

Supplementary: Abrupt spin crossover behavior in a linear *N1, N2*-Triazole Bridged trinuclear Fe(II) complex

Ai-Min Li^{*a,b*}, Tim Hochdörffer ^c, Juliusz A. Wolny ^c, Volker Schünemann ^c and Eva Rentschler ^{*a,**}

- ^a Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany, rentschler@uni-mainz.de
- ^b Graduate School Materials Science in Mainz, Staudingerweg 9, D-55128 Mainz, Germany
- ^c Fachbereich Physik, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 46, 67663 Kaiserslautern, Germany

Figure S1. ¹H-NMR spectrum of pyrtrz ligand.

Figure S2. A derivative plot of the $\chi_M T$ v.s. T curve for compound **2**.

N N R	dinuclear complex	SCO behavior / T _{1/2}	Ref	
	[Fe2(µ2-L)3(L)2(NCS)4]·CH3OH·CH3CH2OH	incomplete / $T_{1/2}$ = 116 K	1	
trz	[Fe2(µ2-L)3(L)2(NCS)4]·2CH3CH2OH	incomplete / T _{1/2} = 122 K	1	
	[Fe2(µ2-L)3(L)2(NCS)4]·2CH3CH2OH.1.5H2O	HS	1	
	[Fe2(μ2-L)3(L)2(NCS)4]·4MeOH	H abrupt / $T_{1/2}$ = 157 K 2		
trz_NOH	[Fe2(µ2-L)3(L)2(NCS)4]·4H2O	HS	3	
	[Fe2(µ2-L)3(L)2(NCS)4]·H2O	gradual / T1/2 = 150 K	4	
urz V	[Fe₂(µ₂-L)₃(L)₂(NCS)₄]·[Fe(L)₂(NCS)₂(H₂O)₂]	abrupt / T1/2 = 111 K	5	
uz_N	[Fe2(µ2-L)3(L)2(NCS)4]·3.5MeOH	gradual / T1/2 = 115 K	6	
trz	[Fe2(µ2-L)3(L)2(NCS)4]·2H2O	HS	7	
	[Fe2(µ2-L)3(L)2(NCS)4]·CH3OH CH3CH2OH	incomplete / <i>T</i> _{1/2} = 116 K	7	
	[Fe2(µ2-L)3(L)2(NCSe)4]·2DMF·2H2O	HS with LIESST effect	8	

 Table S1. Dinuclear Fe(II) Complexes Based on Functionalized 4-R-1,2,4-Triazole Ligands.

N N R	Trinuclear complex	SCO behavior / T1/2	Ref
trz	[Fe3(µ2-L)6(ReO4)4(H2O)2](ReO4)2·H2O	gradual / T1/2=185 K	9
trz_N	[Fe3(µ2-L)6(Tos)2](Tos)4·4MeOH	gradual / T1/2~170 K	10
	[Fe ₃ (µ ₂ -L) ₆ (L) ₂ H ₂ O) ₄](NO ₃) ₆	gradual / T1/2=208 K	11
trz N N	[[Fe ₃ (µ ₂ -L) ₆ (L) ₂ H ₂ O) ₄](ClO ₄) ₆	HS	11
	[Fe3(µ2-L)6(L)2H2O)4](Br)6	HS	11
	[Fe3(µ2-L)6(L)2(H2O)4](BF4)6-2H2O	HS	12
trz	[Fe3(µ2-L)6(H2O)6](Tos)6·4H2O	gradual / T1/2 =245 K	12
	[Fe3(µ2-L)6(H2O)6](Tos)6	gradual / T1/2=330 K	12
trz N OH	[Fe3(µ2-L)6(H2O)2(EtOH)4](ClO4)6-2EtOH	HS	3
trz OH	[Fe3(µ2-L)6(H2O)6](CF3SO3)6	gradual / T1/2=290 K	13
trz	[Fe3(µ2-L)6(H2O)6](CF3SO3)6	abrupt / T1/2=205 K	14, 15
	[Fe3(µ2-L)6(H2O)6](Tos)6·2H2O	gradual / T1/2=242 K	16
trz	[Fe3(µ2-L)6(H2O)6](CF3SO3)6	gradual / T1/2=185 K	16
trz NO2	[Fe3(µ2-L)6(H2O)2(EtOH)4](Tos)6·4EtOH	gradual / T1/2=148 K	17
trz SO3	[Fe3(µ2-L)6(H2O)6] 5H2O	Hysteresis with T1/2(↑)=357 K, T1/2(↓)=343K	
trz SO3	(Me2NH2)6[Fe3(µ2-L)6(H2O)6]	Hysteresis with T1/2(↑)=400 K, T1/2(↓)=310K	19

 Table S2. Trinuclear Fe(II) Complexes Based on Functionalized 4-R-1,2,4-Triazole Ligands.

