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Abstract: To develop novel magnetic conductors exhibiting conducting/magnetic bifunctionalities
and peculiar responses to applied magnetic fields, we synthesized new EDT-TTF (ethylenedithio-
tetrathiafulvalene) donor containing a 2,2,5,5-tetramethylpyrrolin-1-yloxyl radical through a
π-conjugated vinylene spacer 1 and examined its electronic and crystal structures, and physical
properties. We also prepared its cation radical salts by an electrochemical oxidation method and
successfully cleared the crystal structures and magnetic properties of the cation radical salts, 1·FeCl4
and 1·GaCl4. These salts have strongly dimerized one-dimensional arrays of the fully oxidized donor
molecules, giving rise to the formation of spin-singlet state of the π cation radical spins in the dimer.
On the other hand, the FeCl4− anion locates on the side of the dimers with very short S-Cl contacts
and mediates very strong π-d interaction between the donor and anion moieties, resulting in the
antiferromagnetic behavior of the Weiss temperature of θ = −3.9 K through its d-π-d interaction.

Keywords: TTF; molecular conductors; magnetic properties; X-ray crystal structure analyses; stable
organic radicals; 2,2,5,5-tetramethylpyrrolin-1-yloxyl radical

1. Introduction

In the field of molecular conductors, much interest has been focused on the development
of magnetic conductors, which simultaneously exhibit conducting properties of organic layers
of π-electron donors and magnetic properties of inorganic layers of magnetic transition metal
anions. In such conductors, the conducting properties of organic layers can be controlled
by the application of external magnetic fields and several peculiar physical phenomena
such as field-induced superconductivities in the λ- and κ-type BETS salts with FeX4

−

anions (BETS = bis(ethylenedithio)tetraselenafulvalene; X = Cl and Br) [1–3] and anomalies of
magnetoresistances corresponding to the spin-flop transitions of magnetic Fe3+ spins [4,5] have been
yielded through the π-d interaction between the π-electrons of the organic layers and the magnetic d
spins. On the other hand, the studies on molecular conductors using donor molecules substituted with
stable organic radicals such as 2,2,6,6-tetramethylpiperidin-1-yloxyl (TEMPO) and nitronyl nitroxide
radicals have been performed by several research groups [6–9] because cation radical salts of such stable
radical-containing donors are expected to have strong intramolecular magnetic interactions between
their π-cation radical spins and stable radicals and to show outstanding responses to the application
of external magnetic fields [10]. Among them, we have also reported several tetrathiafulvalene
(TTF)-based donor molecules containing stable organic radical parts such as TEMPO and
2,2,5,5-tetramethylpyrrolidin-1-yloxy (PROXYL) radicals [11–13], and discovered highly conducting
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cation radical salts using bis-fused TTF (TTP = 2,5-bis(1,3-dithiol-2-ylidene)-1,3,4,6-tetrathiapentalene)
donors and a PROXYL radical [14–16]. Furthermore, we have developed new TTF and TTP
donors containing a 2,2,5,5-tetramethylpyrrolin-1-yloxyl radical [17] because this radical part has
an unsaturated 3-pyrroline ring with a C=C bond and smaller steric hindrance in comparison to
the PROXYL radical having a saturated 3-pyrrolidine ring. However, conducting cation radical
salts of these donors containing a 2,2,5,5-tetramethylpyrrolin-1-yloxyl radical could not be obtained
probably due to the steric bulkiness of the radical part that is connected almost orthogonally to the
ethylenedithio bridge of these donor molecules [17]. Therefore, to minimize the steric bulkiness of
this radical part, we designed a new ethylenedithio-tetrathiafulvalene (EDT-TTF) molecule containing
a 2,2,5,5-tetramethylpyrrolin-1-yloxyl radical through a π-conjugated vinylene spacer 1 because its
π-conjugated hexatriene chain will ensure the coplanarity between the TTF and stable radical parts.
In this paper, we will report the synthesis, electronic and crystal structures, and physical properties
of new molecule 1. Furthermore, we will discuss the detail of X-ray single crystal structure analyses
and magnetic properties of the FeCl4− and GaCl4− salts of molecule 1 prepared by an electrochemical
oxidation method. Because the FeCl4− salt contains three kinds of spins, namely, the π-cation radical
spins of the donor parts, the stable organic radicals and the Fe3+ d spins, the magnetic interactions
between these spins are of special interest.

