Supporting Information

Iron(III) azadiphenolate compounds in a new family of spin crossover iron(II)-iron(III) mixed-valent complexes

Wasinee Phonsri ${ }^{1}$, David S. Macedo ${ }^{1}$, Barnaby A. I. Lewis ${ }^{1,2}$, Declan F. Wain ${ }^{1}$ and Keith S. Murray ${ }^{1, *}$
${ }^{1}$ School of Chemistry 17 Rainforest Walk, Monash University, Clayton, VIC 3800 Australia; wasinee.phonsri@monash.edu (W.P.), David.Macedo@csiro.au (D.S.M), dfwai1@student.monash.edu (D.F.W)
${ }^{2}$ Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK; B.Lewis@warwick.ac.uk (B.A.I.L)

* Correspondence: Keith.Murray@monash.edu; Tel.: +613-9905-4512 Fax: +613-99054597

Table of Contents
Table S1 Crystallographic data and structure refinement for 1, 2, and 3
Table S2 Selected bond length and octahedral distortion parameters for 1-ref[1], 1, 2, and 3
Table S3 Selected intermolecular interactions in compound 2
Table S4 Selected intermolecular interactions in compound 3
Table S5 Selected intermolecular interactions in compound 4
Table S6 Selected intermolecular interactions in compound 5
Table S7 Selected intermolecular interactions in compound 6

Figure S1 a) A dimer of $\left[\mathrm{Fe}(\mathrm{azp})_{2}\right]^{-}$moieties linked via K^{+}cations in 1-ref [1], and b) the K^{+} ions forming η_{4} interactions to aromatic rings of 1 , and $\left.c\right)\left\{K-\mathrm{OH}_{2} \cdots \mathrm{O}\right.$ (phenolate)-Fe $\}$ hydrogen-bonding pathways in 1.
Figure S2 a) Crystal packing of a) 1-ref, viewing through the a-axis. and b) 1 , viewing through the b-axis. Red and blue broken lines represent $\mathrm{K}^{+} \cdots \pi$ and $\mathrm{O} \cdots \mathrm{H}$ interactions, respectively. Hydrogen atoms omitted for clarity
Figure $\mathrm{S} 3 \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions between $\mathrm{Fe}^{I I}$ moieties and $\mathrm{ClO}_{4}{ }^{-}$in compound 2 that link $\mathrm{Fe}^{I I}$ cationic molecules in a) a sheet along the ac plane and b) a pseudo-3D network, c) showing $\mathrm{ClO}_{4}{ }^{-}$anions around the $\left[\mathrm{Fe}^{\| \prime}\left\{(\mathrm{pz})_{3} \mathrm{CH}\right\}_{2}\right]^{2+}$ molecule
Figure S4 Crystal packing in compound 3 showing the $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions that connect $\left[\mathrm{Fe}^{\prime \prime}(\mathrm{TPPZ})_{2}\right]^{2+}$ in a) a chain along the c axis, b) a 2D sheet on an ac plane and c) 3 types of P4AE interactions that connect $\left[\mathrm{Fe}^{\prime l}(\mathrm{TPPZ})_{2}\right]^{2+}$ along an $a b$ plane (P4AE-A: red, P4AE-B: orange and P4AE-C: blue)
Figure S5 $\pi-\pi$ (red broken lines) and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O} / \mathrm{N}$ (blue broken lines) interactions connecting the anionic Fe ${ }^{\text {II }}$ (orange polyhedra) and Fe ${ }^{\text {III }}$ (yellow polyhedra) molecules in compound 4 along the c axis.
Figure S6 $\pi \cdots \pi$ interactions between HS-[Fe $\left.{ }^{\text {III }}(\operatorname{azp})_{2}\right]^{-}$; Fe1 and LS-[Fe $\left.{ }^{\prime \prime}(T P P Z)_{2}\right]^{2+}$; Fe3 in compound 5 a) Type A and b) Type B of $\pi \cdots \pi$ interactions yielding a 1D chain along the b axis. These 1D chains further connect through other two types of $\pi \cdots \pi$ interactions i.e. c) Type C and D) Type D yielding a 2D layer of HS-[Felil (azp) $\left.)_{2}\right]^{-}$; Fe1 and LS-[Fe $\left.{ }^{\prime \prime}(\mathrm{TPPZ})_{2}\right]^{2+}$; Fe3 on an ab plane
Figure S7 a) the crystal packing in 5, the red rectangle highlights the area of discussion b) $\pi \cdots \pi$ interactions between HS-[Fe III (azp) $\left.)^{2}\right]^{-}$; Fe1 (blue molecules) and LS-[Fe $\left.{ }^{\text {III }}(\mathrm{azp})_{2}\right]^{-} ;$Fe2, viewing along the a axis and c) a view along the b axis of the same chain as b) to clearly show the $\pi \cdots \pi$ stacks between two types of $\left[\mathrm{Fe}^{I I \prime}(\mathrm{azp})_{2}\right]^{-}$.
Figure S8 Representation of crystal packing and selected intermolecular interaction in 6 a) C$H \cdots \pi$ interactions between LS-Fell forming a 1D chain along the a axis, b) pseudo-2D sheet on an $a b$ plane, and c) C-H $\cdots \mathrm{N} 22$ interactions relating to MeCN solvent that link sheets of Fe molecules in pseudo-3D network
Figure S9 Water solvation occupation in the pocket of Fe molecules in 5 and 6. Light yellow, yellow and orange polyhedra are $\mathrm{Fe} 1\left(\mathrm{HS}-\mathrm{Fe}{ }^{\text {III }}\right.$), $\mathrm{Fe} 2\left(\mathrm{LS}-\mathrm{Fe}^{\text {IIII }}\right.$) and $\mathrm{Fe} 3(\mathrm{LS}-\mathrm{Fe}$ II), respectively.
Figure S10 Comparison of PXRD patterns between simulated and experimental PXRD patterns of compound 5 and 6.
Figure S11 Comparison of PXRD patterns between simulated and experimental PXRD patterns of compound a) $\mathbf{3}$ and b) 4