N NH2	$\mathbf{N} = \mathbf{N} = $			Hysteresis with T1/2(↑)=222 K, T1/2(↓)=218K		
trz	$[Fe_3(\mu_2-L)_6(tcnset)_6]$ (tcnset = 1,1,3,3-tetracyano-2- thioethylpropenide)			abrupt / T1/2 = 318 K		
Ta	ble S3 Selected	l bond lengths [Å] and ar	ngles [°] for Co	ompounds 1 and 2 .		
		Compound	1			
Fe(1)-N(1)	2.142(5)	Fe(1)-N(28)	2.095(11)	Fe(2)-N(12)	2.201(9)	
Fe(1)-N(7)	2.142(5)	Fe(1)-N(29)	2.128(11)	Fe(2)-N(16)	2.108(6)	
Fe(1)-N(11)	2.172(9)	Fe(2)-N(2)	2.161(5)	Fe(2)-N(26)	2.090(10)	
Fe(1)-N(22)	2.163(6)	Fe(2)-N(6)	2.134(5)	Fe(2)-N(27)	2.094(11)	
N(1)-Fe(1)-N(7)	87.2(3)	N(28)-Fe(1)-N(29)	92.6(4)	N(16)-Fe(2)-N(12)	88.5(3)	
N(1)-Fe(1)-N(11)	86.7(3)	N(29)-Fe(1)-N(1)	90.0(3)	N(26)-Fe(2)-N(2)	176.9(4)	
N(1)-Fe(1)-N(22)	86.9(3)	N(29)-Fe(1)-N(7)	90.3(3)	N(26)-Fe(2)-N(6)	89.9(4)	
N(7)-Fe(1)-N(11)	90.9(3)	N(29)-Fe(1)-N(11)	176.4(4)	N(26)-Fe(2)-N(12)	90.8(4)	
N(7)-Fe(1)-N(22)	173.8(3)	N(29)-Fe(1)-N(22)	87.8(4)	N(26)-Fe(2)-N(16)	86.7(4)	
N(22)-Fe(1)-N(11)	90.6(3)	N(2)-Fe(2)-N(12)	86.4(3)	N(26)-Fe(2)-N(27)	92.5(4)	
N(28)-Fe(1)-N(1)	177.0(3)	N(6)-Fe(2)-N(2)	88.6(3)	N(27)-Fe(2)-N(2)	90.3(4)	
N(28)-Fe(1)-N(7)	91.2(3)	N(6)-Fe(2)-N(12)	87.9(3)	N(27)-Fe(2)-N(6)	92.4(3)	
N(28)-Fe(1)-N(11)	90.8(4)	N(16)-Fe(2)-N(2)	94.6(3)	N(27)-Fe(2)-N(12)	176.7(4)	
N(28)-Fe(1)-N(22)	94.8(3)	N(16)-Fe(2)-N(6)	175.0(3)	N(27)-Fe(2)-N(16)	e(2)-N(16) 91.4(4)	
C(36)-N(26)-Fe(2)	161.0(14)	C(38)-N(28)-Fe(1)	174.1(10)	N(27)-C(37)-S(2)	178.7(13)	
C(37)-N(27)-Fe(2)	172.9(11)	N(26)-C(36)-S(1)	174.7(17)	N(28)-C(38)-S(3)	2(38)-S(3) 179.0(12)	
		Compound	2			
Fe(1)-O(1)	2.149(3)	Fe(2)-N(2)	2.093(4)	Fe(3)-O(4)	2.118(5)	
Fe(1)-O(2)	2.069(4)	Fe(2)-N(14)	2.075(5)	Fe(3)-O(5)	2.124(5)	
Fe(1)-O(3)	2.133(4)	Fe(2)-N(26)	2.094(5)	Fe(3)-O(6)	2.159(5)	
Fe(1)-N(1)	2.173(5)	Fe(2)-N(37)	2.081(5)	Fe(3)-N(38)	2.134(5)	
Fe(1)-N(13)	2.157(5)	Fe(2)-N(49)	2.130(5)	Fe(3)-N(50)	2.156(5)	
Fe(1)-N(25)	2.160(4)	Fe(2)-N(61)	2.108(6)	Fe(3)-N(62)	2.173(6)	
O(4)-Fe(3)-O(5)	91.3(2)	O(5)-Fe(3)-O(6)	88.0(2)	N(38)-Fe(3)-O(6)	88.4(2)	
O(4)-Fe(3)-O(6)	87.7(3)	O(5)-Fe(3)-N(38)	175.7(2)	N(38)-Fe(3)-N(50)	92.3(2)	
O(4)-Fe(3)-N(38)	91.0(2)	O(5)-Fe(3)-N(50)	91.23(19)	N(38)-Fe(3)-N(62)	87.1(2)	
O(4)-Fe(3)-N(50)	91.9(2)	O(5)-Fe(3)-N(62)	90.6(2)	N(50)-Fe(3)-O(6)	179.2(2)	
O(4)-Fe(3)-N(62)	178.1(2)	O(6)-Fe(3)-N(62)	92.5(2)	N(50)-Fe(3)-N(62)	87.87(19)	

