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Abstract: The complex [Dy(L)(tta);] with L the chiral 3-(2-pyridyl)-4-aza[6]-helicene ligand
(tta™ = 2-thenoyltrifluoroaacetonate) has been synthesized in its racemic form and structurally
and magnetically characterized. [Dy(L)(tta);] behaves as a single molecule magnet in its crystalline
phase with the opening of a hysteresis loop at 0.50 K. These magnetic properties were interpreted
with ab initio calculations.

Keywords: single molecule magnets; lanthanide; helicene; magnetic anisotropy; ab initio calculations

1. Introduction

The design of single molecule magnet (SMM), with the aim of enhancing its peculiar magnetic
properties, has been a prolific field in the scientific community for decades [1-3]. Indeed, SMMs
can pave the way towards a new generation of materials as, for example, molecular qubits for
quantum computing [4], memory storage devices [5] or spin valves [6]. In this framework, lanthanide
ions are commonly exploited in the effort of reaching slower relaxation rates for the reversal of the
magnetization. Indeed, lanthanides are well classified by looking at their electron density distribution,
ranging from oblate (planar) to prolate (axial) distribution [7]. This is mainly due to their strong
spin-orbit coupling, which leads to ground states with large angular momentum J and strong magnetic
anisotropy. The crystal field, induced by the donor atoms of the ligands, acts only as a perturbation
on the electron density distribution, leading to a fine-tuning of the electronic properties and so of the
molecular magnetism. As a consequence, the careful choice of the lanthanide ion and of the ligands
(and the induced symmetry) can be used to engineer novel SMMs. However, a complete elucidation of
these magneto-structural correlations for these complexes is still missing, even if progresses have been
done recently [8-11].

For all the applications mentioned above, it is crucial to study the correlation between the SMM
behavior and other physical properties such as luminescence or redox activity [12]. The versatility
of ligand chemistry can be exploited in this sense and may offer the possibility to have in a single
compound, for instance, a magnetic emitting nanodevice [13-15]. Indeed, lanthanides have been
intensively studied for their peculiar luminescence that covers a broad range of frequencies (from
visible to near IR) with sharp line shape emission bands and long lifetime of the excited states [16-22].
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However, they show very low absorption coefficients, since the f—f transitions are indeed prohibited
(Laporte rule) [23]. This results in ineffective direct excitation processes, especially in dilute solution.
To tackle this problem, indirect sensitization, using for example MLCT (Metal-Ligand Charge Transfer)
transitions, has been developed by means of ligands functionalization with organic chromophores
acting as antennae [24]. In the case where the antenna is chiral, the solid-state properties might change
between the enantiopure and the racemic crystals. Besides, the magnetic properties of these atoms
can be used to modify the light absorption in chiral compounds, an effect known as magneto-chiral
dichroism [25,26].

A first example of the coupling between a Dy'!!-based SMM and a chiral antenna has been
reported recently with the complex [Dy(L)(hfac)s] with L = 3-(2-pyridyl)-4-aza[6]-helicene and hfac
=1,1,1,5,5,5-hexafluoroacetylacetone [27]. The DyHI ion, with its 6H15 /2 ground state, easily leads to
Ising type of magnetic anisotropy in coordination spheres like NoOg and this is achieved with the
common bidentate 2,2’-bipyridine (bpy) ligand and three hfac™ ligands [13,28-30]. On the other hand,
a 2,2'-bipyridine (bpy) ligand has been functionalized with a [6]-helicene to enhance the luminescence.
Indeed, the latter presents a m-conjugated backbone of aromatic rings, configurationally stable for
n > 5, and its peculiar topology results in intense emission [31,32]. Moreover, [1n]-helicene ligands are
helically-shaped, so they possess a chirality despite the absence of enantiocenter. Due to these intrinsic
properties, this family of ligands is widely employed for various applications, ranging from organic
molecular electronics [33], probes for detection of chirality and sensing devices [34] to molecular
junction [35].

In the case of the [Dy(L)(hfac);] SMM [27], the chirality of the ligand results in two possible crystal
structures (racemic and enantiopure) with similar molecular arrangement but different packings.
Interestingly, racemic and enantiopure crystals show notable different magnetic behavior, with the
opening of a magnetic hysteresis only in the case of the enantiopure. Moreover, the calculated different
nature (antiferromagnetic and ferromagnetic) of the dipolar couplings between first-neighbors allows
explaining the magnetic measurements (e.g., temperature dependence of x\T).

