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Abstract: Two isostructural lanthanide amino-phosphonate complexes [Ln10(µ3-OH)3(µ-OH)(CO3)2

(O2CtBu)15(O3PC6H10NH2)3(O3PC6H10NH3)2(H2O)2][Et2NH2] (Ln = Gd(III), 1 and Tb(III), 2) have
been obtained through reflux reactions of lanthanide pivalates with, a functionalized phosphonate,
(1-amino-1-cyclohexyl)phosphonic acid and diethylamine (Et2NH) in acetonitrile (MeCN) at 90 ◦C.
Both compounds have been characterized with elemental analysis, single-crystal X-ray diffraction
methods, and magnetic measurements. The molecular structure of compounds 1 and 2 reveal two
highly unsymmetrical complexes comprising ten lanthanide metal centers, where the lanthanide
metal ion centers in the cages are linked through pivalate units and further interconnected by
CPO3 tetrahedra to build the crystal structure. The magnetic behavior of 1 and 2 was investigated
between ambient temperature and ca. 2 K, the magnetic measurements for compound 1 suggests
antiferromagnetic interactions between the Gd(III) metal ion centers at low temperatures. The large
number of isotropic Gd(III) ions comprising 1 makes it a candidate for magnetocaloric applications,
thus the magnetocaloric properties of this molecular cage were investigated indirectly through
isothermal magnetisation curves. The magnetic entropy change was found to be 34.5 J kg−1K−1,
making 1 a plausible candidate in magnetic cooling applications.
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1. Introduction

In recent years, research involving metal phosphonates has been deeply explored because of the
great variety of building blocks available for the preparation of functional materials useful in the field
of structural chemistry and magnetic properties [1–7]. Phosphonic acid and its derivatives are flexible
coordination ligands towards a wide range of metal ions, with various ionic radii, including Ln(III)
ions, resulting in some materials with promising magnetic properties [8–11].

4f-phosphonate molecular cages have been studied because of the magnetic anisotropies of the
lanthanide ions and the weak coupling between the metal ions can produce interesting properties [12].
When the isotropic Gd(III) metal ion is present, lanthanide phosphonate clusters display impressive
magnetocaloric effects (MCE), which have been suggested for application in magnetic refrigeration [13].
Lanthanide phosphonates with structural diversity and related physical and chemical properties could
be obtained by modifying phosphonates with different functional organic groups, such as crown
ether [14–18], carboxylate [19–23], pyridyl, amino and hydroxyl [24–32], etc. Much of recent work has
so far focused on the exploration of metal phosphonate materials with new structural types, and a
large number of metal phosphonates were prepared through designing and synthesizing phosphonic
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acids with different functional organic groups [7,33–37]. More recently, a series of metal phosphonates,
using phosphonic acids containing -NH2 sub functional group were also isolated under solvothermal
condition [38,39].

So far, only few 4f-aminophosphonate molecular cages have been reported, the incorporation of
the amino group into a phosphonate ligand could provide additional coordination sites for the metal
ions and influence the packing of the structures through weak interactions such as hydrogen-bond
interactions [8–11]. The first lanthanide aminophosphonate, Lu(HO3PCH2CH2NH3)3(ClO4)3·3D2O
was reported by Legendziwicz et al. in 1999 [40,41]. Due to 4f-phosphonate low solubility in water
and other organic solvents as well as their poor crystallinity, it is still a difficult task to obtain
single crystals suitable for X-ray structural analysis [12,13]. These problems can be solved by two
methods: (1) introducing polar functional groups into the ligand, such as hydroxy, amino, carboxylate,
or crown ether [42–45]; and (2) introducing a second ligand such as pivalic acid or oxalic acid [41,42].
The introduction of the second ligand is to improve the crystallization of the products, to mediate
the electronic effects between paramagnetic metal centers and to link the metal centers into various
structures with dimensionalities extending from zero to three [46–48].

Comparatively, few reports are available on the magnetic properties of lanthanide phosphonates
prepared under reflux conditions [49–51], with the aim of exploring new 4f-phosphonates with
interesting structures and magnetic properties, Herein, the synthesis, crystal structure, and magnetic
stability of two novel lanthanide aminophosphonate complexes, with formula [Ln10(µ3-OH)3

(µ-OH)(CO3)2(O2CtBu)15(O3PC6H10NH2)3(O3PC6H10NH3)2(H2O)2][Et2NH2] (Ln = Gd(III), 1 and
Tb(III), 2), is reported (Figure 1 and Figure S1)
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Figure 1. (a) Crystal structure of {Gd10P5} cluster. Scheme: Gd, purple; P, green; O, red; C, grey; N, cyan;
(H-atoms and Me groups omitted for clarity); (b) metal and phosphonate core in {Gd10P5}, showing
µ3-OH centerd metal ions and carbonate moieties.

