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Abstract: Molecular spins have shown interesting quantum features, which make them potential
candidates for the implementation of quantum information processing. New challenges related to
possible applications in the broader class of quantum technologies are currently under discussion.
Here, we revisit some key features trying to learn something from experiences in related fields.

Keywords: molecular nanomagnets; quantum technologies

1. Introduction

Quantum computing (QC) is one of the quantum technologies (QT) [1] that aims at exploiting
genuine quantum features of systems and devices. QC was envisaged in the early 1980s by Richard
Feynman and other pioneers and, since then, other possible applications of quantum systems
became feasible thanks to technological progress. Among QTs, quantum communications, sensing,
cryptography, and metrology are now attracting much interest. In addition to the discreteness of
energy levels, the possibility to create and maintain superposition of states and quantum correlation
(entanglement) are considered two of the main features of quantum systems that do not exist in
the classical world. Quantum systems, such as photons, cold atoms, spin impurities in solids, and
semiconducting and superconducting devices have been intensively studied in the last decades,
several applications based on these systems are in rapid development, and some of these have already
appeared in the market.

Different spin centers in the solid state have been—and currently are—intensively studied for
potential applications: spin impurities in Si have been studied and proposed for qubit encoding [2];
Nitrogen vacancy (NV) centers, as well as other color centers in diamond or SiC, are now attracting
much interest for their potentialities as atomic scale sensors, besides the possibility to use them as
hardware for QC [3]. In spite of different preparation technologies, experiments (e.g., manipulation
and read out of spin) and modeling (e.g., spin dynamics, sources of decoherence, spin entanglement,
etc.) all of these spin systems obviously share many analogies, thus we can probably learn something
by comparing the properties of molecular spins to those of other spin systems. This is intended to be
the main stream of this article. We shall focus on three main trends in the field: coherent manipulation
of spin ensembles; molecular quantum spintronics; and the perspective to embed (molecular) spins in
quantum circuits.

2. Coherent Spin Dynamics of Spin Ensembles

Quantum effects in molecular spin systems have been explored in the last two decades. The first
milestone was the discovery of quantum tunneling of the magnetization in the 1990s that demonstrated
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that molecular spins are real systems on which quantum effects can be controlled and studied in
laboratory conditions [4]. The next challenge was to control the dynamics of molecular spins. Molecules
with low spin ground states (ideally S = 1/2), well isolated by excited states, are prototypical cases for
this type of study [5], and long-lived coherent oscillations between two spin states is a target experiment
that can be performed by pulsed electron spin resonance (ESR) techniques. The understanding and
control of decoherence mechanisms are of fundamental importance for the dynamics of spins in the
solid state environment. Thus, in the last decade, there has been an intense activity in searching
molecular spin systems with improved performances, more specifically with the longer relaxation
(T1) and dephasing (T2) times, as discussed in previous reviews [6,7] and themed issues of specialized
journals and book series [8–10]. Inter-molecular interactions are, in general, detrimental, thus working
with spin ensembles diluted in non-magnetic matrix is mandatory. In this way, coherent spin
oscillations were soon observed in low-spin Cr7Ni rings [11] and V15 [12] at liquid He temperature.

Most of the solid state hardware for quantum technology works at cryogenic temperatures, yet
this limits all of them to niche applications and increasing the working temperature—and reducing the
use of magnetic field—is certainly appealing in view of widely spread applications. Working at 2 K
instead of 20 mK is a gain of two orders of magnitude in temperature and this allows us to avoid the
use of dilution refrigerators. Working at 20 K will allow a gain of another order of magnitude and,
for instance, the use of closed cycle refrigerators that can be developed even on one chip. At 80 K
we may use liquid nitrogen, and room temperature operation will open to much broader class of
applications. A first breakthrough along this line was obtained with the report of persistence of long
T2 up to 100 K in commercial CuPc derivative [13]. This result was followed by rational design of
mononuclear derivatives for which T2 was further improved [14–16]. The relevant figure of merit here
is the ratio between the manipulation time and the spin coherence time. Since, for typical pulsed ESR
setups, the time to manipulate an electron spin is about 10 ns, both T1 and T2 need to be much longer
in order to observe coherent spin oscillations and, possibly to perform some error corrections. As a
matter of facts, Rabi oscillations at room temperature have been recently reported in VOPc [17]. These
results represent an important milestone for molecular magnetism.