With the aim to enhance the magnetic properties in this series of compounds, we present herein
anovel derivative in which the hfac™ ligands have been replaced by tta™ (2-thenoyltrifluoroaacetonate)
ligands. Indeed, it is well known that the swapping of these two ligands in such specific NyOg
environment enhances the magnetic properties [36-38], even if in other coordination environments the
opposite effect has been recently observed [39]. Therefore, we report the synthesis, the single crystal
X-ray structural analysis and the magnetic characterization along with extensive ab initio calculations
of the novel compound [Dy(L)(tta)s] (1).

2. Results and Discussion

2.1. Structure

Complex 1 was obtained by the coordination reaction of the chiral 3-(2-pyridyl)-4-aza[6]-
helicene [39,40] ligand (L) and ’fris(2-thenoyltriﬂuoroaace’rona’fe)bis(aqueous)DyIH in CH,Cl, (Scheme 1).

(L) Dy(tta);-2H,0 (1)

Scheme 1. Synthetic route to obtain complex 1.
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1 crystallizes in the triclinic centrosymmetric space group P-1 (Figure 1 and Figure S1, Table S1).
The Dy'"! ion is surrounded by two nitrogen atoms and six oxygen atoms coming from the three
2-thenoyltrifluoroacetonate (tta™) anions and the L ligand. The N,Og coordination polyhedron can be
described as a distorted square antiprism environment (Dy; symmetry on the basis of SHAPE analysis,
Table S2) [41]. Thus, the replacement of the 1,1,1,5,5,5-hexafluoroacetylacetonate anions with tta™ ones
confers an higher symmetry for the coordination environment [27]. As already noted, such observation
was already done for another complex stemming from this group and a significant positive impact on
the magnetic properties was observed [37,38].

Figure 1. Molecular structure of 1. Hydrogen atoms and molecules of crystallization are omitted for
clarity. Selected bond lengths: Dy1-N1, 2.560(3) A; Dy1-N2, 2.549(3) A; Dy1-01, 2.341(3) A; Dy1-02,
2.296(3) A; Dy1-03, 2.359(3) A; Dy1-04, 2.356(3) A; Dy1-05, 2.322(3) A; Dy1-06, 2.341(3) A.

Starting from the racemic mixture of L, both enantiomers are present in the cell (P-1 space group
symmetry). The crystal packing reveals that heterochiral dimers are formed with the presence of
77t interactions between the 2,2"-bipyridyl moieties (Figure 2) while an organic network runs along
the a-axis thank to 7—7 interactions between the helicenic parts. The Dy-Dy shortest intermolecular
distance was measured equal to 8.935 A which is similar to the distance measured in the complex
involving the Dy(hfac); metallo-precursor.

Figure 2. Crystal packing of 1 along the a-axis. “Spacefill” and “ball and sticks” representations are
used for L ligands and organometallic moieties, respectively.
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2.2. Magnetic Properties

2.2.1. Static Magnetic Measurements

The temperature dependence of xuT for the sample 1 is represented in Figure 3. The room
temperature value is 13.96 cm®K'mol™! in good agreement with the expected value of
14.17 cm3-K-mol ! for an isolated Dy' ion [42]. Upon cooling, x\T decreases monotonically down to
11.20 cm®-K-mol ! due to the thermal depopulation of the M; states. Below 5K, the more rapid decrease
could be attributed to the presence of weak dipolar antiferromagnetic interactions as determined by
quantum calculations on the analogue complex involving hfac™ ancillary ligands [27]. The field
dependence of the magnetization measured at 2.0 K reaches the value of 5.12 N3 under a magnetic
field of 50 kOe, in agreement with the expected value (5 Nf) for an Ising ground state (Inset of
Figure 3).
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Figure 3. Temperature dependence of x\1T for 1 (black circles). The inset shows the field variations of
the magnetization at 2 K. Full red lines correspond to the simulated curves from ab initio calculations.

2.2.2. Dynamic Magnetic Measurements

The out-of-phase component of the ac susceptibility (xy'’) of 1 was measured using immobilized
crunched single crystals. It shows frequency dependence in zero external dc field with clear maxima on
the xam'/ vs. v curves (v the frequency of the ac oscillating field) up to 13 K (Figure 4a). The frequency
dependence of the ac susceptibility can be analyzed in the framework of the extended Debye model
(Figures S2 and S3) [43,44]. The temperature dependence of the relaxation time at zero field is extracted
between 2.0 and 14.0 K (Table S3). Formally, four different relaxation mechanisms coexist: Direct,
Raman, Orbach and QTM [2]. The former disappears in the absence of external field while the second
and the third are field-independent. The latest is the only temperature independent mechanism. Fitting
of the zero-field data with only Raman and QTM is not satisfactory while Raman + Orbach + QTM
leads to unrealistic results owing to over-parameterization. The only realistic picture is given by the
Orbach + QTM combination. The relaxation time follows the Arrhenius law T = 19 exp(A/kT) only
above 12 K with 1y =2.6(2) x 107® s and A = 38.7(2) cm ! (Figure 4d, open squares) with dominant
QTM mechanism (tgrm = 7.0(3) X 104 s) at low temperature.