2. Results and Discussion

2.1. Syntheses of the Complexes

Phosphonates of general formula RPO3 are well-known as binding groups for molecular metal
clusters by using large R groups or co-ligands that inhibit formation of polymeric materials. Previous
studies have shown that the phosphonate moiety is an efficient functional group for the construction
of molecular cages [38,39]. Winpenny and co-workers reported results using t-butylphosphonic acid
(H2O3PtBu) reacted with lanthanide salts Ln(NO3)3·nH2O or lanthanide pivalates (Ln = Gd(III), Tb(III),
Dy(III), Ho(III), and Er(III) [12,13,39]. Winpenny and coworkers have also synthesized a decanuclear
3d–4f phosphonate cage of [Co4Ln10(O2CtBu)12(O3PC6H10NH2)8(PO4)2(O2CMe)2(O3PC6H10NH3)2]
(Ln = Gd, Dy) [38]. The molecule crystallizes in a triclinic space group and contains ten lanthanides,
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twelve phosphonates, and four cobalt metal ions. The {Ln10P12} core can be described as two centered
12-vertex polyhedra sharing a face, the phosphonates present three different coordination modes of
6.222, 4.2111, and 3.1111. More recently, Winpenny and co-workers also reported two cages of centered
nine-metal rings of lanthanides [Co3(µ3-O)(O2CtBu)6(py)3][Ln10(O2CtBu)18(O3PtBu)6(OH)(H2O)4]
(Ln = Dy, Gd). The compounds are isostructural and contain an anionic {Ln10} cage co-crystallized with
a [Co3(µ3-O)(O2CtBu)6(py)3]+ cation, the anion of the compound contains nine Ln(III) metal ions in a
ring and a tenth Ln(III) metal ion at the center of the structure, the ten metal sites are almost co-planar.
Three of the six phosphonates lie below the plane of the {Ln10} disc and adopt the 4.221 binding mode,
the remaining three phosphonates are above the plane of metal centers; two of them adopt the 3.111
binding mode, while the third adopts the 3.211 mode [52]. Another frequently used ligand to the
polynuclear 4f molecular cages is α-amino acids [42–45], thus 1-amino-1-cyclohexyl phosphonic acid
is supposedly a good ligand to synthesize 4f molecular cages (Figure 2) [38,39]. Herein the use of an
aminophosphonic acid ligand to synthesize two 4f-phosphonate clusters is provided. The reactions
have been performed by refluxing a mixture of lanthanide pivalate [Ln2(O2CtBu)6(HO2CtBu)6]
(Ln = Gd(III); Tb(III)), (1-amino-1-cyclohexyl) phosphonic acid (H2O3PC6H10NH2), and a mild base,
Et2NH in MeCN in the mole ratios 0.1:0.5:0.01.
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Figure 2. The structure of (1-amino-1-cyclohexyl) phosphonic acid. Scheme: P, green; O, red; C, grey;
N, cyan; (H omitted for clarity).