In [13] one can find a direct comparison of relevant coherence time measured at different
temperatures in different spin systems. Yet care should be taken in making direct comparisons since
data should be taken in similar conditions and experiments. One relevant point is the dependence of
decoherence times of spin defects on the depth of impurity in the solid. For instance, it is well
documented that T1 and T2 decrease for shallow impurities in both Si and diamond and they
dramatically drop when spin is closer than 5 nm to the surface. For instance, Figure 1 (from [18])
shows that both T1 and T2 drop below 100 µs for NV positioned less than 10 nm from the diamond
surface. Interestingly, the coordination of the spin center is not altered but the shallow defects were
demonstrated to be sensitive to both the magnetic and the electric [19] noise on the diamond surface.
This should draw our attention to control the environment of our spin: if impurities are diluted in a
nuclear free environment, magnetic noise can be drastically reduced. The same attention should be
taken to reduce (electrical) noise produced by local vibrations. From this point view, the seminal work
reported in [20] demonstrated that molecular engineering can be a powerful tool to control the closest
environment of the spin. On the other hand, if we need to expose spins to an external environment,
such as a biological system or an electronic circuit, the ligand shell may, in some ways, protect or, at
least, define the closest surrounding around the sensitive spin.
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Figure 1. Coherence time T2 and relaxation time T1 as a function of the NV depth in diamond. The 
plot shows strong suppression of coherence for shallow NV centers. The lower panel shows T2;XY4 = 
T2echo ratio that is reduced as well with decreased depth, also indicating that dynamical decoupling 
with N = 4 pulses is less efficient for shallower NVs (reproduced from [18] with permission from the 
American Physical Society). 
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achievements have done by studying isolated molecules on surfaces by different techniques, such as 
STM or X-ray spectroscopies. Not all, but few molecules, were robust enough to substantially 
maintain their (static) magnetic features when dispersed. However subtle effects may occur when the 
environment change and these need to be carefully checked case by case [21]. We expect that different 
molecules can be designed for specific ambient/applications, thus, for instance, molecules with 
external organic ligand and specific linkers will be more suitable for biological applications; 
molecules that can be sublimed and with linkers designed to graphitic or CMOS compatible sustrate 
will better work embedded in electronic circuits; while molecules with robust periphery (e.g., oxygen 
ligand) can be possible applied in ambient (air) conditions. 

Quantum computation may require the implementation of quantum gates [22]. A universal 
scheme for computation that, in principle, solves a broad class of computational problems, can be 
reduced to basic gates using one or two qubits. For spins, a one-qubit gate corresponds to rotation 
along two orthogonal directions and, therefore, relevant tests are observation of Rabi oscillations in 
pulsed ESR experiments, as previously discussed. Several experiments on mononuclear molecular 
spin centers have been performed as also reviewed in one article of this issue [23]. 

Next challenge is to perform conditioned quantum operations involving more than one spin 
center. In general terms, we need to demonstrate that the dynamics of one (target) spin is conditioned 
by the state of the second (control) spin [22]. This may require the two spins to be distinguishable 
either spatially or spectroscopically and a typical sequence for two-qubit gate encoding encompasses 
the initialization of the system, the rotation of the target spin under different conditions of the control 
spin qubit and, finally, the read-out of the system state. According to the specific pulse sequence and 
rotation, a number of two-qubit gates can be performed, similarly classical two-bit gates, such as 
controlled-NOT. These conditional spin dynamics are possible by exploiting quantum correlation 
(entanglement) of two or more spin centers and, since this is a genuine quantum property, quantum 
gates are essentially different from classical gates. 

Spin correlation (entanglement) is intrinsic property of system states that needs to be properly 
quantified by using suitable experimental quantities or mathematical functions [24]. Spin 
entanglement can be obtained within a single molecule or at supramolecular level (i.e., between 

Figure 1. Coherence time T2 and relaxation time T1 as a function of the NV depth in diamond. The
plot shows strong suppression of coherence for shallow NV centers. The lower panel shows T2;XY4 =
T2echo ratio that is reduced as well with decreased depth, also indicating that dynamical decoupling
with N = 4 pulses is less efficient for shallower NVs (reproduced from [18] with permission from the
American Physical Society).