2. Results and Discussion

2.1. Synthesis of Donor 1

The EDT-TTF molecule containing a 2,2,5,5-tetramethylpyrrolin-1-yloxyl radical 1 was prepared
as described in Scheme 1. The Wittig reagent of stable radical part 4 was prepared by the reported
method from the corresponding bromomethyl derivative 3 [18], and was reacted successively with
t-BuOK and formyl-substituted EDT-TTF 2 [19] in dry benzene at room temperature. After the
column-chromatographic separation of the resultant mixture, donor molecule 1 having a vinylene
spacer was obtained as air-stable orange microcrystals in 53% yield.
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Scheme 1. Synthesis of donor 1.

2.2. Electrochemical Properties and DFT Calculation of Donor 1

Electrochemical properties of 1 were investigated by cyclic voltammetry technique.
Cyclic voltammograms were measured in benzonitrile at 25 ◦C using tetra-n-butylammonium
hexafluorophosphate as a supporting electrolyte. The obtained redox potentials of donor 1 are
summarized in Table 1 together with those of EDT-TTF and 2,2,5,5-tetramethylpyrrolin-1-yloxyl
radical derivative 5 [20] measured under the identical conditions. Molecule 1 showed three pairs of
one-electron reversible redox waves (E1, E2 and E3). The E1 and E2 values (+0.50 V and +0.87 V vs.
Ag/AgCl) are almost the same to those of EDT-TTF (+0.48 V and +0.88 V), suggesting that the first and
second oxidations occur at the EDT-TTF part. Similarly, the third oxidation (E3) occurs at the stable
radical part because the E3 value of 1 (+0.96 V) is almost the same as that of 5 (+0.99 V). These results
suggest that the HOMO orbital of donor 1 mainly locates on the EDT-TTF part.

A molecular orbital calculation of donor 1 was performed on the basis of the DFT theory at
UB3LYP/6-31G(d, p) level using GAUSSIAN 09 package [21]. Figure 1 shows the molecular orbitals
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of donor 1 below the LUMO+2 level. The highest occupied two orbitals (120α and 119β: –4.76 eV)
originate from the EDT-TTF part and the SOMO located under the HOMO orbitals (119α: –5.00 eV)
localizes at the stable radical part. These results correspond to the above-mentioned electrochemical
studies and indicate that the generated cation radical spin that exists on the EDT-TTF part and the
localized stable radical spin can coexist in its cation radical salts prepared by an electrochemical
oxidation method.

Table 1. Redox potentials 1 of 1, ethylenedithio-tetrathiafulvalene (EDT-TTF) and stable organic radical 5.
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2.3. Crystal Structure Analysis and Physical Properties of Donor 1

