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Abstract: A lantern-type diruthenium(II,III) complex [Ru2(HNOCPh)4(BF4)(H2O)] was prepared
from [Ru2(HNOCPh)4Cl]n by removal of the axial chlorido-bridge using AgBF4 in THF. The room
temperature magnetic moment (per Ru2

5+ unit) of [Ru2(HNOCPh)4(BF4)(H2O)] is 3.84 µB, which
is similar to that (4.15 µB) of [Ru2(HNOCPh)4Cl]n, for which magnetic measurement was newly
performed in this study. These results indicate that both of the complexes have a spin state
of S = 3/2, although temperature-variable (VT) magnetic moments (2–300 K) showed that
considerable antiferromagnetic interaction (zJ = −2.8 cm−1) exists through the axial chlorido-bridge
for [Ru2(HNOCPh)4Cl]n, but such a large interaction (zJ = −0.08 cm−1) does not exist for
[Ru2(HNOCPh)4(BF4)(H2O)], where the large zero-field splitting D = 61 cm−1 is operative for both
complexes, like other lantern-type diruthenium(II,III) complexes. The X-ray single-crystal structure
analysis of [Ru2(HNOCPh)4(BF4)(H2O)]·2(acetone) showed that the axial positions of the complex
were occupied by a fluorine atom of the BF4

− ion and an oxygen atom of the water molecule, with
distances of Ru-Fax = 2.3265(19) Å and Ru-Oax = 2.280(2) Å, respectively. The Ru-Ru bond distance was
2.2793(4) Å, which is shorter than those (2.295(2) and 2.290(2) Å) reported for [Ru2(HNOCPh)4Cl]n.
The quartet ground states (S = 3/2) were reasonably interpreted for [Ru2(HNOCPh)4(BF4)(H2O)]
and [Ru2(HNOCPh)4Cl]n, as well as the theoretically modeled complex cation [Ru2(HNOCPh)4]+,
by DFT calculation results. A Ru2

6+/Ru2
5+ redox couple was observed at 1.12 V (vs. SCE) for

[Ru2(HNOCPh)4(BF4)(H2O)] in dichloromethane containing Bu4NPF6 as electrolyte.

Keywords: lantern-type diruthenium(II,III) complex; amidato-bridge; crystal structure; magnetic
properties; quartet ground state; electrochemical properties; DFT calculation

1. Introduction

There has been much interest directed towards lantern-type dinuclear complexes, due to the
unique properties resulting from the meta-metal interactions within the dinuclear molecules [1,2].
In the cases of tetracarboxylatodiruthenium(II,III) complexes [Ru2(O2CR)4X], it is well known that
the electronic configuration is σ2π4δ2(δ*π*)3 [1–5]. The spin state of S = 3/2 has also been thought to
be common for the diruthenium(II,III) complex with diarylformamidinate (DArF−) bridges having
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an N,N-donor set, the chemical structure of which is shown in Scheme 1a [1,6–8], although a spin
cross-over behavior was reported for [Ru2(DArF)4Cl] (Ar = p-methoxyphenyl group) [9]. Recently,
[Ru2(DArF)4]BF4 (Ar = p-methoxyphenyl or m-methoxyphenyl group) obtained by the removal of the
axial chloride ion from [Ru2(DArF)4Cl] was reported to show a singlet ground state (S = 1/2) [10].
Such spin state change from S = 3/2 to S = 1/2 has not been reported on the removal of the axial
halogenide ligand from [Ru2(O2CR)4X]. Amidate ions with an N,O-donor set have also been known to
work as a dinucleating bridging ligand to give a lantern-type structure [11–21]. One of the amidates is
benzamidate (PhCONH−), the chemical structure of which is shown in Scheme 1b.
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In 1985, the zigzag chain structure of [Ru2(HNOCPh)4Cl]n was determined using X-ray crystal
structure analysis by Chakravarty and Cotton, although the magnetic properties were not reported
in spite of the interest in magnetic interaction through the axial chlorido-bridge between the spins
in lantern-type Ru2

