hydrogen bond-assisted self-assembly
of the inorganic {Cr7Ni} wheels about the organic axle. The larger [3]-, [4]-, [5]-, and [7]-rotaxanes
are built up from simpler [2]- and [3]-rotaxanes and diverse central linkers such as mononuclear
copper(II) complexes, [Cu(NO3)2] and [Cu(hfacac)2], paddle-wheel dicopper(II) complexes, [Cu2(piv)4],
and oxo-centered iron(III)-cobalt(II) triangles, [Fe2CoO(piv)6], as illustrated in Figure 8 [57].
Interestingly, these [n]-rotaxanes exhibited TM values in the range of 0.70 to 0.80 µs at 2.6 K, and in
some of them, two-qubit interactions of the right strength to implement logic quantum gates have
been found. This work nicely exemplifies how through the application of basic concepts such as
coordination and supramolecular chemistry we can create a supramolecular array of molecular qubits,
where the individual qubits retain their coherence time, and the strength of inter-qubit interaction
could be modulated by chemical design.Magnetochemistry 2016, 2, 36 11 of 15 
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coherence properties have not yet been measured through pulsed EPR measurements. 
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Alternatively, Whitehead et al. obtained a plethora of metalloorganic-inorganic multicomponent
supramolecular assemblies, such as metal polygons and polyhedra, using pyridine- or
carboxylate-functionalised {Cr7Ni} wheels as metalloligands. They are constructed from
hydroxo-bridged copper(II) squares, [Cu4(OH)4], oxo-centered iron(III)-cobalt(II) triangles or zinc(II)
tetrahedra, [Fe2CoO] or [Zn4O], oxo-centered edge-sharing manganese(II,III) tetrahedra, [Mn6O2],
and nickel(II) dodecagons, [Ni12], as central linkers surrounded by Cr7Ni wheels, as illustrated
in Figure 9 [49,58]. In each case, the interactions between the Cr7Ni wheels and the diverse
metal coordination cages of these multicomponent assemblies are very weak, as shown by
their variable-temperature magnetic susceptibility and variable-field magnetisation measurements.
Their total magnetic behaviour is the sum of those of their individual components, even if their
quantum coherence properties have not yet been measured through pulsed EPR measurements.

Following this same modular design strategy, Ferrando-Soria et al. have recently prepared
a nanoscopic metal coordination cage formed by the palladium(II)-mediated self-assembly of up to
24 Cr7Ni wheels, as illustrated in Figure 10 [59]. Remarkably, pulsed EPR measurements reveal that
the quantum coherence of the individual Cr7Ni wheel component is almost retained in the resulting
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nanocage assembly, with TM values of 0.41 and 0.35 µs at 5.0 K for isolated and assembled wheels,
respectively, thus paving the way to obtain QGs based on very large arrays of qubits.

Magnetochemistry 2016, 2, 36 11 of 15 

 

 
Figure 8. Crystal structures of linear and branched [3]- (a); [4]- (b); and [5]-rotaxane-type (c and d), 
oligomeric {Cr7Ni} wheel assemblies (adapted from Reference [57]). Colour code: Cr, green; Fe, 
brown; Co, orange; Ni, purple; Cu, light blue; N, blue; O, red; C, grey; F, pale green. H atoms and 
tertiary butyl groups are omitted for clarity. 

Alternatively, Whitehead et al. obtained a plethora of metalloorganic-inorganic 
multicomponent supramolecular assemblies, such as metal polygons and polyhedra, using pyridine- 
or carboxylate-functionalised {Cr7Ni} wheels as metalloligands. They are constructed from 
hydroxo-bridged copper(II) squares, [Cu4(OH)4], oxo-centered iron(III)-cobalt(II) triangles or zinc(II) 
tetrahedra, [Fe2CoO] or [Zn4O], oxo-centered edge-sharing manganese(II,III) tetrahedra, [Mn6O2], 
and nickel(II) dodecagons, [Ni12], as central linkers surrounded by Cr7Ni wheels, as illustrated in 
Figure 9 [49,58]. In each case, the interactions between the Cr7Ni wheels and the diverse metal 
coordination cages of these multicomponent assemblies are very weak, as shown by their 
variable-temperature magnetic susceptibility and variable-field magnetisation measurements. Their 
total magnetic behaviour is the sum of those of their individual components, even if their quantum 
coherence properties have not yet been measured through pulsed EPR measurements. 

Following this same modular design strategy, Ferrando-Soria et al. have recently prepared a 
nanoscopic metal coordination cage formed by the palladium(II)-mediated self-assembly of up to 24 
Cr7Ni wheels, as illustrated in Figure 10 [59]. Remarkably, pulsed EPR measurements reveal that the 
quantum coherence of the individual Cr7Ni wheel component is almost retained in the resulting 
nanocage assembly, with TM values of 0.41 and 0.35 μs at 5.0 K for isolated and assembled wheels, 
respectively, thus paving the way to obtain QGs based on very large arrays of qubits. 