X-ray crystal structure analysis was performed on an orange platelike single crystal of 1, which was
obtained by recrystallization from dichloromethane/n-hexane. Figure 2 shows the ORTEP drawings
of the molecular structure of 1. This crystal belongs to the monoclinic P21/c space group and one
crystallographically independent molecule exists in the unit cell. As shown in Figure 2b, the TTF part
adopts a boat-form conformation as is often observed in the neutral TTF derivatives. The vinylene
spacer part has a trans-conformation and the vinylene spacer and pyrrolin-1-yloxyl parts show high
planarity. This molecule has a slightly twisted molecular structure with a dihedral angle of 26◦ between
the EDT-TTF moiety and radical moiety. As shown in Figure 3, the molecules are dimerized in a
head-to-tail manner and form a so-called “κ type” molecular arrangement. The shortest S–S contacts
are 3.61 Å in the dimer and 3.90 Å between the dimers. Because the shortest distances between the
oxygen atoms of the stable radicals are 6.10, 6.17, and 6.43 Å, the intermolecular interaction between
the radical parts seems to be very weak in the neutral crystal.
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Magnetic susceptibilities of neutral donor 1 were measured with a SQUID magnetometer
(MPMS-XL, Quantum Design Inc., San Diego, CA, USA) under the applied field of 10 kOe in the
temperature range of 2–300 K using a powder sample of 1. The temperature dependence of magnetic
susceptibilities can be fitted by a Curie-Weiss law with a Curie constant of 0.365 emu·K·mol−1 that
corresponds to the one S = 1/2 spin of the stable radical with a g-value of 2.00 per molecule and small
Weiss temperature of θ = −1.5 K, suggesting the existence of very weak antiferromagnetic interaction
between the stable radicals (See Figure S1a).

2.4. Crystal Structure Analyses and Magnetic Properties of the Cation Rarical Salts of Donor 1

X-ray crystal structure analyses were performed on needle-like single crystals of the FeCl4− and
GaCl4− salts of donor 1, 1·FeCl4 and 1·GaCl4 obtained by galvanostatic oxidation in the mixture of dry
1,2-dichloroethane and dry ethanol (v/v = 1:9) using the tetraethylammonium salts of the counteranions
as supporting electrolytes. Because these two crystals belong to the monoclinic P21/n space group and
are completely isostructural to each other, only the structure of 1·FeCl4 will be discussed in detail in
this section. In the unit cell, one donor 1 and one anion moiety are crystallographically independent,
indicating that the donor:anion ratio of these crystals is 1:1 and each of the donor moieties is in the
monocation radical state 1+·. The ORTEP drawings of the molecular structure and the crystal structures
of 1·FeCl4 are shown in Figures 4 and 5, respectively. As shown in Figure 4, the molecular structure of
the donor moiety of 1·FeCl4 is similar to that of the neutral one (Figure 2), but is more planar with a
dihedral angle of 15◦ between the EDT-TTF moiety and radical moiety than that of the neutral one (26◦).
Furthermore, the TTF framework has quite high planarity with a mean deviation from the least-squares
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plane of 0.027 Å due to its +1 oxidized state. As shown in the crystal structures (Figure 5), two donor
molecules form a dimer in a head-to-tail manner with a very short interplanar distance of 3.41 Å in
the dimer (interaction a1; the shortest S–S contact is 3.44 Å). The dimers construct a one-dimensional
stacking structure along the a-axis with a longer interplanar distance of 3.63 Å between the dimers
(interaction a2; the shortest S–S contact is 3.93 Å). Overlap integrals between the donor moieties along
these stackings, which are calculated by the extended Hückel method [22], are a1 = 41.5 × 10−3 and
a2 = 0.29 × 10−3, indicating its quite strongly dimerized one-dimensional electronic structure. On the
other hand, the anion moiety locates on the side of the dimers with very short S–Cl contacts of 3.34 Å
(interaction I) and 3.59 Å (interaction II), suggesting very strong π-d interaction between the donor
and anion moieties. These anions form a uniform one-dimensional array with a relatively long Cl–Cl
contact of 3.90 Å (interaction dd1) along the a-axis, suggesting weak direct intermolecular interaction
between the anions. Furthermore, the oxygen atom of the stable radical part has a short O–S contact of
2.94 Å with the neighboring EDT-TTF moiety as shown in Figure 5a.
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Paramagnetic susceptibilities (χp) of 1·FeCl4 and 1·GaCl4 were measured under the applied field
of 10 kOe in the temperature range of 2–300 K. The temperature dependence of χp values of the GaCl4−

