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Abstract: In the course of our ongoing work on the chemical characterization of Corsican olive oil,
we have developed and validated a method for direct quantification of squalene using 13C Nuclear
Magnetic Resonance (NMR) spectroscopy without saponification, extraction, or fractionation of
the investigated samples. Good accuracy, linearity, and precision of the measurements have been
observed. The experimental procedure was applied to the quantification of squalene in 24 olive oil
samples from Corsica. Squalene accounted for 0.35–0.83% of the whole composition.
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1. Introduction

Squalene—(E)-2,6,10,15,19,23-hexamethyl-2,6,10,14,18,22-tetracosahexaene—is a natural acyclic
symmetrical triterpene. It is a key intermediate in the biosynthesis of sterols [1]. In the human body,
squalene is synthesized and then converted into cholesterol. In medicine, squalene plays a major
role in the reduction of cancer risks, particularly with regard to cancer of the pancreas and colon
in rodents [2–4]. Squalene increases the stability of various emulsions (vaccines, pharmaceutical
formulations) [5,6]. It is also useful at the surface of the skin, playing the role of protective barrier
against Ultra-Violet (UV) radiations [7]. Hydrogenated squalene (i.e., squalane) is appreciated in
cosmetics as emollient agent in creams and capillary serums [8].

The largest source of squalene for industrial purposes is from animal origin, provided by various
species of shark [9]. According to the species, squalene represents up to 80% of the shark liver oil [10].
Various species of shark are now endangered as a result of their overexploitation.

Squalene is also widespread in the vegetable kingdom. Indeed, it is present in oil seeds and in
green vegetables [11]. In olive oil, squalene represents 0.3% to 0.7% of the whole mass, accounting for
60–75% of the unsaponifiable fraction [12]. The presence of squalene confers to olive oil a great stability
against auto-oxidation and photo-oxidation [13].

The Association of Official Analytical Chemists [14] recommended a method for extraction of
squalene from natural matrices. Analytical techniques used in quantification of squalene in edible
oils, in the presence of acylglycerols, fatty acids, phytosterols, and tocopherols have been recently
reviewed [15]. Methods using a preliminary fractionation of samples, procedure that simplifies
the analysis have been developed. Analysis of squalene in edible oils is predominantly achieved
by chromatographic techniques (Gas Chromatography (GC) or Reversed-Phase High-Performance
Liquid Chromatography (RP-HPLC)), after saponification of triglycerides, solvent extraction of
the unsaponifiable fraction, and eventually isolation of the hydrocarbon fraction by Column
Chromatography (CC) or Thin Layer Chromatography (TLC) [16–21]. The direct injection of olive oil
in the injector port has been applied [22], as well as HPLC coupled with GC [23] or HPLC coupled to
electrospray tandem mass spectrometry [24].
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In parallel, 1H and 13C NMR have been widely used for identification and quantitative
evaluation of triglycerides in olive oil (saturated fatty acid chains, mono-unsaturated, poly-unsaturated,
stereochemistry of the double bonds, etc.) and for quality assessment and authentication [25–27].
Using the fingerprint technique, characteristic resonances of individual components of the
unsaponifiable fraction (sterols, alcohols, tocopherol) have been identified using 1H NMR, and the
results allowed the determination of geographical origin of olive oil [28]. Similarly, the ratio of
squalene vs. the other minor components of olive oil has been evaluated, and statistical analysis of
the results gave useful information on the quality, authenticity, and origin of the investigated olive oil
samples [25,29]. The content of squalene in human sebum (containing low proportion of triglycerides)
has been measured using a 600 MHz spectrometer equipped with a cryoprobe [30]. Otherwise,
quantitative analyses of two structurally close triterpenoid acids, as well as that of positional and
geometric isomers of octadecadienoic acid with conjugated double bonds, have been performed using
2D NMR [31,32].

In previous works carried out in our laboratory, we demonstrated 13C NMR spectroscopy
was a powerful tool for the identification and quantitative determination of terpenes in natural
matrices, mono and sesquiterpenes in essential oils [33] and fixed oil [34], diterpenes in cedar
resins [35], triterpenes in solvent extracts from cork [36], or leaves from olive tree [37]. Taking into
account that chromatographic techniques used to quantify squalene in olive oil needed laborious and
time-consuming fractionation steps, the aim of the present study was to develop a method, based on
13C NMR, and using a routine spectrometer (9.4 Tesla), that allowed the quantitative determination of
squalene in olive oil, avoiding the fractionation steps.

