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Abstract: A series of five new mononuclear pentagonal bipyramidal Co(II) complexes with the
equatorial 2,6-diacetylpyridine bis(semicarbazone) ligand (H2dapsc) and various axial pseudohalide
ligands (SCN, SeCN, N(CN)2, C(CN)3, and N3) was prepared and structurally characterizated:
[Co(H2dapsc) (SCN)2]·0.5C2H5OH (1), [Co(H2dapsc) (SeCN)2]·0.5C2H5OH (2), [Co(H2dapsc)
(N(CN)2)2]·2H2O (3), [Co(H2dapsc) (C(CN)3)(H2O)](NO3)·1.16H2O (4), and {[Co(H2dapsc) (H2O)
(N3)][Co(H2dapsc)(N3)2]}N3·4H2O (5). The combined analyses of the experimental DC and AC
magnetic data of the complexes (1–5) and two other earlier described those of this family [Co(H2dapsc)
(H2O)2)](NO3)2·2H2O (6) and [Co(H2dapsc)(Cl)(H2O)]Cl·2H2O (7), their theoretical description and
the ab initio CASSCF/NEVPT2 calculations reveal large easy-plane magnetic anisotropies for all
complexes (D = + 35 − 40 cm−1). All complexes under consideration demonstrate slow magnetic
relaxation with dominant Raman and direct spin–phonon processes at static magnetic field and so
they belong to the class of field-induced single-ion magnets (SIMs).

Keywords: single ion magnets; seven-coordinate complexes; Co(II) complexes; ligand H2dapsc;
crystal structure; DC and AC magnetic properties

1. Introduction

Large uniaxial magnetic anisotropy has a crucial role in the enhancement of the blocking
temperature of magnetization reversal in single molecular magnets (SMMs) [1–4]. One of the approaches
to increase magnetic anisotropy is to use special ligands with a less-common coordination since the
anisotropy depends on the coordination number of the metal centers [5,6]. The magnetic anisotropy
can be improved by a rational ligand design [7–15]. The “ligand approach” has already led to
a variety of mononuclear 3d metal ion—based SMMs (so-called single-ion magnets (SIMs)) with
improved characteristics [6]. Among them, the two-coordinate complex of Fe(I) exhibited an effective
spin-reversal barrier of Ueff = 226 cm−1 [7] and recently reported that the linear two-coordinated Co(II)
imido complex has the energy barrier of 413 cm−1 [13], the largest yet observed for a 3d-based SMM.
However, low coordinate complexes are not very stable which restricts their possible utility in different
applications. At the same time, the experimental and theoretical studies of stable seven-coordinated
metal centers with pentagonal bipyramidal geometry showed that such centers are highly promising as
anisotropic spin carriers [16–25]. In this context, 3d-metallocomplexes with the pentadentate Schiff-base
H2dapsc ligand (H2dapsc = 2,6-diacetylpyridine bis(semicarbazone), Figure 1) and its analogues
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are of considerable interest. These complexes reveal the rare occurrence of pentagonal bipyramidal
stereochemistry about a central metal ion, which results from pentacoordination of the nearly planar
H2dapsc (N3O2), and two labile apical ligands (H2O and/or Cl, NO3, and others) perpendicular to the
equatorial pentagon plane [26–30]. Although the complexes of H2dapsc and its analogues have long
been known, the study of their magnetic properties [17,19–21,31–34] and their use as building blocks for
the preparation of magnetic polynuclear assemblies [21,35–38] are started only in last time. It has been
shown that some of these Ni(II), Fe(II), and Co(II) mononuclear complexes with the H2dapbh, H2dapsc,
and H4daps ligands (Figure 1) demonstrate slow magnetic relaxation. In contrast to the Ni(II) and Fe(II)
complexes which reveal strong uniaxial magnetic anisotropy (D < 0) [20,21,31,35] characteristic of SIMs,
the known Co(II) complexes with H2dapbh and H2daps ligands revealed a large easy-plane magnetic
anisotropy (D > 0) [17,19,20,32–34]. Although D-parameter has a positive value which in accordance
with the theory should not allow the SIM behavior, these Co(II) complexes show slow relaxation
of magnetization in the presence of static magnetic field (so-called field-induced SIMs). Ruis, Luis,
and co-workers gave the explanation of the presence of the field-induced slow magnetic relaxation
for Kramer ions, such as Co(II), with prevailing easy-plane magnetic anisotropy [39]. The origin of
this large non-uniaxial anisotropy is due to the mixing of the ground electronic state with the excited
electronic states because of spin-orbit coupling.
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Figure 1. Molecular structure of the pentadentate ligand H2dapsc (R = NH2) and some its analogues:
H2dapbh (R = C6H5), H2biph (R = C6H4-C6H5), and H4daps (R = 2-OHC6H4).