Table S4. Geometry of intra-molecular C–H/O $\cdots \pi$ (pyrrole/triazole) in compound **2**.

Atom (X)	centroid	Xcentroid	φ/degª
		distance/Å	

C70b-H70b	C94 ring	2.9070(2)	70.509(5)
O13	N61 ring	3.462(5)	79.035(3)
O12 ring	N1 ring	2.992(6)	78.413(3)
C75-H75	C80 ring	2.748(2)	85.609(4)
C60-H60	C80 ring	2.630(2)	86.995(3)
C93–H93a	C60 ring	2.813(2)	89.298(5)

^{*a*} Angle of the X... π axis to the plane of the centroid cycle contacted.

Table S5. Intra- and inter-molecular Hydrogen-bonding interactions in compound 2.

D–H	А	H…A (Å)	D…A (Å)	$< D-H\cdots A(^{\circ})$	Symmetry codes of A
C27-H27	O19b	2.412	3.231(6)	144(2)	<i>x, y, z</i>
N36-H36	O21b	1.913	2.726(7)	153(1)	<i>x, y, z</i>
C19-H19	O11	2.442	3.169(9)	133(3)	<i>x, y, z</i>
C15-H15	O13	2.267	3.199(7)	166(2)	<i>x, y, z</i>
C63-H63	O23	2.523	3.342(5)	144(3)	<i>x, y, z</i>
N48-H48	O29	1.938	2.799(8)	167(2)	<i>x, y, z</i>
N72-H72	O32	1.914	2.769(6)	166(2)	<i>x, y, z</i>
C27-H27	O20	2.101	3.051(2)	173(2)	<i>x, y, z</i>
C33b-H33a	O21	1.983	2.847(3)	150(3)	<i>x, y, z</i>
C53-H53	O12	2.292	3.161(5)	151(5)	<i>x, y, z</i>
N21-H21	O26	1.932	2.807(9)	173(2)	-x + 1, y + 0.5, -z + 0.5
N57-H57	O29b	2.233	2.962(7)	140(5)	-x, y + 0.5, -z + 0.5
N72b-H72b	07	1.755	2.591(3)	157(2)	-x + 1, y + 0.5, -z + 0.5
C3-H3	O22	2.193	3.083(2)	156(5)	-x, y - 0.5, -z + 0.5
C9-H9	O28a	1.975	2.905(6)	166(2)	-x + 1, y - 0.5, -z + 0.5
C17-H17	O17	2.156	2.994(7)	147(3)	-x + 1, y - 0.5, -z + 0.5
C39–H39	O14	2.241	3.082(9)	147(5)	-x, y - 0.5, -z + 0.5
C41–H41	O18b	2.071	2.991(8)	162(2)	<i>x</i> , <i>y</i> – 1, <i>z</i>