Figure S1 a) A dimer of $\left[\mathrm{Fe}(\mathrm{azp})_{2}\right]^{-}$moieties linking via K^{+}cations in 1-ref [1], and b) the K^{+} ions forming η_{4} interactions to aromatic rings of 1 , and c) $\left\{\mathrm{K}-\mathrm{OH}_{2} \cdots \mathrm{O}\right.$ (phenolate)-Fe $\}$ hydrogen-bonding pathways in 1.

Table S1 Crystallographic data and structure refinement for 1, 2, and $\mathbf{3}$

	1	2	3	
	123 K	123 K	100 K	300 K
Formula	$\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{FeKN}_{4} \mathrm{O}_{8}$	$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{FeN}_{12} \mathrm{O}_{8}$	$\mathrm{C}_{52} \mathrm{H}_{38} \mathrm{Cl}_{6} \mathrm{Fe}_{3} \mathrm{~N}_{14} \mathrm{O}$	$\mathrm{C}_{52} \mathrm{H}_{38} \mathrm{Cl}_{6} \mathrm{Fe}_{3} \mathrm{~N}_{14} \mathrm{O}$
Molecular weight / gmol-1	605.45	683.23	1255.21	1255.21
Crystal system	Monoclinic	Monoclinic	Triclinic	Triclinic
Space group	$P 2_{1} / n$	$P 2{ }_{1} / n$	$P \overline{1}$	$P \overline{1}$
a / \AA	9.8080 (1)	10.2987 (2)	13.060 (3)	13.230 (3)
b/A	16.7440 (3)	7.5907 (2)	14.650 (3)	14.730 (3)
c/ \AA	15.6654 (2)	17.3764 (4)	15.310 (3)	15.370 (3)
$\alpha /{ }^{\circ}$	90	90	78.29 (3)	78.12 (3)
$\beta /{ }^{\circ}$	93.098 (1)	103.506 (2)	78.75 (3)	78.98 (3)
$\gamma /{ }^{\circ}$	90	90	70.90 (3)	71.00 (3)
Cell volume / ${ }^{3}$	2568.89 (6)	1320.82 (5)	2684.0 (11)	2746.3 (11)
Z	4	2	2	2
Absorption coefficient / mm ${ }^{-1}$	6.663	7.086	1.153	1.126
Reflections collected	26214	13697	56946	59154
Independent reflections, $R_{\text {int }}$	5320, 0.1088	2738, 0.0680	15032, 0.0641	15489, 0.0235
Max. and min. transmission	1.00000 and 0.24243	1.00000 and 0.54615	0.966 and 0.933	0.967 and 0.935
Restraints/parameters	3/338	0/196	0/687	0/687
Final R indices [$/>2 \sigma(\mathrm{I})]: R_{1}, w R_{2}$	0.0610, 0.1734	0.0456, 0.1270	0.0666, 0.1915	0.0503, 0.1483
CCDC number	1905259	1905257	1905260	1905261