In this paper, we present the synthesis and crystal structures of the five new seven-coordination
Co(II) complexes with H2dapsc equatorial and different pseudohalide axial (SCN−, SeCN−, [N(CN)2]−,
[C(CN)3]−, N3

−) ligands: [Co(H2dapsc)(SCN)2]·0.5C2H5OH (1), [Co(H2dapsc)(SeCN)2]·0.5C2H5OH (2),
[Co(H2dapsc)(N(CN)2)2]·2H2O (3), [Co(H2dapsc)(C(CN)3)(H2O)](NO3)·1.16H2O (4), and {[Co(H2dapsc)
(H2O)(N3)][Co(H2dapsc)(N3)2]}N3···4H2O (5). Molecular and crystal structures of these complexes
were investigated by single crystal X-ray diffraction method. The DC and AC magnetic properties of
these complexes and two other described those of this family [Co(H2dapsc) (H2O)2)](NO3)2·2H2O [28]
(6) and [Co(H2dapsc) (Cl)(H2O)]Cl·2H2O [29] (7) were studied. The detailed theoretical analysis of
magnetic properties was provided. The effect of modification of axial ligands on magnetic anisotropy
was traced.

2. Results and Discussion

2.1. Synthesis and Characterization

The Co(II) complexes with H2dapsc ligand and pseudohalide anions were synthesized using
the following two approaches: (A) the substitution of the terminal ligands (H2O) in the starting Co2+

complex with H2dapsc ligand [Co(H2dapsc)(H2O)2](NO3)2 [28,29] for pseudohalide anions; and (B) the
reaction between Co2+ nitrate, H2dapsc ligand, and a precursor of the pseudohalide anions, Scheme 1.
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Scheme 1. Synthesis of complexes 1–5. Methods A and B are described in the text.

The IR spectra of the obtained complexes are quite similar. The presence of the H2dapsc ligand
was confirmed by the following characteristic vibrations: ν(N–H) and ν(C=N) vibrations of the amino
and imino groups were located in the 3150–3350 cm−1 and 1650–1700 cm−1 region, respectively. Bands
for ν(C≡N) and ν(–N=N+=N−) stretching vibrations of the pseudohalide anions in 1–5 were observed
in the 2050–2200 cm−1 region.

2.2. Description of the Structure

Compounds 1 and 2 are isostructural. They crystallize in the monoclinic space group P21/c
with a half solvate EtOH molecule per one molecule of complex (Figure 2a). Solvate EtOH molecule
occupies special positions (center of symmetry) with 1/2 occupancies. Compound 3 crystallizes
in the triclinic space group P-1 with a two solvate water molecules per one molecule of complex
(Figure 2b). In contradistinction to neutral 1–3 complexes, 4 is cationic. It crystallizes in the monoclinic
space group P21/c with a one nitrate-anion and two solvate water molecules, one of them (O2w)
has site occupation factor ~0.16 (Figure 2c). Complex 4 contains apical ligands of different nature:
Tricyanomethanide-anion ([C(CN)3]− = tcm) and H2O, whereas in the complexes 1–3 the apical ligands
are the same SCN−, SeCN−, [N(CN)2]−, respectively.

It is surprising that crystals of 5 contain two complexes in the same lattice linked by hydrogen
bonds (see below): Neutral [Co(H2dapsc)(N3)2] and cationic [Co(H2dapsc)(N3)(H2O)]+, Figure 2d.
Compound 5 crystallizes in the monoclinic space group C2/c with a two solvate water molecules per one
molecule of complexes (Figure 2d). Isolated azide anion in special position plays the role of counterion.
The structure of both complexes is very close so that we could solve and refine the crystal structure
with one molecule of the complex in asymmetric unit (in order to minimize number of parameters).