Reference

- 1. Wu, X.X.; Wang, Y.Y.; Yang, P.; Xu, Y.Y.; Huo, J.Z.; Ding, B.; Wang, Y.; Wang, X. Syntheses, structural variation, and characterization of a series of crystalline coordination compounds with 4-benzene-1, 2, 4-triazole: Polymorph, incomplete spin transition, and single crystal-to-single crystal transformation. *Cryst. Growth Des.* **2013**, *14*, 477–490.
- 2. Garcia, Y.; Robert, F.; Naik, A.D.; Zhou, G.Y.; Tinant, B.; Robeyns, K.; Michotte, S.; Piraux, L. Spin transition charted in a fluorophore-tagged thermochromic dinuclear iron (II) complex. *J. Am. Chem. Soc.* **2011**, *133*, 15850–15853.
- 3. Scott, H.Z.; Ross, T.M.; Moubaraki, B.; Murray, K.S.; Neville, S.M. Spin Crossover in Polymeric Materials Using Schiff Base Functionalized Triazole Ligands. *Eur. J. Inorg. Chem.* **2013**, *5–6*, 803–812.
- 4. Cheng, X.; Yang, Q.; Gao, C.; Wang, B.W.; Shiga, T.; Oshio, H.; Wang, Z.M.; Gao, S. Thermal and light induced spin crossover behavior of a dinuclear Fe (II) compound. *Dalton Trans.* **2015**, *44*, 11282–11285.