 

Figure 9. Crystal structures of pyridine- (a) and carboxylate-functionalised (b), oligomeric {Cr7Ni}
wheel assemblies (adapted from References [49,58]). Colour code: Cr, green; Ni, purple; Zn, orange;
N, blue; O, red; C, grey; F, pale green. H atoms and tertiary butyl groups are omitted for clarity.

Magnetochemistry 2016, 2, 36 12 of 15 

 

Figure 9. Crystal structures of pyridine- (a) and carboxylate-functionalised (b), oligomeric {Cr7Ni} 
wheel assemblies (adapted from References [49,58]). Colour code: Cr, green; Ni, purple; Zn, orange; 
N, blue; O, red; C, grey; F, pale green. H atoms and tertiary butyl groups are omitted for clarity. 

 
Figure 10. Supramolecular design strategy for the construction of multiple-qubit arrays based on 
{Cr7Ni} wheels as individual molecular qubits (adapted from Reference [59]). 

5. Conclusions and Perspectives 

In this review, we have tried to exemplify how supramolecular chemistry approaches could 
have a major impact on the physical implementation of QIP. This has been exemplified through the 
latest results obtained by Winpenny’s group in Manchester, UK, using {Cr7Ni} wheels as a 
proof-of-concept design for molecular qubits. In fact, the high degree of chemical versatility, at both 
the molecular and supramolecular levels, makes these systems suitable candidates to prove the 
validity and applicability of molecules for quantum computation applications. However, the 
construction of molecule-based quantum computers would require more long-lived qubits that can 
perform much more logic operations without errors. Electron spins possess shorter relaxation and 
coherence times than nuclear spins due to their stronger coupling with the environment; however, it 
is precisely because of this that they are easier to address and manipulate, and consequently, more 
prone to use as active components of quantum computers. 

Recent studies by van Slageren and Sessoli’s groups [60,61] have ascertained that the origin of 
the larger TM values (even at 300 K) observed for mononuclear V(IV) [21,22] and Cu(II) [16,18] 
complexes over those of {Cr7Ni} wheels is likely related to the coordination geometry and small 
spin-orbit coupling of the single metal ions in the former case, as well as the minimal contact of the 
magnetic orbital with the surrounding matrix, and the rigidity of the molecular structure. On the 
other hand, for the {Cr7Ni} wheels it has been found that the main source of decoherence is related to 
the electron-nuclear spin (hyperfine) coupling. However, the relationship between the intra-wheel 
exchange interactions and the TM is not obvious. In principle, hyperfine and dipolar interactions 
should not be influenced by a change of the intra-ring exchange couplings. Conversely, spin-phonon 
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5. Conclusions and Perspectives

In this review, we have tried to exemplify how supramolecular chemistry approaches could have
a major impact on the physical implementation of QIP. This has been exemplified through the latest
results obtained by Winpenny’s group in Manchester, UK, using {Cr7Ni} wheels as a proof-of-concept
design for molecular qubits. In fact, the high degree of chemical versatility, at both the molecular
and supramolecular levels, makes these systems suitable candidates to prove the validity and
applicability of molecules for quantum computation applications. However, the construction of
molecule-based quantum computers would require more long-lived qubits that can perform much
more logic operations without errors. Electron spins possess shorter relaxation and coherence times
than nuclear spins due to their stronger coupling with the environment; however, it is precisely because
of this that they are easier to address and manipulate, and consequently, more prone to use as active
components of quantum computers.
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Recent studies by van Slageren and Sessoli’s groups [60,61] have ascertained that the origin
of the larger TM values (even at 300 K) observed for mononuclear V(IV) [21,22] and Cu(II) [16,18]
complexes over those of {Cr7Ni} wheels is likely related to the coordination geometry and small
spin-orbit coupling of the single metal ions in the former case, as well as the minimal contact of the
magnetic orbital with the surrounding matrix, and the rigidity of the molecular structure. On the
other hand, for the {Cr7Ni} wheels it has been found that the main source of decoherence is related to
the electron-nuclear spin (hyperfine) coupling. However, the relationship between the intra-wheel
exchange interactions and the TM is not obvious. In principle, hyperfine and dipolar interactions
should not be influenced by a change of the intra-ring exchange couplings. Conversely, spin-phonon
interaction may be influenced by it.

Thus, it is obvious that magnetic molecules are strong candidates for the implementation of logic
schemes in QIP. The next step for all the proposed qubits would be to implement QGs by following
the routes that {Cr7Ni} wheels opened several years ago in order to construct assemblies of entangled
qubits, without losing their individual quantum coherence properties. This will probably not be
an easy task, because it is not a trivial problem and each molecule would require a particular approach.
However, while trying to achieve these targets, new and exciting physical properties can be discovered,
which can also enrich the background of the molecule-based materials community.
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