In view of possible applications for which spins need to be embedded in external environment,
the next challenge seems to be the consolidation of performances with an overall (chemical, structural)
robustness of the molecules in different working conditions. To this end, tests on isolated molecules on
surfaces or under different stimuli or thermal cycling need to be performed. Important achievements
have done by studying isolated molecules on surfaces by different techniques, such as STM or X-ray
spectroscopies. Not all, but few molecules, were robust enough to substantially maintain their (static)
magnetic features when dispersed. However subtle effects may occur when the environment change
and these need to be carefully checked case by case [21]. We expect that different molecules can be
designed for specific ambient/applications, thus, for instance, molecules with external organic ligand
and specific linkers will be more suitable for biological applications; molecules that can be sublimed
and with linkers designed to graphitic or CMOS compatible sustrate will better work embedded in
electronic circuits; while molecules with robust periphery (e.g., oxygen ligand) can be possible applied
in ambient (air) conditions.

Quantum computation may require the implementation of quantum gates [22]. A universal
scheme for computation that, in principle, solves a broad class of computational problems, can be
reduced to basic gates using one or two qubits. For spins, a one-qubit gate corresponds to rotation
along two orthogonal directions and, therefore, relevant tests are observation of Rabi oscillations in
pulsed ESR experiments, as previously discussed. Several experiments on mononuclear molecular
spin centers have been performed as also reviewed in one article of this issue [23].

Next challenge is to perform conditioned quantum operations involving more than one spin
center. In general terms, we need to demonstrate that the dynamics of one (target) spin is conditioned
by the state of the second (control) spin [22]. This may require the two spins to be distinguishable
either spatially or spectroscopically and a typical sequence for two-qubit gate encoding encompasses
the initialization of the system, the rotation of the target spin under different conditions of the control
spin qubit and, finally, the read-out of the system state. According to the specific pulse sequence
and rotation, a number of two-qubit gates can be performed, similarly classical two-bit gates, such
as controlled-NOT. These conditional spin dynamics are possible by exploiting quantum correlation
(entanglement) of two or more spin centers and, since this is a genuine quantum property, quantum
gates are essentially different from classical gates.
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Spin correlation (entanglement) is intrinsic property of system states that needs to be properly
quantified by using suitable experimental quantities or mathematical functions [24]. Spin entanglement
can be obtained within a single molecule or at supramolecular level (i.e., between molecules) by
controlling spin topology and magnetic interactions. Along this line, dimers of molecular spins
with weak permanent magnetic coupling could be designed and synthesized [25] and sizable spin
entanglement was demonstrated [26]. One issue of this approach is related to the fact that, during
the gate operation, the coupling between the two qubits needs to be switched on and off in order
to allow independent rotation of the two spin qubits. In other words, switchable links would be
required. This problem can be bypassed by engineering the molecular states in such a way to make
use of auxiliary states [27], as also described in the realistic case of antiferromagnetic rings [28].
An alternative way to entangle two spins is to simply position two spin centers at a fixed distance
(few nm) and exploit dipolar (i.e., through space) interaction, as has been done for spin defects in
diamond [29] and Si. The drawback of using dipolar interaction is, however, its persistent character
and its strong dependence on both distance and orientation of the two spin centers. These make
such an approach simply not scalable for defects. Perhaps this problem is less critical for molecular
assemblies. A further alternative way to entangle two spin centers far apart is, however, the use
of flying qubits (photons) as demonstrated in a recent experiment in which entanglement between
two NV centers 25 nm distant from one another was achieved by engineering the pulse sequence and
using a dynamic decoupling technique [30].

Proposals for the implementation of two-qubit gates with specific molecular spins systems
have appeared and preliminary experiments have been reported using binuclear lanthanides [31],
radicals [32], and antiferromagnetic rings [33]. Moreover, an intense search of a suitable bi-nuclear
molecular system is currently under way and many potential candidates are ready to be tested.
In terms of experiments, this would require the use of multi-frequency spectrometers that allow
distinguishing the two qubits or to activate switchable interaction. Commercial instrumentation,
such as that for pulsed electron-electron double resonance (PELDOR), is well developed but, in most
of the cases, it needs be adapted to working conditions (frequency, temperature, magnetic field)
of molecular qubits. At present, dedicated instrumentation is accessible only to few laboratories
worldwide whist the implementation of two-qubit gates with molecular spin ensembles would require
more flexibility/tunability on both molecular qubits and instrumentation. Moreover, in spite of the
progress achieved in using pulsed ESR techniques to molecular electron spins [34], much work still
remains to be done to encompass heterogeneities of both molecular features and applied field and,
more in general, to efficiently decouple spin to the environment. For instance, very interesting results
have been obtained in the optimization of pulse sequences for dynamical decoupling [35]. In view of
using multi-frequency pulse spectrometer, it is worth reminding that magnetic molecules generally
possess both electron and nuclear spins and probably the best approach will be to combine the long
coherence time of nuclear spins with the faster manipulation and read out of electronic spins. For this
electron nuclear double resonance (ENDOR) technique offers several interesting solutions as discussed
in [36].