2.2. Description of the Structures

Compounds 1 and 2 both crystallize in the monoclinic space group P21/n and are isostructural,
allowing us to describe compound 1 as representative. The compounds contain an anionic {Ln10}
cage co-crystallized with a [Et2NH2]+ cation. The metal ions are highly irregular and are best
described as a square sandwiched between two triangles (Figure 1, Figures S1 and S2) Compound 1
contains ten lanthanide(III) metal ion centers and the compound is held together by fifteen pivalates,
two carbonates, three µ3-OH, and five (1-amino-1-cyclohexyl) phosphonic acid ligands. P1 and P2
bind to five Gd(III) metal ion centers; adopting a [5.2221] coordination mode (as described using
Harris notation [53], see Figure 3), P3 and P4 bind to three Gd(III) metal ion centers; adopting [3.1110]
and [3.211] coordination modes, respectively. While, P5 binds to four Gd(III) metal ion centers using
the [4.2211] binding mode. The carboxylates adopt three different coordination modes, 2.11, 1.11,
and 1.10. There are three µ3-hydroxide centered gadolinium triangles formed by (Gd1, Gd2, Gd3),
(Gd4, Gd5, Gd6), and (Gd7, Gd8, Gd9), while the two µ3-hydroxide centered gadolinium triangles
that are defined by (Gd4, Gd5, Gd6) and (Gd7, Gd8, Gd9) lie parallel to each other and share two
edges (Gd5–Gd6) and (Gd8–Gd9) with the central distorted square. Whereas, Gd10 is in a bridging
position between the vertices Gd4 and Gd7. The phosphonate, pivalate, and carbonate oxygen atoms
are intensively coordinated to the edges and the vertexes of the three µ3-OH centered triangles,
for example, six oxygen atoms of the two carbonates bind to three vertexes and three edges of the
three µ3-OH centered triangles. The carbonates must arise from the atmospheric CO2 fixation [54–57].
Two different geometries are adopted by the Gd(III) ions in the cluster: whilst Gd2, Gd3 Gd5, Gd6,
Gd8, Gd9, and Gd10 exhibit a triangular dodecahedron (D2d) and a Continuous Shape Measure value
(CShM) of 1.750, 2.422, 0.804, 2.505, 0.715, 3.236, and 2.316 respectively; Gd1, Gd4, and Gd7 adopt a
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less regular coordination (muffin, Cs, with a CShM value of 2.776, 1.238 and 1.569) [58]. (Figure S3
and Table S1). The Gd· · ·Gd distance in the edges of the triangles is ca. 3.9 Å and the three µ3-OH
groups are displaced about 0.81 Å out of the plane of the metal ions. The Gd· · ·Gd distances within the
central distorted square are in the range 4.0749(7)–4.8390(8) Å, whereas the distances between Gd10
metal ion and each of the vertexes Gd4 and Gd7 are in the range 7.0318(9)–6.3986(9) Å, respectively
(Table S2). In the crystal, four molecules reside in the unit cell, which are held together through
hydrogen bonds between the non-coordinated water molecules residing in the pockets on the crystals
and the NH2 groups of the aminophosphonic groups. Likewise, hydrogen bonding is also observed
between the nitrogen of the MeCN solvents molecules and some terminal H2O molecules coordinated
to the lanthanide ions.
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2.3. Magnetic Properties

The temperature dependence of the magnetic susceptibility of 1 and 2 were determined by
employing a SQUID magnetometer. Microcrystalline samples were suspended in n-eicosane and
measured under a DC field of 1000 Oe in the temperature range comprising 2–300 K. The temperature
dependence of the χMT(T) (where χM is the molar magnetic susceptibility) for 1 was 78.3 emu mol−1

K at 300 K (Figure 4a), this value is slightly lower than expected (calcd. 78.7 cm3 K mol−1 for ten
Gd(III): gJ = 2, J = 7/2). Upon cooling, the χMT remains constant to ca. 75 K before falling rapidly to
54 cm3 K mol−1 at 2 K due to the depopulation of the ligand field levels and/or the antiferromagnetic
interactions. The high temperature flat region of the χMT curve hints very weak magnetic interaction
between Gd(III) metal ion centers. The room temperature χMT value for complex 2 (Figure S4) is
118.3 cm3 K mol−1, in agreement with the spin only value (calcd. 118.1 cm3 K mol−1 for ten Tb(III):
gJ = 3/2; J = 6). The curve decreases slowly with decreasing temperature down to about 100 K,
before decreasing more rapidly. The continuing fall of χMT at all temperatures for compound 2
proposes an effect from the combined action of the crystal-field effect of the Tb(III) and the possibly
antiferromagnetic exchange interaction between the metal ion centers. In addition, alternating current
magnetic susceptibilities studied were carried out for compound 2 to probe the Single Molecule Magnet
character (SMM), revealing no out-of-phase component, thus 2 is not an SMM.

Magnetization (M) versus field (H) plots from 2 to 9 K (Figure 4b) for compound 1 shows a
steady increase that reaches 68.3 µB at 7 T at 2 K. This value approaches the saturation value for
ten paramagnetic S = 7/2, g = 2 Gd(III) metal ion centers, calculated from the Brillouin function.
As observed in Figure 4b, at low fields the M(H) at 2 K is significantly lower than the Brillouin function,
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indicating that antiferromagnetic interactions could be operative within the clusters. For 2, M vs. H
curve increase with increasing field, the plots of 2 and 4 K show a linear increase after 3 T that reaches
41.8 µB at 7 T at 2 K without reaching saturation (Figure S5), this is the typical shape of M versus H
plot that indicates significant magnetic anisotropy.Magnetochemistry 2018, 4, x FOR PEER REVIEW  5 of 11 
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Studies of the entropy changes from the magnetization data suggest the gadolinium-containing
compounds could be suitable for low-temperature magnetic cooling (MCE), In this context, the high
magnetization value obtained for compound 1 and the magnetic entropy change was studied to
examine whether compound 1 could be used for magnetic cooling applications. The MCE can be
described as ∆S =