Crystal structures 6 and 7 have been previously studied (Figure 2e,f) and described [28,29].
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In all complexes the central Co(II) ion has a pentagonal bipyramidal coordination environment
formed by five equatorial N3O2 (N3, N4, N5, O1, and O2) atoms from the H2dapsc ligand and two
axial N(O) atoms (N1, N2(O3)) from the axial NCS− NCSe−, N(CN)2

−, tcm, N3
−, or H2O ligands.

In previously studied compounds 6 [28] and 7 [29] axial ligands are two water molecules and water
molecule and chloride-anion, respectively. In compound 3, the relatively rare monodentate coordination
of the N(CN)2

− ligand is realized. Usually (>75% of cases), dicyanamide anion acts as a polydentate
bridging ligand [40]. Interestingly, the monodentate type of coordination is more characteristic of
the tcm anion than on the dicyanamide anion. The number of examples of mono- and polydentate
coordination of tcm ligands in Cambridge Structural Database [40] are almost the same. The axial
bond angle N(1)-Co(1)-N(2) for 1 (or 2) and 3 are ~174 and ~177◦, respectively. In complexes 4 and
5 it has been found the smallest and the largest axial bond angles N(1)-Co(1)-O(3) 171.21(9) and
178.51(9), respectively. The axial Co-N(O) bond lengths in the complexes 1, 2, and 4 are slightly
shorter than the equatorial Co-N(O) bond distances while in 3 Co-Nax bonds are similar to Co-(N)Oeq

(Table S2). At the same time, the Co-Oeq bond lengths in 3 are slightly shorter than in other complexes.
In complexes 1 and 2 the equatorial N-Co-O(N) bond angles are in the more large range 69.8–77.8◦ than
in 3 (70.2–75.6◦), that together with approximately equal bond lengths in the coordination polyhedron
CoN5O2 of 3 indicates to a more distorted pentagonal bipyramidal geometry of Co(II) complexes 1
and 2. Indeed, the SHAPE software [41,42] gave the deviation parameters of 0.058 for 3 and 0.312
(0.314) for 1 (2), Table S1, which in the case of 1 (2) is larger from zero of the ideal D5h symmetry that
confirms more distorted coordination polyhedra of 1 and 2 complexes. The equatorial N-Co-O(N)
bond angles in 3 (70.2–75.6◦) and 4 (70.1–76.2◦) are similar but the strong distortion of axial bond angle
N(1)-Co(1)-O(3) and the difference of axial and equatorial bond lengths (see Table S2) in 4 leads to the
relatively large deviation parameter 0.294 as in the case of complexes 1 and 2. In spite of similarity
azide and isothiocyanate anions, Co(II) coordination environment in 5 is closer to 3 than 1 or 2 (see
Table S2). Also the SHAPE program (Table S1) gave the deviation parameters of 0.105 and 0.072
for neutral [Co(H2dapsc)(N3)2] and cationic [Co(H2dapsc)(N3)(H2O)]+ in 5 that shows less distorted
coordination polyhedra of these complexes than in the cases of 1 and 2.

Figure S1a,b shows the fragments of crystal structures of 1 and 2. Crystal structures are stabilized
by the number of intermolecular hydrogen bonds (H-bonds) between complexes itself, and between
complexes and solvate EtOH molecules (Table S3). The Co(II) ions in crystal packing are not well
isolated with the closest intermolecular Co···Co separations being 6.96 (1) and 7.01Å (2). In case of
3, the closest intermolecular Co···Co separations are somewhat larger (7.48Å), apparently due to the
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larger size of the apical ligands or the presence of a larger number of solvate water molecules in the
crystal structure.

The presence of not only solvate water molecules but also isolated counterions (NO3
− and N3

−)
in the crystal structures of 4 and 5 gave the largest from shortest intermolecular Co···Co separations
(7.66 and 7.73 Å, respectively) among all structures under consideration. Crystal structures of 3−5 is
also stabilized by the large number of H-bonds with the amino and imino groups of H2dapsc ligands,
solvate water molecules, and NO3

− anions (Figures S1c,d and S2, Table S3). It should be noted that the
strong distorted axial bond angle N(1)-Co(1)-O(3) in 4 complex can be the result of stacking interactions
of tcm ligands of adjacent molecules (Figure S3) and/or H-bonds involving a water ligand.