Final general remarks should be offered concerning the use of spin ensembles. The main criticism,
well known in the QC community for NMR, is that working with ensembles makes the systems
not—easily—scalable. In other words, the resources, (e.g., spins) required for solving problems and
for the relative error correction, scale fast with increasing numbers of data, thus making this type of
architectures not suitable for a universal use. Within a more pragmatic perspective, we may focus
our interest on quantum simulators [37], i.e., small quantum computers that solve specific problems
which would require huge amount of classical computing resources, or even intractable by classical
computers. In practice this requires the use of molecular derivatives comprising small, but well defined,
spin clusters whose dynamics may solve a complex problem or emulate the behavior of system of
interest in other fields (for instance, a chemical reaction or a problem in solid state physics, see also
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review article in this issue [38]). This topic is still largely unexplored and deserves joint effort from
chemists and physicists.

3. Molecular Quantum Spintronics

The addressing, manipulation, and read out of single molecular objects constitute the next great
conceptual and technological challenge. If we can avoid some of the drawbacks found in using spin
ensembles, here we have to find efficient ways to detect tiny magnetic signals and to individually
manipulate spins by protecting fragile quantum states from the environment at the same time.

Different approaches have been tested to detect tiny magnetic signals: one milestone was the
development of nano-SQUID made with carbon nanotube [39]. Despite the magnetic flux sensitivity
of these devices being able to achieve the quantum limit, the main limitation of these types of
magnetometers is constituted by the magnetic coupling—through space—of the molecule with the
sensor. Direct single molecule detection by charge current seems more appealing, at least for spintronic
devices, and it may benefit from the progresses achieved in close fields such as molecular electronics,
scanning microscopy, and single-electron semiconducting devices.

The use of scanning probe microscopes, more specifically tunneling tips, holds much promise
for their potentialities to localize, move and read out single magnetic atoms and molecules [40].
With respect to bare magnetic atoms, the presence of an organic ligand seems to delocalize the
magnetic features of the molecule [41] and data interpretation is still under debate. Recently interesting
experiments on the manipulation and read out of molecular spin (TbPc2) by radio frequency [42] and
single magnetic atom on a surface by pulsed microwave sequences have been reported [43].

At the same time, the development of tunnel junctions that may host a single molecule (Figure 2)
have been independently reported by different groups. Magnetic features of individual molecules have
been observed and reported for Fe4 [44,45], TbPc2 [46], and organic radicals [47]. An open question
here is how the charge current from the leads perturbs the magnetic state of the molecule. Changes
of valence (and spin) state of the magnetic core are indeed expected. Since each type of molecule
behaves in different way, this issue needs to be evaluated case by case. An alternative read out scheme
comprises a quantum dot whose conductivity is affected by the spin state of the magnetic center that
is in close proximity and coupled with the device. This scheme is analogous to the spin dependent
tunneling that is used to read out spin qubits also in semiconductors, but here the quantum dot can be
made by carbon nanotube [48], graphene nano-constrictions [49], or even the organic radical present
in the ligand of the molecule, as demonstrated in the case of a TbPc2 molecular spin transistor [50].
In this scheme, the charge channel and the spin center are two separate bodies, coupled by exchange
interaction (see Figure 3).
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Figure 2. Molecular spin transistor made by graphene electrodes and a TbPc2 molecule. In this
case graphene-based electrodes are used to contact the TbPc2 molecule (reproduced from [51] with
permission from the Consiglio Nazionale delle Ricerche (CNR) and The Royal Society of Chemistry).
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The experiments reported by the Grenoble team went a step ahead demonstrating the possibility to
read out and manipulate the nuclear spin state. The nuclear spin of Tb (I = 3/2) is indeed coupled to the
electron magnetic moment (ground state J = 6, mJ = ±6) by the hyperfine interaction (Figure 3) giving
rise to hybrid electron-nuclear states whose level anti-crossing (LAC) are quite visible at low magnetic
fields. The nuclear states can be identified by sweeping the magnetic field and comparing the position
of the LACs with those measured on bulk samples. Note that, since measurements are performed on a
single qubit, the process must be repeated several times in order to obtain significant statistics.