Table S2 Selected bond length and octahedral distortion parameters for 1-ref [1], 1, 2, and $\mathbf{3}$

1-ref [1]			1
	90 K		123 K
Fe-01/Å	1.971(5)	Fe1-01/Å	1.928 (3)
Fe-O2/Å	1.890(4)	Fe1-02/Å	1.878 (2)
Fe-O3/Å	1.928(8)	Fe1-03/Å	1.925 (2)
$\mathrm{Fe}-04 / \mathrm{A}$	1.949(8)	Fe1-04/Å	1.873 (2)
Fe-N1/Å	2.079(6)	Fe1-N1/Å	1.917 (3)
Fe-N2/Å	2.096(8)	Fe1-N3/Å	1.908 (3)
$\Sigma /{ }^{\circ}(\mathrm{Fe} 1)$	94	$\Sigma /{ }^{\circ}(\mathrm{Fe} 1)$	36
$\Theta /{ }^{\circ}(\mathrm{Fe} 1)$	235	$\Theta /{ }^{\circ}(\mathrm{Fe} 1)$	48

2			3	
123 K			100 K	300 K
Fe1-N1/Å	1.9736 (19)	Fe1-N1/Å	1.966 (2)	1.9711 (18)
Fe1-N1//Å	1.9736 (19)	Fe1-N2/Å	1.877 (2)	1.8771 (17)
Fe1-N2/Å	1.972 (2)	Fe1-N3/Å	1.956 (2)	1.9618 (18)
Fe1-N2'/A	1.972 (2)	Fe1-N7/Å	1.968 (2)	1.9683 (18)
Fe1-N3/Å	1.970 (2)	Fe1-N8/Å	1.878 (2)	1.8800 (16)
Fe1-N3'/A	1.970 (2)	Fe1-N9/Å	1.972 (2)	1.9794 (18)
$\Sigma /{ }^{\circ}(\mathrm{Fe} 1)$	29	$\Sigma /{ }^{\circ}(\mathrm{Fe} 1)$	80	81
$\Theta /{ }^{\circ}(\mathrm{Fe} 1)$	35	$\Theta /{ }^{\circ}(\mathrm{Fe} 1)$	240	252

Symmetry code: (i) $-x+1,-y+1,-z+1$.

Figure S2 Crystal packing of a) 1-ref, viewing through the a-axis. and b) 1, viewing through the b-axis. Red and blue broken lines represent $\mathrm{K}^{+\cdots} \pi$ and $\mathrm{O} \cdots \mathrm{H}$ interactions, respectively. Hydrogen atoms omitted for clarity

Figure $\mathbf{S 3} \mathbf{C - H} \cdots \mathrm{O}$ interactions between $\mathrm{Fe}^{\text {ll }}$ moieties and ClO_{4}^{-}in compound $\mathbf{2}$ that link $\mathrm{Fe}^{\text {II }}$ cationic molecules in a) a sheet on ac plane and b) a pseudo-3D network, c) showing ClO_{4}^{-} anions around the $\left[\mathrm{Fe}^{11}\left\{(\mathrm{pz})_{3} \mathrm{CH}\right\}_{2}\right]^{2+}$ molecule

Table S3 Selected intermolecular interactions in compound 2. (Å)

Fe" molecules with O from ClO_{4} on $a c$ sheet	Distance/Å
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O} 1$	$2.7019(0)$
$\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{O} 2$	$2.2773(0)$
$\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{O} 3$	$2.3585(1)$
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O} 1$	$2.4496(0)$
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{O} 4$	$2.3435(0)$
Connect the ac sheet along the b axis	
C2-H2 $\cdots \mathrm{O} 2$	$2.3722(0)$
C8-H8 $\cdots \mathrm{O} 4$	$2.4555(0)$
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O} 1$	$2.6629(0)$
C6-H6 $\cdots \mathrm{O} 3$	$2.6617(1)$

$\stackrel{B}{4} \mathrm{C}$

$\stackrel{1}{\square} \mathrm{c}$

b

Figure S4 Crystal packing in compound $\mathbf{3}$ showing the $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions that connect [Fe"(TPPZ) $)^{2+}{ }^{2+}$ in a) a chain along the c axis, b) a 2D sheet on an ac plane and c) 3 types of P4AE interactions that connect $\left[F e^{\prime \prime}(T P P Z)_{2}\right]^{2+}$ along an $a b$ plane (P4AE-A: red, P4AE-B: orange and P4AE-C: blue)