As it has been already noted in the works [28,29], the crystal structures of 6 and 7 are stabilized
by an extensive network of hydrogen bonds involving the complex cations, the nitrate or chloride
anions, and the solvent water molecules (Figure S1e,f). In crystal packings of 6 and 7 Co(II) ions are not
well isolated with the closest intermolecular Co···Co separations being 6.65 and 6.75 Å, respectively,
these values are the two smallest values from all compound under consideration.

2.3. Magnetic Properties

2.3.1. Static Magnetic Measurements

The temperature dependencies of magnetic susceptibility for complexes 1–7 were performed in
the temperature range of 2.0–300 K under a 5000 Oe DC field. The shapes of the χMT versus T curves of
all complexes are similar. At room temperature, χMT products are in the range of 2.36–2.61 cm3

·K·mol
(Figure 3). These values are higher than the spin only value for Co(II) with S = 3/2 (1.875 cm3 K mol−1)
due to an orbital contribution to the magnetic moment. Upon cooling, χMT remains almost constant in
the temperature range from 300 to 60 K after which point it starts to decrease for all the compounds
and reaches the values of ≈1.4–1.6 cm3

·K·mol−1 at 2 K (Figure 3). The room-temperature χMT value
5.14 cm3

·K·mol−1 for 5 is in good agreement with the paramagnetic response of the two magnetically
non-interacting Co(II) ions with S = 3/2 (Figure 3e). The decrease of the χMT at low temperatures is due
to the intrinsic magnetic anisotropy of the Co(II) centers [43]. Field dependences of magnetization for
all complexes at 2 K (insets on Figure 3) saturate at values of around 2.15–2.28 NAµB that is significantly
lower than the value of 3NAµB, corresponding to the pure spin S = 3/2 ground state with g = 2. This fact
indicates the presence of considerable magnetic anisotropy in the complexes.

Table 1. The CASSCF/NEVPT2 quantum chemical calculated and fitted magnetic parameters for 1–7.

1 2 3 4 5a 5b 6 7

ZFS and g values based on CASSCF/NEVPT2 calculations with CAS(7,5)

D (cm−1) 38.02 37.73 37.51 37.49 39.93 39.58 38.99 38.94
E/D 0.0227 0.0213 0.0065 0.0093 0.0162 0.0143 0.0143 0.0133
gx 2.3442 2.3366 2.3220 2.3206 2.3590 2.3490 2.3284 2.3511
gy 2.3641 2.3554 2.3269 2.3286 2.3736 2.3617 2.3559 2.3625
gz 2.0049 2.0023 1.9936 1.9943 1.9971 1.9949 1.9925 2.0009

giso 2.2377 2.2314 2.2148 2.2145 2.2432 2.2352 2.2256 2.2382

Analysis of the experimental magnetic data

D (cm−1) 35.6 38.20 35.3 33.60 40.4 38.02 35.61
E/D 0.17 0.00 0.101 0.149 - 0.018 0.16

gx,y/gz 2.29/2.14 2.36/1.90 2.28/2.13 2.26/2.00 2.48/2.00 2.28/2.16 2.45/2.11
giso 2.24 2.26 2.23 2.18 2.33 2.24 2.34
χTIP - 1.0 × 10−4 1.0 × 10−4 5.0 × 10−4 - 5.0 × 10−4 -
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Figure 3. Temperature dependence of χMT obtained at 0.5 T for 1 (a), 2(b), 3 (c), 4 (d), 5 (e), 6 (f),
and 7 (g). The insets: Magnetization versus magnetic field measured at T= 2, 3, and 5 K for these
complexes. The empty circles represent the experimental data and black solid lines represent the fitted
using Equation (1) with the parameters listed in Table 1.