salt obeyed a Curie law with a Curie constant of 0.371 emu·K·mol−1 that is very close to the calculated
value for one S = 1/2 spin system per 1:1 salt (0.375 emu·K·mol−1) (See Figure S1c). This result
suggests that two π cation radical spins on two EDT-TTF moieties in one dimer are paired to each other
due to the strong intradimer interaction a1, resulting in the formation of a nonmagnetic spin-singlet
state, and only the contribution from the stable radical part can be observed. On the other hand, the
FeCl4− salt indicated a Curie-Weiss fitting of the temperature dependence of χp values with a Curie
constant of 4.89 emu·K·mol−1 that corresponds to the sum of the calculated contributions from the
high-spin Fe3+ spin (S = 5/2; 4.375 emu·K·mol−1) and the stable radical (S = 1/2; 0.375 emu·K·mol−1)
(See Figure S1b). The obtained Weiss temperature of −3.9 K suggests the existence of antiferromagnetic
interaction between these spins. Due to the strongly dimerized structure of fully oxidized EDT-TTF
moieties, these two salts showed insulating conducting behaviors.

Magnetic exchange interactions (Jππ, Jdd, Jπd and JRd) between these paramagnetic moieties (the
π cation radical on the EDT-TTF (π), the stable radical (R) and the magnetic FeCl4− anion (d)) are
estimated from the overlap integrals calculated by the extended Hückel method [23,24]. The π-π
interactions in the dimer (a1 = 41.5 × 10−3) and between the dimers (a2 = 0.29 × 10−3) correspond to
Jππ1 = 3996 K and Jππ2 = 0.19 K, respectively, confirming the nonmagnetic state of the donor parts due
to the spin-singlet formation caused by the strong dimerization. The calculated direct d-d interaction
between the anions along the a-axis is a very small value of Jdd1 = 0.09 K due to its long Cl–Cl distance
of 3.9 Å in comparison to the sum of the van der Waals radii of chlorine atoms (3.6 Å). On the other
hand, the π-d interactions between the EDT-TTF moiety and the FeCl4− anion are very large values
of JI = 7.7 K and JII = 19.6 K reflecting very short S–Cl contacts of 3.34 Å (interaction I) and 3.59 Å
(interaction II) between them mentioned above, while the interactions between the stable radical R and
the anion moiety are estimated to be small values of JRd1 = 0.30 K, JRd2 = 0.32 K, JRd3 = 0.03 K, and JRd4
= 0.77 K using the SOMO orbital localized on the stable radical (See Figure 5c). Such short S–Cl contacts
can mediate the antiferromagnetic interaction between the donor and anion moieties as reported in
(TTF)3 [(Cl)(Mo6Cl14)] complex in which a charge-enhanced S(δ+)–Cl(δ−) intermolecular interaction
(3.229 Å) plays an important role to cause antiferromagnetic ordering of the complex [25]. Although
the short O–S contact of 2.94 Å between the oxygen atom of the stable radical part and the neighboring
EDT-TTF moiety might mediate the magnetic interaction between the stable radical parts, quite small
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Weiss temperature of 0.03 K of the GaCl4− salt suggests that the magnetic exchange interaction JRπ

between the radical part and the donor part is negligible. The overall Jdd, Jπd and JRd values of this
salt are obtained as the mean-field sum; Jdd = 2Jdd1 = 0.18 K, Jπd = JI + JII = 27.3 K and JRd = JRd1 + JRd2
+ JRd3 + JRd4 = 1.42 K, respectively, suggesting that the π-d interaction Jπd seems to be dominant in
the magnetic properties of this salt. Because the d-d interaction Jdd between the FeCl4− anion is a
very small value of 0.18 K compared to the Weiss temperature of −3.9 K, the strong π-d interactions
(I and II) and strong π-π interaction in the dimer (a1) will mediate an indirect antiferromagnetic d-d
interaction of θ = −3.9 K through its d-π-d interaction in addition to the small contribution by the
magnetic interaction between the stable radical and the anions, JRd = 1.39 K.