5+ dinuclear cores [15]. In order to investigate the spin state of the Ru2
5+ core

and the magnetic interaction through the chlorido-bridge, we newly synthesized a tetrafluoroborate
complex Ru2(HNOCPh)4BF4·H2O by removing the axial chlorido-bridge of [Ru2(HNOCPh)4Cl]n

in the presence of AgBF4 in THF solution. The variable-temperature (VT) magnetic susceptibility
measurements were performed in the 2–300 K temperature range for both complexes. The comparison
of the VT magnetic behaviors indicated that a considerably large antiferromagnetic interaction
through the axial chlorido-bridge exists for [Ru2(PhCONH)4Cl]n (zJ = −2.8 cm−1), but not for
Ru2(HNOCPh)4BF4·H2O (zJ = −0.08 cm−1), in addition to the fact that both of the complexes have an
Ru2

5+ core with a spin sate of S = 3/2, showing a large zero-field splitting (D = 61 cm−1) like the other
lantern-type Ru2

5+ complexes with spin state of S = 3/2 [1–5]. This report describes the electrochemical
properties of Ru2(HNOCPh)4BF4·H2O in dichloromethane containing Bu4NPF6 as electrolyte, as
well as the crystal structure determined for the single crystals obtained by the recrystallization of
Ru2(HNOCPh)4BF4·H2O from acetone.

2. Results and Discussion

2.1. Synthesis and Characterizations

The axial chloride ligand of [Ru2(HNOCPh)4Cl]n could be removed by chemical reaction
with AgBF4 in THF for 24 h with stirring at room temperature, giving the tetrafluoroborate salt
Ru2(HNOCPh)4BF4·H2O, the chemical formation of which was confirmed by elemental analysis in
addition to the fact that ESI-TOF MS and IR spectra showed a main peak corresponding to the cationic
species [Ru2(HNOCPh)4]+ (683.9904 m/z) and a predominant absorption appearing around 1100 cm−1

due to BF4
− ion [22]. The IR spectra of [Ru2(HNOCPh)4Cl]n and Ru2(HNOCPh)4BF4·H2O are given in

Figure 1; their spectral features are basically the same, other than the band due to the BF4
− ion, which

indicates that Ru2(HNOCPh)4BF4·H2O has a Ru2
5+ core unit similar to that of [Ru2(HNOCPh)4Cl]n.

Furthermore, the BF4
− ion and water molecule are coordinated to the dinuclear core with a unidentate

mode, as shown below for the crystal structure of [Ru2(HNOCPh)4(BF4)(H2O)]·2(acetone). Hereafter,
Ru2(HNOCPh)4BF4·H2O is described as [Ru2(HNOCPh)4(BF4)(H2O)]. In the diffuse reflectance spectra
(Figure 2), the NIR band assigned as δ (Ru2

5+) → δ* (Ru2
5+) was observed at 988 and 978 nm
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for [Ru2(HNOCPh)4Cl]n and [Ru2(HNOCPh)4(BF4)(H2O)], respectively, in addition to the bands
assigned as π(Ru-O/N,Ru2

5+) → δ* (Ru2
5+) at 484 nm (for [Ru2(HNOCPh)4Cl]n) and 440 nm (for

[Ru2(HNOCPh)4(BF4)(H2O)]). The band observed at 352 nm for both complexes could be attributed to
the axial ligand (Cl− or BF4

−)→ σ* (Ru2
5+) charge transfer [1,3,11,13,14,17]. The absorption spectrum

was measured for [Ru2(HNOCPh)4(BF4)(H2O)] in dichloromethane, although [Ru2(HNOCR)4Cl]n was
completely insoluble in less-donating solvents such as dichloromethane; hence, strongly donating
solvents such as DMSO were used for the physicochemical measurements in the solution [11,12,14].
The absorption spectrum (Figure 3) of [Ru2(HNOCPh)4(BF4)(H2O)] in dichloromethane showed bands
at 360, 470 and 965 nm similar to those in solid (352, 440 and 978 nm in the diffuse reflectance
spectrum). This suggests that the dinuclear structure [Ru2(HNOCPh)4(BF4)(H2O)] is maintained in
the dichloromethane solution.
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2.2. Cyclic Voltammogram (CV) of [Ru2(HNOCPh)4(BF4)(H2O)]