In order to reduce the QTM operating in this system, the optimal magnetic field of 1000 Oe was
determined by a scan field (Figure 4b). The application of this moderate external dc field induces
a slowing down of the magnetic relaxation with a shift of the maxima of the xy”’ vs. v curve at lower
frequencies (Figure 4c). It must be mentioned that at moderate fields at least two relaxation processes
coexist which merge into one at higher fields than 800 Oe (Figure 4b). Any attempts to fit the thermal
behavior of the relaxation time with a combination of the previously mentioned mechanisms fail
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with a reasonable set of data. The thermal dependence of the relaxation time of the magnetization
(Figures 54 and S5 and Table 54) can be fitted considering a combination of two thermally dependent
regimes between 3.0 and 14.0 K (Orbach processes) (19 = 2.0(7) x 1077 s and Ag = 68.1(3) cm™ !,
T = 4.9(6) x 107* s and A; = 16.0(5) cm~!). Relaxation times on the order of few seconds is slow
enough to observe the opening of the hysteresis loop at 0.50 K (Figure 5) which remains opened at
higher temperatures (Figure 56). One must mention that the hysteresis loop of the racemic form of
[Dy(L)(hfac)s] [27] was closed at the same temperature.
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Figure 4. (a) Frequency dependence of x\;’ between 2 and 14 K; (b) scan field of the frequency
dependence of '’ at 2 K; (c) frequency dependence of xy”’ between 2 and 14 K under an applied
magnetic field of 1000 Oe; and (d) temperature variation of the relaxation time measured in zero field
(open squares) and in an external field of 1000 Oe (full squares) with the best fitted curve (red lines) in
the temperature range of 2-14 K.

Oe

Figure 5. Magnetic hysteresis loop of 1 measured at 0.5 K at a sweep rate of 16 Oe-s~ 1.

2.2.3. Ab Initio Calculations

Various theoretical models, with various pros and cons, are available to predict the magnetic
properties of lanthanides, ranging from complete active space ab initio methods (e.g., CASSCF or
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CASPT2) to semi-empirical methods (e.g., radial effective charge model, REC) [45]. To study the
electronic structure of the present compound, we choose SA-CASSCF/RASSI-SO calculations as
a good compromise between accuracy with respect to the experimental evidence and “first principle”
theoretical model.

Calculations were performed for 1 to understand the observed magnetic properties comparing
with the ab initio calculated electronic structure (see computational details). The calculated xpT vs.
T and M vs. H (Figure 3) curves fairly well reproduce the experimental curves, even if the agreement
for the x\mT vs. T data is still semi-quantitative. Calculations confirm the axial character of the magnetic
anisotropy tensor of the ground Kramers doublet with large g, values of 19.55 and almost negligible
gx and gy, values. The g value for Dy'!! is close to the expected g. = 20 for a pure M; = | +£15/2>
ground state. This is confirmed by the calculated composition of M; = 0.94 | £15/2> +0.06 | £11/2>
for the ground doublet state of 1 (see Table S5 for the wavefunction composition). The calculated
ground-state easy axis (Figure 6) for the Dyl

2,2'-bipyridine moieties as expected for an oblate ion with this coordination sphere [31,36].

ion is oriented perpendicular to the plane formed by the

Figure 6. Representation of complex 1 with the theoretical orientation of the easy magnetic axis of the
Dyl center.