∫
[∂M(T,H)/∂T]HdH [49–51]. The calculated plot (Figure 5) gives peak value for

a field change ∆H = 70 kG of 3 K of 34.5 J kg–1K–1. The maximum entropy value per mole given by
nRln(2S + 1) [n = 10 Gd(III) spins s = 7/2], corresponding to the sum of the individual contributions
from the Gd(III) metal ion spins, is 47.9 J kg−1K−1. These values are not reached experimentally mainly
because of the antiferromagnetic interactions between the metal centers in compound 1, which are
known to decrease the magnetic entropy.
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3. Experimental Section

3.1. Starting Materials

Unless stated otherwise, all reagents and solvents were purchased from Aldrich Chemicals and
used without further purification. (1-amino-1-cyclohexyl) phosphonic acid synthesized according
to the reported method [59]. [Ln2(O2CtBu)6(HO2CtBu)6] (Ln = Gd(III); Tb(III)) were synthesized
following the reported procedure [60,61]. Analytical data were obtained by the microanalytical service
of the University of Manchester. The data and yields are given in Table 1.

3.2. Synthesis of [Ln10(µ3-OH)3(µ-OH) (CO3)2(O2CtBu)15(O3PC6H10NH2)3(O3PC6H10NH3)2(H2O)2]
[Et2NH2] (Ln = Gd(III), 1 and Tb(III), 2)

Compound 1 was synthesized by refluxing a mixture of [Gd2(O2CtBu)6(HO2CtBu)6] (0.15 g,
0.1 mmol), H2O3PC6H10NH2 (0.09 g, 0.5 mmol), distilled water (0.1 mL) and Et2NH (0.1 mL)
in MeCN (15 mL) at 90 ◦C for 4 h to form a clear solution. The solution was cooled down
to room temperature, filtered and then allowed to stand undisturbed at room temperature for
25 days. Colorless rod-shaped crystals suitable for single crystal X-ray diffraction of [Gd10(µ3-OH)3

(µ-OH)(CO3)2(O2CtBu)15(O3PC6H10NH2)3(O3PC6H10NH3)2(H2O)2][Et2NH2], were collected. Similar
reaction with [Tb2(O2CtBu)6(HO2CtBu)6] (0.1 mmol) gave crystals of [Tb10(µ3-OH)3(µ-OH)
(CO3)2(O2CtBu)15(O3PC6H10NH2)3(O3PC6H10NH3)2(H2O)2][Et2NH2], (Table 1). Similar reactions
with the salts [Ln2(O2CtBu)6(HO2CtBu)6] (Ln = Dy(III), Ho(III) and Er(III)) of the rest of lanthanides
failed to give crystallize materials. IR of crystalline samples gave identical IR spectra for 1 and 2 (cm−1):
2964.0, 2923.7, 2985.8, 2961.2, 1706.1, 1609.1, 1479.2, 1411.9, 1371.6, 1207.3, 1162.1, 1071.8, 1026.6, 969.9,
809.2, 811.4, 760.4, 692.2, and 629.7 (Figure S6).

Table 1. Elemental analysis and yield (%) for compounds 1 and 2.

Compound b Yield a Elemental Analysis: Found (Calculated)

C H Ln P N

1 (MeCN)5 45% 32.50 (32.45) 5.15 (5.20) 35.15 (35.10) 3.45 (3.46) 3.48 (3.44)

2 (MeCN)8 39% 33.06 (33.02) 5.21 (5.24) 34.38 (34.40) 3.38 (3.35) 4.22 (4.25)
a Calculated based on the lanthanide pivalate starting material; b Both samples were filtered and dried at room
temperature before conducting the Elemental Analysis (EA). Despite this, the EA clearly suggests the presence of
some solvent molecules in the lattice.

3.3. Magnetic Measurements

Magnetic measurements were performed in temperature ranges of 2–300 K, using a Quantum
Design MPMS-XL7 SQUID magnetometer equipped with a 7 T magnet. The samples were grounded
and placed in a gel capsule. Small amounts of eicosane have been used to avoid movement of the
sample during the measurement. The diamagnetic corrections for the compounds were estimated
using Pascal’s constants, and the magnetic data were corrected for diamagnetic contribution of the
sample holder. AC magnetic measurements were conducted for compound 2 employing an oscillating
magnetic field of 1.55 Oe and under diverse DC fields.