The electrochemical redox behavior of [Ru2(HNOCPh)4(BF4)(H2O)] was investigated by the CV
technique in dried dichloromethane containing 0.1 M Bu4NPF6 as electrolyte. The result is shown in
Figure 4. The redox wave at E1/2 ((Epa + Epc)/2) = 1.12 V (vs. SCE) in the oxidation side was attributed
to a Ru2

6+/Ru2
5+ couple on referring to the CV results obtained for the Ru2

5+ complexes with amidato
bridges [11–13,18], while irreversible waves were subsequently shown at ca. −0.5 and ca. −1.0 V
(vs. SCE), the former being possibly attributable to the Ru2

5+/Ru2
4+ process. It has been previously

reported that [Ru2(HNOCPh)4Cl]n exhibits a Ru2
6+/Ru2

5+ wave at 0.66 V (vs. SCE) and an irreversible
Ru2

5+/Ru2
4+ wave at ca. −0.50 V (vs. SCE) in DMSO containing 0.1 M Bu4NClO4 and excess of

Cl−, while the Ru2
6+/Ru2

5+ wave was not observed in DMSO containing 0.1 M Bu4NClO4 without
addition of Cl−, and redox couples associated with Ru2

5+/Ru2
4+ process were subsequently observed

at −0.70 and −1.13 V (vs. SCE) [13]. The complex redox behaviors reported for [Ru2(HNOCPh)4Cl]n

in the DMSO solution may be due to the strong donating nature of DMSO, participating in the
axial coordination instead of Cl−. Because the dinuclear structure of [Ru2(HNOCPh)4(BF4)(H2O)]
is maintained in the less-donating dichloromethane solution, the redox behavior is considered to
be rather simple and similar to that reported for [Ru2(HNOCPh)4Cl]n in DMSO solution containing
an excess of Cl− [13]. The lantern-type dinuclear complex [Ru2(bam)4Cl2] (bam− = benzamidinate
ion (Scheme 2a)) favors the oxidation state of Ru2(III,III), mainly due to the strong donating nature
of a benzamidinato bridging ligand having an N,N-donor set compared with the amidato bridging
ligand with the N,O-donor set in [Ru2([Ru2(HNOCPh)4(BF4)(H2O)], although the difference in the
axial ligands should be taken into account. In the case of [Ru2(bam)4Cl2], the Ru2

6+/Ru2
5+ couple

was observed at E1/2 = −0.231 V (vs. SCE) in chloroform containing 0.1 M Bu4NPF6 [23]; the redox
potential is negatively shifted in potential compared with that of [Ru2(HNOCPh)4(BF4)(H2O)]. The
large irreversible wave at ca. −1.0 V vs. SCE observed for [Ru2(HNOCPh)4(BF4)(H2O)] could be
related to its decomposition.
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2.3. Crystal Structure of [Ru2(HNOCPh)4(BF4)(H2O)]·2(acetone)

Single crystals suitable for X-ray crystal structure analysis were obtained as those of
[Ru2(HNOCPh)4(BF4)(H2O)]·2(acetone) by the recrystallization of [Ru2(HNOCPh)4(BF4)(H2O)] from
acetone. The molecular structure and its selected bond distances and angles are given in Figure 5
and Table S1, respectively. Four amidato ligands bridge two ruthenium ions with a cis-(2:2)
arrangement of the ligands around Ru2

II,III core, giving a lantern-like structure. The Ru1-Ru2
distance is 2.2793(4) Å, which is shorter than the corresponding distances (2.295(2) and 2.290(2) Å)
of [Ru2(HNOCPh)4Cl]n, in which chloride ions axially coordinate to ruthenium ions with Ru-Clax

distances of 2.572(3) and 2.612(3) Å to link the Ru2
5+ units, resulting in a zigzag chain structure

with a Ru-Clax-Ru bond angle of 116.2(1)◦ [15]. In [Ru2(HNOCPh)4(BF4)(H2O)]·2(acetone),
both axial positions of the Ru2

5+ unit are occupied with fluorine (BF4
−) and oxygen (H2O)

atoms with Ru1-F1 and Ru2-O5 distances of 2.3265(19) and 2.280(2) Å, respectively. To our
knowledge, only two complexes [Ru2