Table S4 Selected intermolecular interactions in compound 3. (Å)

	100 K	300 K
Chain along c axis		
C46-H46.*N6	2.6725(11)	2.7163(11)
C34-H34 $\cdots \mathrm{Cl} 1$	2.9321(10)	-
C25-H25 $\cdots \mathrm{Cl} 2$	$2.7432(10)$	2.7661(10)
$\mathrm{C} 33-\mathrm{H} 33 \cdots \mathrm{Cl} 3$	2.8920(7)	$2.9404(7)$
Chain along a axis		
C26-H26 $\cdots \mathrm{Cl} 5$	2.9461(8)	-
C27-H27 $\cdots \mathrm{Cl} 5$	2.6863(6)	2.7557(6)
Sheet on ab plane		
P4AE-A		
C15-H15 $\cdots \pi$	2.514	2.592
$\pi \cdots \pi$	3.377	3.419
P4AE-B		
С3-H3 $\cdots \pi$	2.618	2.748
$\pi \cdots \pi$	3.281	3.341
P4AE-C		
C39-H39 $\cdots \pi$	2.554	2.645
$\pi \cdots \pi$	3.443	3.465

Table S5 Selected intermolecular interactions in compound 4. (Å)

	$\mathbf{1 0 0} \mathbf{K}$	$\mathbf{3 0 0} \mathbf{K}$
A sheet along $a b$ plane		
$\mathrm{C} 3-\mathrm{H} 3 \cdots \pi$	2.745	2.881
$\mathrm{C} 22-\mathrm{H} 22 \cdots \mathrm{O} 1$	$2.7026(8)$	-
$\pi-\pi$	3.407	3.496
$\mathrm{C} 10-\mathrm{H} 10 \cdots \pi$	2.901	-
$\mathrm{C} 14-\mathrm{H} 14 \cdots \pi$	2.701	2.775
A chain along the c axis		
$\mathrm{C} 27-\mathrm{H} 27 \cdots \mathrm{~N} 2$	$2.6158(13)$	$2.6687(1)$
$\mathrm{C} 31-\mathrm{H} 31 \cdots \mathrm{~N} 4$	$2.6479(9)$	$2.6970(1)$
$\mathrm{C} 32-\mathrm{H} 32 \cdots \mathrm{O} 1$	$2.2972(13)$	$2.3835(1)$
$\pi-\pi$	3.916	-
$\mathrm{C} 30-\mathrm{H} 30 \cdots \mathrm{O} 2$	$2.3102(10)$	$2.3439(1)$

Figure $\mathbf{S 5} \pi-\pi$ (red broken lines) and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O} / \mathrm{N}$ (blue broken lines) interactions connecting the anionic $\mathrm{Fe}^{\text {II }}$ (orange polyhedra) and Fe ${ }^{\text {III }}$ (yellow polyhedra) molecules in compound 4 along the c axis.

c

d

Figure S6 $\pi \cdots \pi$ interactions between HS-[Fe"I'(azp) $\left.)^{2}\right]^{-}$; Fe1 and LS-[Fel'(TPPZ) $\left.)_{2}\right]^{2+}$; Fe3 in compound 5 a) Type A and b) Type B of $\pi \cdots \pi$ interactions yielding a 1D chain along the b axis. These 1D chains further connect through other two types of $\pi \cdots \pi$ interactions i.e. c) Type C and d) Type D yielding a 2D layer of HS-[Fe"'I(azp) $\left.)^{-}\right]^{-}$; Fe1 and LS-[Fe" $\left.{ }^{\prime \prime}(\mathrm{TPPZ})_{2}\right]^{2+} ; \mathrm{Fe} 3$ on an $a b$ plane

a

b

C
Figure $\mathbf{S 7}$ a) the crystal packing of 5, the red rectangle highlights the area of discussion b) $\pi \cdots \pi$ interactions between HS-[Fel'I (azp) $\left.)^{-}\right]^{-}$; Fe1 (blue molecules) and LS-[Fe"II (azp) $\left.)_{2}\right]^{-}$; Fe2, viewing along the a axis and c) a view along the b axis of the same chain as b) to clearly show the $\pi \cdots \pi$ stackes between two types of $\left[\mathrm{Fe}^{\mathrm{II} \mathrm{\prime} \mathrm{\prime}}(\mathrm{azp})_{2}\right]^{-}$.