- Kolnaar, A.; Jeroen, J.; de Heer, M.I.; Kooijman, H.; Spek, A.L.; Schmitt, G.; Ksenofontov, V.; Gütlich, P.; Haasnoot, J.G.; Reedijk, J. Synthesis, Structure and Properties of a Mixed Mononuclear/Dinuclear Iron (II) Spin-Crossover Compound with the Ligand 4-(p-Tolyl)-1, 2, 4-triazole. *Eur. J. Inorg. Chem.* 1999, 5, 881–886.
- 6. Roubeau, O.; Gamez, P.; Teat, S.J. Dinuclear Complexes with a Triple N1,N2-Triazole Bridge That Exhibit Partial Spin Crossover and Weak Antiferromagnetic Interactions. *Eur. J. Inorg. Chem.* **2013**, *4*, 934–942.
- 7. Ding, B.; Liu, Y.Y.; Wang, Y.; Ma, J.G.; Niu, Z.; Shi, W.; Cheng, P. Syntheses, structures and magnetic properties of a series of iron (II)-triazole crystalline coordination compounds: Solvent effect, different substituted groups and incomplete spin transition. *Inorg. Chem. Commun.* **2013**, *31*, 44–48.
- 8. Wang, J.L.; Liu, Q.; Meng, Y.S.; Zheng, H.; Zhu, H.L.; Shi, Q.; Liu, T. Synergic on/off Photoswitching Spin State and Magnetic Coupling between Spin Crossover Centers. *Inorg. Chem.* **2017**, *56*, 10674–10680.
- Bushuev, M.B.; Lavrenova, L.G.; Shvedenkov, Y.G.; Virovets, A.V.; Sheludyakova, L.A.; Larionov, S.V. Synthesis and study of Iron (II) perrhenate complexes with 4-propyl-1, 2, 4-triazole exhibiting 1 A 1 *⇒* 5 T 2 spin transition. *Russ. J. Inorg. Chem.* 2007, 52, 46–51.
- 10. Klein, Y.M.; Sciortino, N.F.; Housecroft, C.E.; Kepert, C.J.; Neville, S.M. Structure and Magnetic Properties of the Spin Crossover Linear Trinuclear Complex [Fe₃(furtrz)₆(ptol)₂(MeOH)₄]·4(ptol)·4(MeOH) (furtrz: Furanylidene-4H-1,2,4-triazol-4-amine ptol: P-tolylsulfonate). *Magnetochemistry* **2016**, *2*, 2–8.
- Shakirova, O.G.; Lavrenova, L.G.; Shvedenkov, Y.G.; Berezovskii, G.A.; Naumanov, D.Y.; Sheludyakova, L.A.; Dolgushin, G.V.; Larionov, S.V. Synthesis and physicochemical study of iron (II), cobalt (II), nickel (II), and copper (II) complexes with 4-(2-pyridyl)-1, 2, 4-triazole. *Russ. J. Coord. Chem.* 2004, *30*, 473–479.
- Thomann, M.; Kahn, O.; Guilhem, J.; Varret, F. Spin conversion versus antiferromagnetic interaction in iron (II) trinuclear species. crystal structures and magnetic properties of [Fe₃(*p*-MeOptrz)₈(H₂O)₄](BF₄)₆ and [Fe₃(*p*-MeOprtz)₆(H₂O)₆](tos)₆ [*p*-MeOptrz= 4-(p-Methoxyphenyl)-1, 2, 4-triazole, tos= tosylate]. *Inorg. Chem.* **1994**, 33, 6029–6037.
- Garcia, Y.; Guionneau, P.; Bravic, G.; Chasseau, D.; Howard, J.A.K.; Kahn, O.; Ksenofontov, V.; Reiman, S.; Gütlich, P. Synthesis, crystal structure, magnetic properties and ⁵⁷Fe Mössbauer spectroscopy of the new trinuclear [Fe₃(4-(2'-hydroxyethyl)-1, 2, 4-triazole)₆(H₂O)₆](CF₃SO₃)₆ spin crossover compound. *Eur. J. Inorg. Chem.* 2000, 2000, 1531–1538.
- 14. Vos, G.; Le Febre, R.A.; de Graaff, R.A.G.; Haasnoot, J.G.; Reedijk, J. Unique high-spin-low-spin transition of the central ion in a linear, trinuclear iron (II) triazole compound. *J. Am. Chem. Soc.* **1983**, *105*, 1682–1683.
- Vos, G.; De Graaff, R.A.; Haasnoot, J.G.; Van der Kraan, A.M.; De Vaal, P.; Reedijk, J. Crystal structure at 300 and 105 K, magnetic properties and Moessbauer spectra of bis (triaquatris (4-ethyltriazole-N1) iron (II)-N2, N2', N2") iron (II) hexakis (trifluoromethanesulfonate). A linear, trinuclear iron (II) compound, showing a unique high-spin-low-spin transition of the central iron atom. *Inorg. Chem.* 1984, 23, 2905–2910.
- Kolnaar, J.J.A.; van Dijk, G.; Koojiman, H.; Spek, A.L.; Ksenofontov, V.; Gütlich, P.; Haasnoot, J.G.; Reedijk, J. Synthesis, Structure, Magnetic Behavior, and Mössbauer Spectroscopy of Two New Iron (II) Spin-Transition Compounds with the Ligand 4-Isopropyl-1, 2, 4-triazole. X-ray Structure of [Fe3(4-isopropyl-1, 2, 4-triazole)₆(H₂O)₆](tosylate)₆·2H₂O. *Inorg. Chem.* **1997**, *36*, 2433–2440.
- 17. Savard, D.; Cook, C.; Enright, G.D.; Korobkov, I.; Burchell, T.J.; Murugesu, M. Gradual spin crossover behaviour in a linear trinuclear Fe II complex. *Cryst. Eng. Comm.* **2011**, *13*, 5190–5197.
- Gómez, V.; Benet-Buchholz, J.; Martin, E.; Galan-Máscarós, J.R. Hysteretic Spin Crossover above Room Temperature and Magnetic Coupling in Trinuclear Transition-Metal Complexes with Anionic 1, 2, 4-Triazole Ligands. *Chem. Eur. J.* 2014, 20, 5369–5379.
- Gómez, V.; de Pipaón, C.S.; Maldonado-Illescas, P.; Waerenborgh, J.C.; Martin, E.; Benet-Buchholz, J.; Galan-Máscarós, J.R. Easy Excited-State Trapping and Record High T TIESST in a Spin-Crossover Polyanionic Fe^{II} Trimer. *J. Am. Chem. Soc.* **2015**, *137*, 11924–11927.
- 20. Chen, W.B.; Leng, J.D.; Wang, Z.Z.; Chen, Y.C.; Miao, Y.; Tong, M.L.; Dong, W. Reversible crystal-to-crystal transformation from a trinuclear cluster to a 1D chain and the corresponding spin crossover (SCO) behaviour change. *Chem. Commun.* **2017**, *53*, 7820–7823.
- 21. Chen, W.B.; Chen, Y.C.; Yang, M.; Tong, M.L.; Dong, W. Water molecule induced reversible single-crystalto-single-crystal transformation between two trinuclear Fe (ii) complexes with different spin crossover behavior. *Dalton Trans.* **2018**, *47*, 4307–4314.
- 22. Pittala, N.; Thétiot, F.; Charles, C.; Triki, S.; Boukheddaden, K.; Chastanet, G.; Marchivie, M. An unprecedented trinuclear Fe II triazole-based complex exhibiting a concerted and complete sharp spin transition above room temperature. *Chem. Commun.* **2017**, *53*, 8356–8359.

© 2018 by the authors. Submitted for possible open access under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).