III,III(DMBA)4(BF4)2] (DMBA− = N,N′-dimethylbenzamidinate
ion (Scheme 2b)) and [Ru2

II,III(ap)(BF4)]·2THF (ap− = 2-anilinopyridinate ion (Scheme 2c)) have
been confirmed by the X-ray crystal structure analysis for the axial coordination of BF4

− to the
lantern-type diruthenium complex [24,25]. The Ru-Fax bond distances are 2.366(3) and 2.389(3) Å
for [Ru2

III,III(DMBA)4(BF4)2] [24] and 2.296(2) Å for [Ru2
II,III(ap)(BF4)]·2THF [25]; the bond lengths

are similar to that (2.3265(19) Å) of [Ru2
II,III(HNOCPh)4(BF4)(H2O)]·2(acetone). Acetone molecules

exist as the crystal solvent in the crystal. One of the acetone molecules participates in the
hydrogen-bonding network within the crystal, as shown in Figure S1. Similar hydrogen-bonding
networks have been reported for [Ru2(HNOCMe)4(H2O)2]ClO4, [Ru2(HNOCMe)4(H2O)2]NO3

and [Ru2(HNOCMe)4(H2O)2](BPh4)·H2O [26–28]. The acetone molecules in the crystal of
[Ru2(HNOCPh)4(BF4)(H2O)]·2(acetone) could be easily removed over P2O5 in a desiccator at ambient
temperature and pressure (See Section 3.2).
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2.4. Magnetic Properties

In Figures 6 and 7, variable-temperature (VT) magnetic susceptibilities and moments are shown in
the measured 2–300 K temperature range for [Ru2(HNOCPh)4Cl]n and [Ru2(HNOCPh)4(BF4)(H2O)],
respectively. The magnetic moment (per Ru2

5+ unit) of [Ru2(HNOCPh)4Cl]n is 4.15 µB at 300 K, which
indicates the existence of three unpaired electrons per the Ru2

5+ unit with an S = 3/2 state. Like the
other halogenido (X)-linked Ru2

5+ polymer complexes, the magnetic moment decreases with decrease
in the temperature, due to zero-field splitting (D), followed by a further steep decrease in the moment
when the temperature is approaching 2 K, due to the antiferromagnetic interaction through the axial
chloride ion [5,17,19,20]. The magnetic moment of [Ru2(HNOCPh)4(BF4)(H2O)] is 3.84 µB at 300 K,
which is also indicative of the spin state of S = 3/2 for this complex, and decreases with decrease
in temperature due to zero-field splitting, without the steep decrease in the moment even when the
temperature is close to 2 K.
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VT magnetic behaviors are conventionally simulated using the Equations (1)–(4), described below,
for the S = 3/2 system with a zero-field splitting of Ru2

5+ species, the inter-dinuclear-unit interaction
being taken into account by means of a mean-field approximation [3,5,29–31]:

χ’ = χ/{1 − (2zJ/Ng2µB
2)χ} (1)

where zJ is the exchange energy multiplied by the number (z) of interacting neighbors, and χ is the
magnetic susceptibility.

χ = (χ// + 2χ⊥)/3 (2)

where χ// and χ⊥ are magnetic susceptibility terms defined as follows:

χ// = (Ng2µB
2/kT){1 + 9exp(−2D/kT)}/4{1 + exp(−2D/kT)} (3)

χ⊥ = (Ng2µB
2/kT)[4 + (3kT/D){1 − exp(−2D/kT)}]/4{1 + exp(−2D/kT)} (4)

The simulation results gave parameter values: g = 2.19, D = 61 cm−1, zJ = −2.8 cm−1 for
[Ru2(HNOCPh)4Cl]n and g = 2.01, D = 61 cm−1, zJ = −0.08 cm−1 for [Ru2(HNOCPh)4(BF4)(H2O)].
There is a considerable difference in zJ value between [Ru2(HNOCPh)4Cl]n and
[Ru2(HNOCPh)4(BF4)(H2O)]. The appreciable magnetic interaction (zJ = −2.8 cm−1) is operative
through the axial chlorido linker for [Ru2(HNOCPh)4Cl]n, although through-space interaction
(zJ = −0.08 cm−1) only occurs in [Ru2(HNOCPh)4(BF4)(H2O)]. A similar discussion has been
presented by Barral et al. for [Ru2(HNOCR)4Cl]n (zJ = −0.3–−2.9 cm−1) and [Ru2(HNOCR)4(THF)2]Y
(−0.1–−2.2 cm−1), where R = C6H3-3,5-(OMe)2, C6H4-p-OMe, C6H4-p-CMe3, C4H3S, C6H11, CMe3