2. Results and Discussion

2.1. 13C NMR Data of Squalene and Olive Oil

The 13C NMR spectrum of squalene displayed 15 resonances belonging to quaternary carbons
(135.11; 134.90 and 131.26 ppm), ethylenic methines (124.42; 124.32 and 124.28 ppm), allylic methylenes
(39.77; 39.74, 28.29; 26.78; 26.67 ppm) and methyl groups (25.71; 17.69; 16.05 and 16.01 ppm).
The chemical shift values of our recorded spectrum (Table 1) fitted perfectly with previous data
reported by Pogliani et al. [38]. However, it could be noted a difference of 1 ppm for carbon C3,
probably due to a misprint in the paper [38].

Table 1. Structure, 13C NMR chemical shifts, and longitudinal relaxation times (T1) of carbons
of squalene.
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The 13C NMR spectrum of a commercially available olive oil is more complex (Figure 1). Four parts
may be distinguished: 172–174 ppm, esters; 124–134 ppm, ethylenic carbons; 60–72 ppm, carbons of
glycerol; and 13–35 ppm, aliphatic carbons. In that spectrum, all the resonances with high intensity
belong to the triglycerides. Twelve out of 15 resonances of squalene were observed. They were perfectly
resolved, and therefore they could be used for quantitative determination of squalene in olive oil.
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2.2. Validation of the Experimental Procedure for Quantitative Determination of Squalene Using 13C NMR

In order to approach the physico-chemical properties of olive oil (viscosity for instance) the
experiments for validation of the experimental procedure have been carried out using know quantities
of squalene in trioleine (glyceryl tris octadec-9-enoate) that is the major triglyceride of olive oil
accounting for 48–62% of the whole composition [39].

Several techniques have been developed for quantification of individual components of a
natural mixture based on 13C NMR spectroscopy. The standard sequence combines a 90◦ pulse
angle, gated decoupling technique and requires waiting a period of 5T1 of the longest T1 value,
before applying another pulse. This sequence provides accurate result but is really time consuming.
Otherwise, use of a paramagnetic relaxation reagent allows decrease of experimental time but induces
a line width broadening. Quantitative determination can be led using a rapid train of short pulses
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because a small flip angle provides less difference in the steady-state magnetization than a larger one
in the presence of carbons having different T1 values.

Owing to our experience in the analysis of complex natural mixtures containing nuclei with
different T1 values, a good approach is a compromise between the aforementioned procedures.
For instance, quantification of various compounds has been performed in our laboratories, using this
approach: carbohydrates in ethanol extract of Pinus species [40], triterpenes in cork extract [36] and
olive leaf extract [37], and taxanes in leaf extract of Taxus baccata [41]. Quantitative determination of a
component in a natural mixture is achieved by internal standardization by comparison of the areas of
the resonances of that compound with those of an internal standard. In these conditions, it is obvious
that quantitative estimation will be led from not fully relaxed spectra and that validation of the method
should be performed before applying it to the analysis of mixtures [42]. The best conditions for the
pulse sequence are those that reduce as far as possible the difference in the steady-state magnetization
of nuclei with different T1 values and that simultaneously allow a good S/N ratio in a short period of
time. They could be selected using Becker’s equation that allows the calculation of the S/N ratio as a
function of the pulse angle and the ratio of longitudinal relaxation time to total recycling time [43].

Then, the theoretical parameters (precision, accuracy, linearity of measures) should be validated
using pure squalene in trioleine before application of the method to the quantification of squalene in
genuine olive oils. To carry out the validation of the method:

• CDCl3 has been conserved as solvent and trioleine has been used as a model for olive oil;
• Longitudinal relaxation times have been measured for carbons of squalene by the

inversion-recovery method. They ranged from 0.4 to 10.0 s, the highest values (4.1–10.0 s)
being measured, as expected, for quaternary carbons (Table 1). T1 values of vinylic methines and
allylic methylenes ranged from 1.2 s to 2.5 s and from 0.4 s to 0.9 s, respectively. Finally, T1s of
the four methyl groups ranged from 1.9 s to 4.5 s. Quantitative analysis has been conducted with
resonances of carbons not overlapped, perfectly resolved and with T1 values comprised from
0.7 s to 4.5 s;

• Di-2-methoxyethyl oxide (diglyme) has been chosen as internal standard (T1 value of its
methylenes = 3.8 s) since its resonances do not overlap with those of triglycerides contained
in olive oil.