Even if the uniaxiality of the anisotropy is not strictly associated to slow relaxation of the
magnetization [46], in most of the cases reported in the literature for Dy'! this assumption is valid.
Indeed, in this case, the magnetic relaxation pathways can also be easily interpreted on the basis of
magnetic transition moments (Figure 7) calculated with the SINGLE_ANISO program [47,48]. It has
to be pointed out that in the latter not all the contributions are included. Indeed, the coupling of
spin-phonon degrees of freedom in the SMM relaxation is not taken into account in the ab initio model
whereas it has been recently evidenced of general importance [49,50]. However, these discrepancies are
common in literature [3,51,52] and the magnetic transition moments calculated in this work still leads to
a fairly good qualitative picture. Indeed, no direct transition between the two M states of the ground
doublet or Orbach processes from the ground state are expected whereas relaxation mechanisms
involving states from the third M; state are highly probable. A non-negligible Orbach process has been
also found between the second and third M; states. The calculations indicate a difference between
the calculated energy barrier (A = 82 cm™!) and the experimental barrier (A = 39-68 cm~!). However,
the discrepancy between these values can be, reasonably, ascribed in the spin-phonon contributions
mentioned above.
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Figure 7. Computed magnetization blocking barrier in complex 1 for the Dyl ion. Numbers provided
on each arrow are the mean absolute values for the corresponding matrix elements of the magnetic
transition dipole moment.

3. Materials and Methods

3.1. Synthesis. General Procedures and Materials

The precursor Dy(tta);-2H,O [53] (tta™ = 2-thenoyltrifluoroacetonate anion) and the ligand
3-(2-pyridyl)-4-aza[6]-helicene [40,54] L were synthesized following previously reported methods.
All other reagents were commercially available and used without further purification.

3.2. Synthesis of Complex [Dy(tta)3(L)]-CH,Cl,-C7Hg (1)

Dy(tta);-2H,0O (17.2 mg, 0.02 mmol) were dissolved in 5 mL of CH,Cl, and then added to
a solution of 5 mL of CH,Cl, containing 8.3 mg of L (0.02 mmol). After 20 min of stirring, 30 mL of
toluene were layered at 4 °C in the dark. Slow diffusion following by slow evaporation lead to yellow
single crystals which are suitable for X-ray studies. Yield: 15.2 mg (54% based on Dy). Anal. Calcd (%)
for CeoHyoCloDyFgN,OgS3: C 52.78, H 2.84, N 1.99; found: C 52.72, H 2.81 N, 2.09. LR. 3426 (m),
2923 (w), 1604 (s), 1588 (m), 1566 (m), 1493 (m), 1468 (m), 1429 (m), 1256 (s), 117 (m), 1091 (w), 1046 (w),
991 (w), 963 (w), 848 (w), 815 (w), 797 (s), 773 (m), 755 (m), 654 (m), 542 (m), 503 (m) cm ™.

3.3. Crystallography

Single crystal of [Dy(tta);(L)]-CH,Cl,-CyHg (1) was mounted on a APEXII Bruker-AXS
diffractometer for data collection (MoK radiation source, A = 0.71073 A). The structure was solved by
direct methods using the SIR-97 program and refined with a full matrix least-squares method on F?
using the SHELXL-97 program [55,56]. Crystallographic data are summarized in Table S1. Complete
crystal structure results as a CIF file including bond lengths, angles, and atomic coordinates are
deposited as Supporting Information. CCDC number is 1510324 for compound 1.

3.4. Physical Measurements

The elementary analyses of the compound were performed at the Centre Régional de Mesures
Physiques de 'Ouest, Rennes, France. The dc magnetic susceptibility measurements were performed
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on solid polycrystalline sample with a Quantum Design MPMS-XL SQUID magnetometer between 2
and 300 K in an applied magnetic field of 0.02 T for temperatures in the range 2-20 K, 0.2 T between
20 and 80 K and 1 T for temperatures between 80 and 300 K. These measurements were all corrected
for the diamagnetic contribution as calculated with Pascal’s constants. The ultra-low temperature
measurements (below 1.8 K) were performed with the help of a 3He insert.