3.4. Crystallographic Data Collection and Refinement

Data collection was carried out on Agilent SUPERNOVA diffractometer using graphite-monochromator
MoKα radiation (λ = 0.71073 Å). A hemisphere of data was collected using a narrow-frame method
with scan widths of 0.30o inω and an exposure time of 10 s per frame. Data reduction and unit cell
refinement were performed with CrysAlisPro software. The structures were solved by direct method
using SHELXS-97 [61] and were refined by full-matrix least-squares calculations on F2 using the
program Olex2 [62]. Suitable crystals of 1 and 2 were selected under microscope and mounted on a tip
using crystallographic oil and placed in a cryostream and used for data collection. All non-hydrogen
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atoms were refined anisotropically, all H atoms were put in calculated positions using riding model,
and were refined isotropically, with the isotropic vibration parameters related to the non-H atom to
which they are bonded. Large solvent accessible voids were found for complexes 1 and 2, however,
the location of discrete solvent molecules could not be determined by simple refinement, and therefore
the contents of the large voids on the crystal structure were determined using the solvent masking
procedure SQUEEZE using Platon [63]. Table 2 contains the molecular formula for 1 and 2 considering
all solvent molecules found; i.e., the ones localized in the lattice and those determined by the SQUEEZE
analysis. The crystallographic data for 1 and 2 are listed in Table 2. Selected bond lengths are given
in Table S2. CCDC 1584149–1584150 contain the supplementary crystallographic data for 1 and 2 for
this paper.

Table 2. Crystallographic information for clusters 1 and 2.

1 2

Formula a C134H249.5Gd10N17.5 O59
P5

C149H270Tb10N25O59 P5

Fw 4366.81 4463.60
T/K 150(1) 150(1)

Cryst system monoclinic monoclinic
space group P21/n P21/n

a/Å 17.9933(3) 18.0239(3)
b/Å 33.9737(5) 34.0856(4)
c/Å 28.6063(4) 28.6516(4)
α/◦ 90 90
β/◦ 90.883(2) 91.006(2)
γ/◦ 90 90

V/Å3 17484.9(5) 17599.6(4)
Z 2 4

$ calcd/g cm−3 1.659 1.678
µ (Mo Kα)/mm−1 3.855 4.083

R1(I > 2σ)(I)) a 0.0516 0.0714
wR2 a 0.1283 0.1459

a Molecular formula based on fully localize MeCN molecules and non-localized molecules determined through the
SQUEEZE procedure. a R1 = ||Fo| − |Fc||/|Fo|, wR2 = [w(|Fo| − |Fc|)2/w|Fo|2]1/2.

4. Conclusions

In summary, two new lanthanide 4f-aminophosphonate with structure [Ln10(µ3-OH)3

(µ-OH)(CO3)2(O2CtBu)15(O3PC6H10NH2)3(O3PC6H10NH3)2(H2O)2][Et2NH2] (Ln = Gd(III); Tb(III))
have been successfully synthesized by using (1-amino-1-cyclohexyl)phosphonic acid ligand and pivalic
acid as the second metal linker under reflux conditions at 90 ◦C for 4 h, both compounds are structurally
and magnetically characterized. Compounds 1 and 2 are isostructural crystallizing in a monoclinic
unit cell. Three different amino-phosphonate binding modes are found in the compounds. Previous
results from our group and others indicate that the alkyl groups attached to the aminophosphonic acid
has a strong effect on the structures and properties of the lanthanide(III) phosphonates isolated [38,39].
The aminophosphonic acids, H2NRPO3H2 (R = alkyl or aryl group), have been proved to be very
useful ligands for the synthesis of metal phosphonates with new structure types in which the organic
part plays a controllable spacer role and the two inorganic-PO3 groups chelate with metal ions to form
one-, two-, and three-dimensional structures [64,65]. The entropy value for Gadolinium containing
complex is 34.5 J kg−1K−1, this value being larger than the value of 32.3 J kg−1K−1 of a previously
studied octametallic 4f-phosphonate horseshoes complex {Gd8P6} [13] for a field change ∆H = 7 T
at 3 K. Our future research efforts will be devoted to the syntheses, crystal structures, and magnetic
properties of lanthanide(III) compounds of other related amino-phosphonate ligands.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2312-7481/4/3/29/s1.
Figure S1: Crystal structure of {Ln10P5} cluster, Figure S2: Metal and phosphonate core in {Gd10P5}, Figure S3:
Polyhedral view of {Ln10P5} core, Figure S4: Variation of χMT vs. T for 2 at 1 kOe from 2–300 K, Figure S5: Mβ
vs. H for 2 at different temperatures (2–9 K) in the field range comprising 0 to 7 T, Figure S6: IR spectra for
compound 1 (blue trace) and compound 2 (green trace), Table S1: CShM values for the Gd metal ion centers of 1,
Table S2. Selected bond distances and angles of compounds 1 and 2.
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