The parameters of the pulse sequence have been determined using formula (1) for various T1

values (0.7–4.5 s), and for a repetition delay of 3.7 s (acquisition time = 2.7 s; relaxation delay = 1.0 s)
required for a 128 K data table. According to Becker et al. [43], we determined and plotted the
percentage of recovered signal, expressed as S/N (%), as a function of the pulse angle α, using formula
(1). Using a pulse angle of 30◦, this procedure provided a small difference (3.6%) in the steady-state
magnetization between carbons exhibiting different T1 values and a reasonable time of analysis in
spite of the utilization of a medium field spectrometer (3000 scans in less than 3 h) (Figure 2).

S
N

=
M0 × [1− e(−D/T1)]× sin α√

D× [1− e(−D/T1) cos α]
(1)

S/N: signal-to-noise ratio, M0: initial magnetization, D: time between two pulses (in seconds),
T1: longitudinal relaxation time (in seconds), and α: pulse angle (in degrees).
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Figure 2. S/N (%) vs. flip angle α, plotted from formula (1) according to Becker et al. [43], for selected
values of T1 (0.7 s< T1 < 4.5 s) and a minimum total recycling time τ of 3.7 s using a 128 K data table
(acquisition time = 2.7 s and relaxation delay = 1.0 s).

Accuracy, precision and response linearity of this method have been validated by various
experiments carried out on pure squalene by comparing the weighted quantities (0.37–1.66 mg)
with those measured by NMR. From the 13C NMR spectrum, the mass of squalene mSQ (mg) was
calculated using Formula (2). Relative errors between weighted and calculated masses are comprised
between 0.0% and 10.3%, and therefore they demonstrated good accuracy of measurements (Table 2).

mSQ = 2×
ASQ ×MSQ ×mD

AD ×MD
× pSQ × pD (2)

The area ASQ taken into account was the mean value of the areas of selected protonated carbons.
AD is the mean value of the areas of the two methylenes of diglyme. MSQ is the molecular weight
of squalene. MD is the molecular weight of diglyme and mD is the amount of diglyme. pSQ and pD:
purity of squalene and of diglyme, respectively.

Table 2. Quantitative determination of squalene by 13C NMR spectroscopy using diglyme as
internal reference.

AD 0.9901 0.9955 0.9959 1.0074 1.0011 0.9845 1.0168 1.0139
ASQ 0.0734 0.1220 0.1668 0.1970 0.2253 0.2689 0.3129 0.3431

mw (mg) 0.37 0.55 0.74 0.92 1.10 1.29 1.47 1.66
mc (mg) 0.33 0.56 0.74 1.00 1.03 1.22 1.44 1.58
ER (%) 10.3 −0.7 0.0 −9.1 6.8 5.5 2.2 4.8

AD and ASQ: Mean areas of selected carbons of diglyme and squalene, respectively; Mass of diglyme (mD): 1.49 mg;
mw: weighted mass of squalene (mg); mc: calculated mass of squalene (mg) using formula (2); ER: relative error (%)
between mc and mw; Molecular weight of squalene: 410.7 g·mol−1.

Then, we drew the calibration line for the quantification of squalene. The straight line was plotted
by expressing the ratio of the mean value of areas of the resonances of squalene selected carbons (ASQ)
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with those of diglyme (AD) as a function of the weighed mass of squalene (mw). We observed a good
linearity of the measurements because the linear determination factor (R2) is 0.996 (Figure 3).

Finally, the spectrum of the sample containing 0.55 mg of squalene has been recorded five
times. The repeatability, calculated with a confidence interval of 99% (Student’s t-test) was equal to
0.56 mg ± 0.04 mg, i.e., 0.56 mg ± 6.8% which indicates a good precision of measurements.
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The experimental procedure developed to quantify squalene in triolein exhibited good accuracy,
precision and linearity of measurements. Analysis time with a routine spectrometer (9.4 Tesla) is not
prohibitive since a single analysis requires three hours. Therefore, this procedure could be applied for
quantification of squalene in olive oils of Corsican origin.

2.3. Quantification of Squalene in Various Olive Oil Samples of Corsican Origin

Twenty-four olive oil samples from various localities in Corsica and from various olive varieties
have been analyzed using 13C NMR, according to the experimental procedure previously described.
In the 13C NMR spectrum of olive oil (Figure 2), eight out of 12 of the protonated carbons of squalene
were observed. All of these resonances were perfectly resolved and did not overlap with resonances of
other components of olive oil, and their relaxation times were between 0.7 s and 4.5 s. The mass of
squalene in every olive oil sample has been calculated using Formula (2), taking into account the mean
areas of these resonances. Then, the mass percentages of squalene have been calculated using Formula
(3), which are reported in the Table 3.