3. Materials and Methods

General Remarks: Benzene was distilled under nitrogen atmosphere over calcium hydride. 1,
2-Dichloroethane was distilled under nitrogen atmosphere over P2O5. Other chemical reagents were
purchased and used without further purification. High-resolution mass spectra (HRMS) using FAB+

method was measured using a JEOL JMS-700 mass spectrometer (JEOL Ltd., Akishima, Tokyo, Japan).
IR spectra were recorded on KBr pellets using a JASCO FT/IR-4100 spectrometer (JASCO Corp.,
Hachioji, Tokyo, Japan). Cyclic voltammograms were measured using a BAS Electrochemical Analyzer
Model 612B (BAS Inc., Sumida-ku, Tokyo, Japan). ESR spectrum of the benzene solution of 1 was
measured at room temperature with a JEOL JES-RE1X X-band ESR spectrometer (JEOL Ltd., Akishima,
Tokyo, Japan).

Synthesis of 1: A solid mixture of t-BuOK (70 mg, 0. 62 mmol) and 4 [18] (180 mg, 0.37 mmol) was
suspended in 30 mL of dry benzene under nitrogen atmosphere and stirring for 2 h at room temperature.
Then, 2 [19] (100 mg, 0.31 mmol) was added and the reaction mixture was further stirred for 3 h. After
the solvent was evaporated in vacuo, the crude mixture was purified by column-chromatography on
silica gel with dichloromethane (Rf = 0.58) as an eluent. Further purification by recrystallization with
dichloromethane/n-hexane gave orange microcrystals of 1 (76 mg, 0.17 mol, 53%). m.p. 198–200 ◦C
(dec.); HRMS FAB+ (Matrix = 3-Nitrobenzyl alcohol) (C16H18NOS4): Found 368.0291; Calcd. 368.0271;
IR (KBr) ν1151, 2359, 2972, 3747 cm−1; ESR (in benzene solution at r.t.) g = 2.0042, aN = 1.44 mT

Preparation of cation radical salts of 1: The FeCl4− and GaCl4− salts of 1 were prepared as
black needle-like crystals by a galvanostatic (I = 0.4 µA) oxidation using a conventional H-type
electrocrystallization cell in the presence of 1 (5.0 mg) and the corresponding tetraethylammonium
salts of the anions (100 mg) as a supporting electrolyte under nitrogen atmosphere in the mixture of
dry 1, 2-dichloroethane and dry ethanol (10 ml, v/v = 1:9) at 16 ◦C for a few weeks.

X-ray data collection and reduction for the single crystalline samples: X-ray diffraction
data were collected for the single crystal of neutral donor 1 on a Rigaku AFC-7 Mercury CCD
diffractometer (Rigaku Corp., Akishima, Tokyo, Japan) with a graphite monochromated Mo-Kα

radiation (λ = 0.7107 Å) and for the single crystals of 1·FeCl4 and 1·GaCl4 on a Rigaku AFC-8 Mercury
CCD diffractometer (Rigaku Corp., Akishima, Tokyo, Japan) with confocal X-ray mirror system [Mo-Kα

radiation (λ = 0.71075 Å)] and a rotating anode generator (0.8 kW). Lorentz and polarization corrections
were applied. The structures were solved by a direct method (SIR92) [26], expanded (DIRDIF94) [27]
and refined on F with full-matrix least-squares analysis. The non-hydrogen atoms were refined
anisotropically. Hydrogen atoms were refined using the riding model. All the calculations were
performed using the CrystalStructure crystallographic software package of the Molecular Structure
Corporation [28]. Crystal data and structure refinement parameters are given in Table 2. CCDC-1527054
(1), 1527055 (1·FeCl4) and 1527056 (1·GaCl4) contains the supplementary crystallographic data for this
paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre
via www.ccdc.cam.ac.uk/data_request/cif.