3.5. Computational Details

Wavefunction-based calculations were carried out on molecular structures of 1 by using the
SA-CASSCE/RASSI-SO approach, as implemented in the MOLCAS quantum chemistry package
(versions 8.0) [57]. In this approach, the relativistic effects are treated in two steps on the basis of
the Douglas—Kroll Hamiltonian. First, the scalar terms were included in the basis-set generation
and were used to determine the spin-free wavefunctions and energies in the complete active
space self-consistent field (CASSCF) method [58]. Next, spin-orbit coupling was added within the
restricted-active-space-state-interaction (RASSI-SO) method, which uses the spin-free wavefunctions
as basis states [59,60]. The resulting wavefunctions and energies are used to compute the magnetic
properties and g-tensors of the lowest states from the energy spectrum by using the pseudo-spin S =1/2
formalism in the SINGLE-ANISO routine [47,48]. Cholesky decomposition of the bielectronic integrals
was employed to save disk space and speed-up the calculations [61]. For 1 the active space of the
self consistent-field (CASSCF) method consisted of the nine 4f electrons of the DyIH ion spanning the
seven 4f orbitals, i.e., CAS(9,7)SCEF. State-averaged CASSCF calculations were performed for all of the
sextets (21 roots), all of the quadruplets (224 roots), and 300 out of the 490 doublets (due to hardware
limitations) of the Dy jon. Twenty-one sextets, 128 quadruplets, and 107 doublets were mixed
through spin—orbit coupling in RASSI-SO. All atoms were described by ANO-RCC basis sets [62-64].
The following contractions were used: [8s7p4d3f2glh] for Dy, [4s3p2d1f] for the O and N atoms,
[3s2p1d] for the C and F atoms, [4s3pld] for the S atoms and [2s1p] for the H atoms. The atomic
positions were extracted from the X-ray crystal structures. Only the position of the H and F atoms were
optimized on the Y!!' parent complexes with the Gaussian 09 (revision D.01) package [65] employing
the PBEO hybrid functional [66,67]. The “Stuttgart/Dresden” basis sets [68] and effective core potentials
were used to describe the yttrium atom, whereas all other atoms were described with the SVP basis
sets [69].

4. Conclusions

In the course of intermixing chirality offered by the nature of the ligands and SMM properties,
we extend herein the family of [6]-helicene-based lanthanide SMM [27]. We report the synthesis
of the complex [Dy(L)(tta);] with L the chiral 3-(2-pyridyl)-4-aza[6]-helicene ligand (tta~ =
2-thenoyltrifluoroaacetonate). Its racemic form was structurally and magnetically characterized.
[Dy(L)(tta)3] behaves as a single molecule magnet in its crystalline phase. As expected, the substitution
of hfac™ ligands by tta™ moieties enhances the magnetic behavior with the opening of an hysteresis
loop at 0.50 K that was only observed for the enantiopure forms in the case of [Dy(L)(hfac)s] [27].
The electronic structure of the complex has been elucidated by mean of SA-CASSCF/RASSI-SO
calculations, highlighting the nature of the ground state and contributing in the interpretation of
experimental evidences. A qualitative picture of the magnetization blocking barrier is also reported.
In the near future, we will pursue our investigation of chiral lanthanide-based SMMs that may offer
new perspectives in both the domains of molecular magnetism and chirality with the potential access
of properties such as circularly polarized luminescence (CPL) activity that remains anecdotic for
lanthanide compounds to date.

Supplementary Materials: The following are available online at www.mdpi.com/2312-7481/3/1/2/s1, Figure S1:
ORTEP view of 1. Thermal ellipsoids are drawn at 30% probability. Hydrogen atoms and solvent molecules of
crystallization are omitted for clarity., Figure S2: Frequency dependence of the ac susceptibility components xy’
and xp'’ at 10 K and in zero external dc field for compound 1 with the best fitted curve with extended Debye
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model, Figure S3: Frequency dependence of the ac susceptibility components xp1" and xp”/ at 10 K and in 1000 Oe
external dc field for compound 1 with the best fitted curve with extended Debye model; Figure S4: Cole-Cole plots
using the ac data performed under zero magnetic field. The black lines correspond to the fit with a generalized
Debye model; Figure S5: Cole-Cole plots using the ac data performed under 1000 Oe magnetic field. The black
lines correspond to the fit with a generalized Debye model; Figure S6: Magnetic hysteresis loop of 1 measured at
0.5,1.0 and 1.5 K; Table S1: X-ray crystallographic data of 1; Table S2: SHAPE analysis for 1; Table S3: Best fitted
parameters (XT, Xs, T and &) with the extended Debye model 1 at zero field in the temperature range 2.0-15 K;
Table S4: Best fitted parameters (xt, Xs, T and «) with the extended Debye model 1 at 1 kOe in the temperature
range 1.8-5 K; Table S5: Computed energies, g-tensor and wavefunction composition of the ground state doublet

in the effective spin % model for 1.
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Abbreviations

The following abbreviations are used in this manuscript:

SMM Single Molecule Magnet

TTF TetraThiaFulvalene

CH,Cl, Dichloromethane

hfac 1,1,1,5,5,5-hexafluoroacetylacetonate

tta 2-thenoyltrifluoroacetonate

PCM Polarizable Continuum Model

CASSCF Complete Active Space Self-Consistent Field
RASSI-SO Restricted Active Space State Interaction—Spin-Orbit
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