and Y = BF4
−, SbF6

− [17]. Later, using the crystal structural data, an empirical linear relationship was
proposed between through-axial halogenido (X) magnetic interaction zJ and the structural parameter
Ru-X/Ru-X-Ru for lantern-type Ru2

5+ complexes with amidato or carboxylato bridges [20]. According
to the relationship, zJ is estimated as ca. −3.0 cm−1 using the crystal data of [Ru2(PhCONH)4Cl]n

reported by Chakravarty and Cotton [15], which is almost consistent with the present magnetic result
of zJ = −2.8 cm−1 for the complex.

2.5. DFT Calculations

The present complex [Ru2(HNOCPh)4(BF4)(H2O)] obtained from [Ru2(HNOCPh)4Cl]n by the
removal of axial chlorido linker does not have empty axial positions, as in the case of [Ru2(DArF)4]BF4.
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Hence, in order to clarify the favorable spin states, electronic structures and spin density distributions
of [Ru2(HNOCPh)4(BF4)(H2O)] and [Ru2(HNOCPh)4Cl2]−, as well as [Ru2(HNOCPh)4]+, which is the
theoretically modeled complex with empty axial sites, unrestricted density functional theory (uDFT)
calculations were performed.

Our zero-point energy (ZPE) calculations clearly supported the experimentally observed spin
state of [Ru2(HNOCPh)4(BF4)(H2O)]; the ZPE with the S = 3/2 spin state is 7.68 Kcal/mol more stable
than that with the S = 1/2 spin state. The ZPEs of [Ru2(HNOCPh)4Cl2]− and [Ru2(HNOCPh)4]+ with
the S = 3/2 spin state were also 3.16 and 3.76 Kcal/mol more stable, respectively, than those with
the S = 1/2 spin state, indicating that the axial ligation of the diruthenium(II,III) complexes with
amidato-bridges do not affect the spin state of S = 3/2. In the optimized geometry for the S = 3/2
spin state, the electronic configuration of [Ru2(HNOCPh)4(BF4)(H2O)] is π4σ2δ2π*2δ*1, as depicted in
Figure 8. Three singly occupied molecular orbitals (SOMOs), which are observed at MO-169α~167α,
are assigned as δ*(Ru2), π*(Ru2), and π*(Ru2) orbitals, respectively. That is, the MO energies of
anti-bonding interactions between Ru2 ions of [Ru2(HNOCPh)4(BF4)(H2O)] are relatively unstable
compared to those of bonding orbital interactions between Ru2 ions similarly to those of typical
diruthenium(II,III) tetracarboxylate complexes [1,3]. The most unstable bonding orbital interactions
between Ru2 ions are the δ(Ru2) orbitals, which are observed at MO-166α and 166β. The σ(Ru2)
orbitals, which interact with the orbitals of atoms located at primary coordination spheres, are located
at MO-157α and 153β. The degenerate π(Ru2) orbitals are found at MO-145α, 146α, 163β and 164β, in
which π(Ru2) orbitals are considerably overlapped with the p(N) and p(O) orbitals of amidato moieties.
On the other hand, the lowest unoccupied MOs (LUMOs) of α and β orbitals are σ*(Ru2) and δ*(Ru2)
orbitals, respectively. The SOMO–LUMO and highest-occupied MO (HOMO)–LUMO gaps at α and β

orbitals are estimated as 4.09 and 2.57 eV, respectively.
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The DFT calculation treatments are essentially the same between the previous work on
[Ru2(DArF)4]+ [10] and the present one on [Ru2(HNOCPh)4]+. When taking into consideration
the fact that theoretical calculation results on diruthenium(II,III) tetracarboxylate complexes have been
in accordance with the S = 3/2 ground state [1–3,32], we can also say that [Ru2(DArF)4]BF4 is a unique
complex with an S = 1/2 ground state due to the π*3 electronic configuration, where the δ* orbital is
energetically higher than the π* orbitals in the case of no anti-bonding π-type interactions with axial
ligands having a π character, such as Cl− ions [10].