By exploiting the long coherence time of nuclear spin (coherence time exceeding 60 µs) and the
hyperfine electric Stark effect, the same team has then demonstrated that it is possible to manipulate
the nuclear spin of a single molecule. More specifically, nuclear spin trajectories [52] and Ramsey
fringes have been observed [53]. These results compare well with similar experiments reported for
spin impurity (P donor) in Si [54] and witness a tangible contribution of molecular magnetism to QT.
At the same time, we expect that the next steps along this research line will move in parallel with
similar devices based on spin impurities in semiconductors [55] or NV centers in diamond [56], that is,
the implementation of two-qubit gates or multi-qubit algorithms.
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in which charge can tunnel from electrodes, the electron magnetic moment J = 6 and nuclear spin
(I = 3/2) of the Tb3+ ion (reproduced from [54] with permission from The American Association for the
Advancement of Science).

Working devices need to be reliable and protocols for quantum error correction need to be
developed. The problem of error correction is well known in computer science and some schemes are
discussed in textbooks [22]. Briefly, it may occur that during a quantum operation a qubit accidently
flips, invalidating the whole process. To mitigate and correct these errors we may encode the qubit
in more than one (typically three) processor and then use the majority rule: if the probability of an
accidental flip is relatively low, two qubits over three remain in the correct state while one contains
an error. In this case the majority (two over three) determine the correct state while the third one can
be corrected. Further methods to correct different type of quantum errors have been reported in the
literature for other spin systems, in particular those tested for NV centers [57].

The previous discussion leads us to another technological issue: soon or later we would need
to have arrays of similar devices working at the same time in order to guarantee the scalability of
our computing machine. Although this aspect is less discussed in literature, the rate of success
R in the device fabrication process is relatively low (often <10%). These numbers are typical for
tunnel junctions in molecular electronics, although they related to the specific fabrication process and
certainly need—and can—be improved in future by exploiting novel bottom-up fabrication methods.
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It should be noted, however, that the fabrication of CMOS-compatible quantum devices below 10 nm
by top-down (lithographic) techniques are also affected by low yields. In view of applications, it is
worth fixing some benchmarks that may assess the reliability of the fabrication process. As an example,
let us suppose we intend to test a quantum error correction protocol. As mentioned above, we’d need
at least three identical devices and in this case the probability to get all of these working at the same
time will drop at R3. Thus, we would need to fabricate 103 devices to get at least one working machine
to test quantum error correction code!

Concerning multi-qubit devices, a key experiment would be the implementation of Grover’s
algorithm within the ground state multiplet [58]. The Grover’s algorithm efficiently solves a specific
problem by performing a search of an item within a set of data. The sub-levels of the ground multiplet
inequivalently spaced in energy constitute an excellent playground to test this scheme since each of
them can be addressed separately by microwave pulses. Note that, in this scheme, spin entanglement
is not required, so the scheme can be implemented within a single molecule. As a proof of concept, few
sub-levels can be considered, but it is worth mentioning that the implementation is hardly scalable by
using a single molecule. It is nevertheless worth to highlight here that, so far, the Grover’s algorithm
has been implemented with trapped ions, photons, and superconducting qubits but, for the best of our
knowledge, not with other solid state platforms, such as impurities in Si.

4. Molecular Spins in Hybrid Quantum Architectures

The ability to manipulate and read out an arbitrary spin state in a molecule is certainly a
pre-requisite to be a good candidate for quantum information processing. Yet, other features are
required in view of the wider exploitation of molecular spins for quantum technologies. One of
these is the possibility to exchange quantum information between solid state registers (spins) and
flying qubits (photons). Molecules offer a broad spectrum of frequencies for an efficient coupling
with photons: nuclear spins are active at radio frequencies (MHz) while the pattern of magnetic
energy levels of electron spins fully covers the microwave (MW) range (GHz). The main challenge
is to coherently couple the spin with photons, that is, the match in energy should occur along with
the transfer of phase information. This implies that the spin manipulation should be fast enough to
overcome the decoherence mechanisms of both the spin and photon systems. Key experiments in
this context make use of microwave resonant cavities with high quality factor in which long-lived
photons trapped in the cavity couple with spins (Figure 4). First tests are typically performed in
the continuous wave operation mode, although the final goal is to obtain hybrid devices in which
quantum information is exchanged through MW pulse sequences. Coherent spin-photon states are
obtained in the so-called high coperativity regime for which the spin-photon coupling is stronger
than each decoherence rate of spins and photons [7]. Again, only molecular spins with the longest
coherence time are suitable to pass this test. Spin can couple with the magnetic component of radiation
B1 through their dipole moment gµBS, yet this interaction is in general very weak and we need to
develop strategies to enhance it. Molecular engineering may allow the enhancement of both the
Landé g-factor and the total magnetic moment of the ground multiplet beyond ordinary values
obtained for single atoms. Another strategy to strengthen the spin-photon coupling is to use spin
ensembles. It has been demonstrated in fact that the spin-photon coupling can be enhanced by a
factor of