Table S6 Selected intermolecular interactions in compound 5. (Å)

	100 K	300 K
Anionic sheet of LS-Fel' on an ab plane		
C41-H41..N6	2.6327(4)	2.6663(4)
C46-H46..O9	2.5706(5)	2.6390(6)
09-H9B...07	2.0276(4)	1.9941(4)
A chain along the b axis, HS-Fe ${ }^{\text {III }}$-LS-Fel'		
Type A		
C84-H84 $\cdots \pi$	2.762	2.802
$\pi \cdots \pi$	3.598	3.631
Type B		
C2-H2 $\cdots \pi$	2.806	(2.908)
$\pi \cdots \pi$	3.740	3.784
Between chains of HS-Fe ${ }^{\text {III }}$-LS-Fel		
Type C		
$\pi \cdots \pi$	3.942	3.926
Type D		
$\pi \cdots \pi$	3.740	3.782
Along the c axis, HS-Fe'II-LS-Fel'I		
$\pi \cdots \pi$	3.580	3.607

$\pi \cdots \pi$ is centroid to centroid distance,
Note for Type C at 100 K , plane to plane distance is $3.62 \AA$

b

c
Figure S8 Representation of crystal packing and selected intermolecular interaction in 6. a) C-H $\cdots \pi$ interactions between LS-Fell forming a 1D chain along the a axis, b) pseudo-2D sheet on an $a b$ plane, and c) C-H $\cdots \mathrm{N} 22$ interactions relating to MeCN solvent that link sheets of Fe molecules in forming a pseudo-3D network

Compound 5

Compound 6

Figure $\mathbf{S 9}$ Water solvation occupation in the pocket of Fe molecules in $\mathbf{5}$ and $\mathbf{6}$. Light yellow, yellow and orange polyhedra are Fe1(HS-Fe"II), Fe2(LS-Fe'II) and Fe3(LS-Fe"), respectively.

Table S7 Selected intermolecular interactions in compound 6 (\AA)

	100 K	300 K
chains along the a axis		
C94-H94 $\cdots \pi$	2.667	2.751
C93-H93 \cdots N15	2.5698(5)	2.6131(6)
C74-H74..06	2.3161(4)	2.3932(4)
C75-H75 $\cdots \pi$	2.964	(3.060)
С9-H9 $\cdots \pi$	2.944	3.000
C90-H90… 04 chains along b axis	2.5927(4)	2.6633(4)
C50-H50 $\cdots \pi$	2.640	2.740
C70-H70 $\cdots \pi$	2.864	2.949
C65-H65 $\cdots \pi$	2.638	2.702
Fe2-Fe2		
C38-H38..08	2.4982(5)	2.6003(4)
C39-H39..N6	2.6899(6)	2.7467(6)
Fe1-Fe1		
C11-H11..O2	2.5522(5)	2.5398(5)
MeCN solvate		
C76-H76 ${ }^{\text {N }} 22$	2.6025(7)	2.7375(8)
C58-H58‥N22	2.7025(6)	2.7831(7)

Powder diffraction data

All the experiments were performed at room temperature. The PXRD plot for the bulk sample of 5 does not agrees with that simulated from single crystal data, suggesting the bulk sample is not a pure phase. Bulk sample of compound $\mathbf{5}$ was re-crystallized in MeCN and yielded compound 6. Experimental PXRD result of $\mathbf{6}$ is different from that of $\mathbf{5}$ but agree very well with the simulated PXRD pattern from the single crystal structure of 6 . This suggests the bulk phase of 6 is pure.

Figure S10 Comparison of PXRD patterns between simulated and experimental PXRD patterns of compound 5 and 6.

b
Figure S11 Comparison of PXRD patterns between simulated and experimental PXRD patterns of compound a) $\mathbf{3}$ and b) $\mathbf{4}$

References

1. Takahashi, K.; Kawamukai, K.; Okai, M.; Mochida, T.; Sakurai, T.; Ohta, H.; Yamamoto, T.; Einaga, Y.; Shiota, Y.; Yoshizawa, K. A new family of anionic Felll spin crossover complexes featuring a weak-field N2O4 coordination octahedron. Chem. Eur. J. 2016, 22, 1253-1257.