3. Materials and Methods

3.1. General Aspects

All reagents and solvents were used as received. The precursor complex [Ru2(O2CCMe)4Cl]n was
prepared according to a published procedure [33].

Elemental analyses for carbon, hydrogen, and nitrogen were performed using a Yanako CHN
Corder MT-6. Infrared spectra (KBr pellets) were measured with a JASCO FT/IR-4600. Absorption
spectra and diffuse spectra were obtained using JASCO V-670 and Shimadzu UV-3100 spectrometers,
respectively. ESI-TOF mass spectra were taken on a Bruker microTOF. The variable temperature
magnetic susceptibilities were measured over the temperature range of 2–300 K at the constant
field of 0.5 T with a Quantum Design MPMS3 and MPMS XL-5 for [Ru2(HNOCPh)4Cl]n and
[Ru2(HNOCPh)4(BF4)(H2O)], respectively. The measured data were corrected for diamagnetic
contributions [34]. Cyclic voltammograms (CVs) were measured in dichloromethane containing
tetra-n-butylammonium hexafluoroborate Bu4NPF6 on a BAS ALS-DY2325 electrochemical analyzer.
A glassy carbon disk (1.5 mm radius), platinum wire, and saturated calomel electrodes were used as
working, counter, and reference electrodes, respectively.

3.2. Synthesis of Complexes

3.2.1. Synthesis of [Ru2(HNOCPh)4Cl]n

This complex was synthesized using a modified method described in the literature [13]. A 5.0 g
(42 mmol) of PhCONH2 was combined with 0.50 g (1.0 mmol) of Ru2(O2CCH3)4Cl under nitrogen.
The mixture was heated to 150 ◦C and stirred for 72 h. Excess of the ligand was then removed by
sublimation under the reduced pressure, followed by washing thoroughly with acetone and being
dried by heating for 3 h under vacuum to give a brown powder. The yield was 0.68 g (96% based on
Ru2(O2CCH3)4Cl). Anal. Calcd for Ru2(HNOCPh)4Cl: C, 46.83, H, 3.37, N, 7.80. Found: C, 46.65, H,
3.37, N, 7.87%. IR data (KBr disk, cm−1) 3346 m, 3312 m, 3065 w, 1518 s, 1489 s, 1452 vs, 1432 s, 1217 s,
1118 s, 1029 m, 841 m, 794 m, 687 vs, 657 s, 527 s.

3.2.2. Synthesis of [Ru2(HNOCPh)4(BF4)(H2O)]

A 50.3 mg (0.070 mmol) of Ru2(HNOCPh)4Cl was reacted with 15.0 mg (0.077 mmol) of AgBF4 in
THF (50 mL) with stirring at room temperature for 24 h in the dark. The white precipitate of AgCl was
removed by filtration over celite. The filtrate was employed for evaporation to remove the solvent.
The resultant brown powder was dissolved in chloroform and employed for filtration over celite to
further remove AgCl and unreacted AgBF4. The filtrate was again employed for evaporation to remove
the solvent. The formed powder was dissolved in acetone and filtered. The precipitate formed by
concentration of the filtrated solution was collected by suction filtration, washed with diethylether
and dried over P2O5 in desiccator for 20 h to give a yellowish-brown powder. The yield was 31.5 mg
(57.1% based on Ru2(O2CMe)4Cl). Anal. Calcd for [Ru2(HNOCPh)4(BF4)(H2O)]: C, 42.71, H, 3.33, N,
7.11. Found: C, 42.73, H, 3.45, N, 7.44%. IR data (KBr disk, cm−1) 3354 m, 3050 w, 1690 m, 1616 m,
1600 m, 1514 s, 1464 s, 1450 vs, 1427 s, 1221 s, 1118 s, 1080 m, 1025 s, 838 s, 790 m, 691 vs, 646 s, 522 s,
457 w. HR-ES(ESI-TOF): Found 683.9904 m/z. (calcd for [M]+ 683.9895).
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3.3. Crystal Structure Determination