%C =
mSQ

m
× 100 (3)

%C: percentage of squalene; mSQ: calculated mass (mg) of squalene; m: mass of the olive oil sample.
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Table 3. Quantification of squalene in olive oils from Corsica using 13C NMR.

Sample Olive Variety Squalene (%)*

1
Zinzala

0.35
2 0.37
3 0.41

4

Sabine

0.35
5 0.35
6 0.40
7 0.42

8 Picholine 0.38

9

Germaine

0.40
10 0.43
11 0.44
12 0.49
13 0.51
14 0.51
15 0.83

16
Cortenaise

0.42
17 0.47

18 Capannacce 0.52

19 Germaine/Picholine 0.37

20 Germaine/Capanacce 0.44
21 0.67

22
Germaine/Sabine

0.47
23 0.49

24 Sabine/Picholine 0.46

*: percentages calculated using formula (3).

Among the 24 olive oil samples, 18 samples were obtained from olive of a single variety, the last
six samples coming from olives of two varieties. From Table 3, it is observed that Corsican olive oils
contained appreciable amount of squalene comprised between 0.35% and 0.52% for 22 samples out of
24. The two last samples exhibited higher contents (0.67% and 0.83%). These results are in agreement
with those reported in the literature (0.3–0.7%) [12].

Although the number of samples from every locality and from every olive variety is limited,
it seems that there is no direct relation between the content of squalene in a given olive oil sample
and the variety of the olive. However, it could be observed that zinzala, sabine, and picholine olives
produced an oil containing 0.35–0.42% of squalene. The olive oil from Germaine, Cortenaise and
Capanacce varieties exhibited a slightly higher content of squalene (0.40–0.83%). Finally, olive oil
coming from two varieties of fruits contained 0.37–0.67% of squalene.

3. Materials and Methods

3.1. Chemicals

Squalene, triolein and di-2-methoxyethyloxide (diglyme) were obtained from Sigma-Aldrich
(St-Louis, MO, USA), Acros Organics (Geel, Belgium), and Jansen Chimica (Geel, Belgium), respectively.
Olive oil samples were supplied by Mrs. Henneman (Chambre d’Agriculture de la Haute Corse, Bastia,
Corsica, France).

3.2. NMR Experiments

3.2.1. Quantitative 13C NMR Spectra

Quantitative 13C NMR spectra were recorded on a Bruker (Wissembourg, France) AVANCE
400 Fourier Transform spectrometer operating at 100.13 MHz for 13C, equipped with a 5 mm probe,
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in CDCl3 with all shifts referred to internal TMS. 13C NMR spectra were recorded with the following
parameters: inverse gated decoupling, flip angle 30◦, acquisition time = 2.7 s for 128 K data table
with a spectral width of 24,000 Hz (240 ppm), a relaxation delay D1 = 1.0 s, composite pulse
decoupling of the proton band, and a digital resolution of 0.366 Hz/pt. The internal reference used was
diglyme. The number of accumulated scans was 3000 for each sample. Exponential line broadening
multiplication (1 Hz) of the free induction decay was applied before Fourier transformation.

3.2.2. T1 Measurements

The longitudinal relaxation times of the 13C nuclei (T1 values) were determined by the
inversion-recovery method, using the standard sequence: 180◦–τ–90◦–D1, with an acquisition time
of 0.68 s (for 32 K data table with a spectral width of 25,000 Hz) and a relaxation delay D1 of 20 s.
Each delay of inversion (τ) was thus taken into account for the computation of the corresponding T1

using the function Ip = I0 + pe−τ/T
1 (Bruker microprogram; Ip and I0 are populations of nuclear spins;

p is a constant of integration).

3.2.3. Calibration Line

A weighted amount of 0.37–1.66 mg of squalene was diluted in 0.5 mL of CDCl3 containing
1.49 mg of diglyme.

3.2.4. Quantification of Squalene in Olive Oils

A weighted amount of 140–150 mg of olive oil was diluted in 0.5 ml of CDCl3 containing 1.53 mg
of diglyme.

4. Conclusions

An experimental procedure, based on 13C NMR spectroscopic analysis, was developed and
allowed for the quantification of squalene in olive oil samples. An optimized pulse sequence (flip angle
α = 30◦, inverse gated decoupling, total recycling time 3.7 s) was checked and led to reliable quantitative
determination of squalene in olive oil samples from Corsica with an analysis time of less than three
hours using a medium field NMR spectrometer (9.4 T). In the 24 olive oil samples investigated,
squalene accounted for 0.35–0.83% of the whole composition.
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