√
N—with N being the total number of spins—by using collective modes [7]. Although the

general problem of coupling photons with a two-level system (e.g., atoms, molecules with electric
dipoles, etc.) is well documented in the literature; only recently experimental investigations focused
on spin systems have been reported. The high coperativity regime was achieved by using coplanar
superconducting resonators and NV centers [59] or Er spin impurities in inorganic matrix [60] at
mK temperature. We are currently using high Tc superconducting planar resonators [61] that show
excellent performances at finite temperature (up to 50 K, at least) and in strong magnetic fields and,
with these, we can achieve a strong coupling regime with 2,2-diphenyl-1-picrylhydrazyl (DPPH) [59]
and (3,5-Dichloro-4-pyridyl)bis(2,4,6-trichlorophenyl)methyl (PyBTM) [62] organic radicals at the
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temperature of liquid helium, and even above. It is worth noting that, in these latter cases, the
strong coupling regime was obtained by using concentrate samples that present sharp resonance lines
due to exchange narrowing. As concerns mononuclear molecular metal-spin centers, preliminary
results on diluted crystals show that we get close—but not yet fully in—to the high cooperativity
regime [63]. For comparison, a snapshot summary of these preliminary results is plotted in Figure 5.
It should be emphasized, however, that data reported in Figure 5 depend only in part on the intrinsic
features of the spin centers. Other parameters, such as temperature, number of spins, and cavity
characteristics, influence both the spin-photon coupling and the spin resonance linewidth. Thus, for
instance, in Figure 4 different values are reported for same derivative at different temperatures or spin
concentrations. Results on Cu(nmt)2 crystals are quite encouraging: if we extrapolate trend at low
temperature (open symbols) we can safely expect that the strong coupling regime can be achieved
below 1 K.
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Figure 5. Coupling strength against spin linewidth parameters as measured in different molecular spins
systems. Results can be compared with those obtained with NV centers and Er spin defects in YSiO
or YAlO. The parameters of DPPH and PyBTM organic radicals are taken from [62,63], respectively.
Data taken at different temperatures are indicated by the black arrows and by symbols of different
sizes that range from 2 K (larger symbols) to 50 K (smaller symbols). Empty symbols display the
parameters extrapolated to 0.3 K. The dashed line represent the threshold above which high cooperative
regime is achieved. Dashed rectangles show the typical working ranges used for NV centers (blue)
and Er spin centers (green) coupled to superconducting Nb planar resonators at mK temperature
region. (Reproduced from [63] with permission from the Consiglio Nazionale delle Ricerche (CNR)
and The Royal Society of Chemistry.)
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An alternative approach is to locally enhance the intensity of MW zero-point current fluctuations.
It has been proposed indeed that nano-structured superconducting strip lines may allow the
achievement of the strong coupling regime even with a single (molecular) spin, and this can be
used for scalable architectures [64]. Experiments are currently testing different solutions since the
detection of tiny signals requires extraordinary sensitivity. By using Josephson junctions amplification,
the detection of a small ensemble of about 103 spins has been reported and this is, at present, the best
performance of EPR nano-detection [65]. The use of electric field component to manipulate spins is a
further attractive alternative and several mechanisms have been proposed [66] and they are currently
under investigation [67].

Achieving strong coupling regime with microwave photons allows the integration of molecular
spins in hybrid quantum devices. Superconducting circuits are normally used as a bus to transfer
quantum information between different quantum memories and registers. In a recent experiment,
we have demonstrated that we can couple two or more distinguished spin ensembles through
resonant microwaves photons by spectroscopic measurements [62]. Next steps along this line could
be the integration of molecular spins in more complex superconducting circuits with the encoding
of sequences of MW pulses. This will eventually allow the performance of quantum algorithms [68]
or simply to transfer qubits from fast quantum registers to memories. Along this line, pulse MW
sequences have been used to efficiently transfer qubits in hybrid superconducting circuits with NV
centers [69]. Again, we may learn a significant amount from fields close to molecular magnetism!
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