The single crystals of [Ru2(HNOCPh)4(BF4)(H2O)]·2(acetone) suitable for X-ray crystal structure
analysis were obtained by the recrystallization of [Ru2(HNOCPh)4(BF4)(H2O)] from acetone. X-ray
crystallographic data (Table 1) was collected for a single crystal at 123(2) K on a RIGAKU Saturn
70 CCD system equipped with Mo rotating-anode X-ray generator with monochromated Mo Kα

radiation (λ = 0.71075 Å). Diffraction data were processed using CrystalClear-SM (RIGAKU). The
structure was solved by direct methods (SIR-2011) and refined using the full-matrix least-squares
technique (F2) with SHELXL-2014 as part of the CrystalStructure 4.2.5 software. Non-hydrogen atoms
were refined with anisotropic displacement parameters, and all hydrogen atoms were located at
calculated positions and refined with a riding model.

Table 1. Crystallographic data and structure refinement of [Ru2(HNOCPh)4(BF4)(H2O)]·2(acetone).

Parameter Values a

Empirical formula C34H38BF4N4O7Ru2
Formula mass 903.63
Temperature 123(2) K

Crystal system Monoclinic
Space group P21/n

a 14.412(2) Å
b 15.669(3) Å
c 16.388(3) Å
α 90◦

β 93.743(2)◦

γ 90◦

Unit-cell volume, V 3692.7(10) Å3

Formula per unit cell, Z 4
Density, Dcalcd 1.625 g cm−3

Crystal size 0.200 × 0.170 × 0.050 mm
Absorption coefficient, µ 0.890 mm−1

θ range for data collection 2.833–27.499◦

Reflections collected/unique 8333/7421
R indices [I > 2σ(I)] b R1 = 0.0361, wR2 = 0.0866
Goodness-of-fit on F2 1.045

a Standard deviations in parentheses; b R1 = Σ||Fo| − |Fc||/Σ|Fo|; wR2 = [Σw(Fo
2 − Fc

2)2/Σ(Fo
2)2]1/2.

CCDC-1835304 contains the supplementary crystallographic data for
[Ru2(HNOCPh)4(BF4)(H2O)]·2(acetone). These data can be obtained free of charge from the
Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

3.4. Computational Details

All density functional theory (DFT) calculations applied in this study were performed with
broken symmetry (BS) uB3LYP functional with LANL08f for Ru atom and 6-31G** for other
atoms. The molecular geometries of [Ru2(HNOCPh)4(BF4)(H2O)], [Ru2(PhCONH)4Cl2]−, and
[Ru2(HNOCPh)4]+ were fully optimized in the gas phase, and then the obtained optimized geometries
were checked by frequency analysis. The relative energies of their diruthenium complexes with
S = 3/2 and 1/2 states were compared with zero-point energies (ZPEs). The molecular orbitals of
[Ru2(HNOCPh)4(BF4)(H2O)] were drawn by a GaussView program.

4. Conclusions

A lantern-type diruthenium(II,III) complex [Ru2(HNOCPh)4(BF4)(H2O)] was prepared from
[Ru2(HNOCPh)4Cl]n by removal of the axial chlorido-bridge using AgBF4 in THF. The dinuclear

www.ccdc.cam.ac.uk/data_request/cif
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structure axially coordinated by BF4
− and H2O was determined for the former complex by X-ray crystal

structure analysis. The temperature dependent magnetic susceptibility and moment data showed
that both of the complexes [Ru2(HNOCPh)4(BF4)(H2O)] and [Ru2(HNOCPh)4Cl]n have a quartet
ground state, the electronic structure of which, π4σ2δ2π*2δ*1, was demonstrated by DFT calculations.
The Ru2

6+/Ru2
5+ redox couple was observed at 1.12 V (vs. SCE) for [Ru2(HNOCPh)4(BF4)(H2O)] in

dichloromethane containing Bu4NPF6 as electrolyte.

Supplementary Materials: The following are available at http://www.mdpi.com/2312-7481/4/2/21/s1.
Selected bond distance and angles (Table S1) and hydrogen-bonding network in the crystal for
[Ru2(HNOCPh)4(BF4)(H2O)]·2(acetone) (Figure S1).
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