Magnetic property measurements: Magnetic susceptibilities were measured in the temperatures
range of 2–300 K under the applied field of 10 kOe with a SQUID magnetometer (MPMS-XL,
Quantum Design Inc., San Diego, CA, USA). Paramagnetic susceptibilities (χp) were obtained by

www.ccdc.cam.ac.uk/data_request/cif
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subtracting the diamagnetic contribution estimated using Pascal’s constants [29] from the observed
magnetic susceptibilities.

Table 2. Crystallographic data for 1, 1·FeCl4 and 1·GaCl4.

Crystal Data 1 1·FeCl4 1·GaCl4

Temperature/K 293.3 293.3 293.1
Chemical Formula C18H20NOS6 C18H20NOS6FeCl4 C18H20NOS6GaCl4

Formula weight 458.72 656.38 670.25
Crystal color, habit orange, platelet black, platelet black, platelet
Dimensions, mm 0.50 × 0.40 × 0.10 0.10 × 0.05 × 0.04 0.10 × 0.10 × 0.08
Crystal system Monoclinic Monoclinic Monoclinic

a/Å 15.172(9) 7.209(3) 7.242(2)
b/Å 12.274(8) 20.106(7) 20.166(5)
c/Å 11.458(7) 18.831(7) 18.930(5)
β/◦ 93.166(9) 95.504(11) 95.571(6)

V/Å3 2130(3) 2717(2) 2751.7(11)
Space group, Z P21/c, 4 P21/n, 4 P21/n, 4
Dcalc./g·cm−3 1.430 1.605 1.618

µ/cm−1 6.50 14.217 18.561
F000 956.00 1332.00 1352.00

2θmax/◦ 61.7 61.1 60.8
Reflections collected 18831 29638 29387

Independent reflections 5971 (Rint = 0.0749) 7008 (Rint = 0.0758) 7104 (Rint = 0.0474)
Reflections used 1879 (I > 2.50σ(I)) 2308 (I > 2.50σ(I)) 3520 (I > 3.00σ(I))

Number of variables 255 280 280
GOF on F 1.087 1.034 1.077

R1 0.0688 (I > 2.50σ(I)) 0.0704 (I > 2.50σ(I)) 0.0787 (I > 3.00σ(I))
wR 0.0738 (I > 2.50σ(I)) 0.0818 (I > 2.50σ(I)) 0.0733(I > 3.00σ(I))

4. Conclusions

We synthesized new EDT-TTF donor containing a 2,2,5,5-tetramethylpyrrolin-1-yloxyl radical
through a π-conjugated vinylene spacer 1 and examined its electronic and crystal structures, and
physical properties. We also prepared its cation radical salts by an electrochemical oxidation method
and successfully cleared the crystal structures and magnetic properties of the cation radical salts,
1·FeCl4 and 1·GaCl4. These salts have the strongly dimerized one-dimensional arrays of the fully
oxidized donor molecules, giving rise to the formation of spin-singlet state of the π cation radical spins
in the dimer. On the other hand, the FeCl4− anion locates on the side of the dimers with very short S-Cl
contacts and mediates very strong π-d interaction between the donor and anion moieties, resulting
in the antiferromagnetic behavior of θ = −3.9 K through its d-π-d interaction. The new findings in
this paper will lead to the future construction of organic magnetic conductors based on the stable
radical-containing donors. The preparation of new cation radical salts of donor 1 and its analogues,
especially partially oxidized conducting materials, are now in progress to realize magnetic-conducting
bifunctional materials.

Supplementary Materials: The following are available online at www.mdpi.com/2312-7481/3/1/8/s1,
Figure S1: The temperature dependences of magnetic susceptibilities of neutral donor 1 (a), 1·FeCl4 (b) and
1·GaCl4 (c) measured in the temperatures range of 2–300 K under the applied field of 10 kOe. Calcd. lines indicate
Curie-Weiss fittings of the data.
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