To describe the DC magnetic properties, we use the following zero-field splitting (ZFS)
spin Hamiltonian:

Ĥ = D
[
Ŝ

2
Z −

1
3

S(S + 1)
]
+ E
(
Ŝ

2
X − Ŝ

2
Y

)
+ µB

(
BXgXŜX + BYgYŜY + BZgZŜZ

)
(1)

here S = 3/2 is the spin of the high-spin Co(II) ion, D and E are axial and rhombic ZFS parameters,
and gα (α = X, Y, Z) are the principle values of the g-tensor. The set of the best-fit parameters for
the observed temperature dependences of χMT (Figure 3) and field dependences of magnetization
at different temperatures (Figure 3) is presented in the Table 1. These parameters agree well with
the calculated by SA-CASSCF/NEVPT2 methods set of parameters (Table 1). The complexes exhibit
positive axial magnetic anisotropy (D) with non-zero rhombicity parameter (Table 1). The sign and
the magnitudes of D for 1–7 are in the range of previously reported those for the seven-coordinate
pentagonal bipyramidal Co(II) complexes [24,25,33,34].

2.3.2. Quantum Chemical Calculations

The first excited quartet term lies above 3047 cm−1 is well separated from the excited ones for all
complexes (Figure 4a). This is also reflected in the ligand field multiplets (Kramers doublets) calculated
with the spin–orbit coupling, where in all cases, two lowest Kramers doublets can be described with
the ZFS formalism using S = 3/2, because the third doublet is also well separated from the ground state
by an energy gap more than 2450 cm−1 (Figure 4b).
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The values of the ZFS parameters D and E/D as well as the g values calculated by introducing the
spin-orbit coupling (SOC) operators, extracted with the aid of the effective Hamiltonian approach, are
listed in Table 1, orientation of the corresponding magnetic axes are given in Figure 5.
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The results of the calculations are in good agreement in both magnitude and sign with the
experimental data for all complexes. The analysis of the g-tensor components shows the closeness
of gx and gy values that confirms the correctness of the choice of gx= gy in analysis of magnetic data.
The rhombicity parameter E/D = |Dx-Dy|/2 is small enough this fact correlates with the proximity of the
gx and gy values.

Splitting of the d-orbitals (Figure 5) has been calculated and analyzed within the ab initio ligand
field theory (AILFT). Two doubly occupied low-lying states (dyz and dxz) are close in energy and are
well separated from single occupied one-electron states (see Table 2). The analysis of individual excited
states contributions to the total D value (Table 3) shows, that the main contribution with positive sign
goes from the third and fourth quartet excited states, also major contribution from doublet state goes
from various excited doublet states (these three or four states give about 100% of the calculated total
D value). It should be noted that 1 and 2 complexes are different from other by the nature of SOC
contributions of doublet excited states (Table 3).

Table 2. Relative energies (cm−1) of ligand field one-electron states (in the basis of d-AOs) from AILFT
analysis (SA-CASSCF(7,5)/NEVPT2).

d-AO 1 2 3 4 5a 5b 6 7

dyz 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
dxz 253.2 274.5 119.3 326.3 513.4 254.8 330.2 339.0

dx2-y2 2888.0 3026.5 4437.7 4652.2 3779.5 4244.3 5142.2 4371.6
dxy 3499.5 3688.2 4741.3 4770.7 4019.6 4445.7 5241.4 4531.5
dz2 8044.8 8141.7 7885.8 7817.5 7742.2 7005.5 6019.4 6732.7
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Table 3. Main contributions of the excited states to total D values (cm−1).

Excited State Contributions to Total D, cm−1

No. Mult 1 2 3 4 5a 5b 6 7

3 4 17.26 16.79 15.03 15.65 17.45 17.09 17.03 16.62
4 4 15.27 14.79 15.14 14.90 16.26 16.30 14.20 15.74
5 2 - - 13.28 13.51 11.65 13.15 13.63 12.82
6 2 - 4.56 -
7 2 −1.55 −1.51 −1.33 −1.61 −1.58 −1.53
8 2 6.48 4.71 −1.59 −1.55 −1.59 −1.57 −1.51 −1.63

2.3.3. AC Susceptibility Data

To probe the possible SIM properties of compounds 1–7 alternating current susceptibilities as
a function of frequency were measured at different temperatures for each compound in zero and
non-zero DC field. In the absence of DC field, no obvious frequency dependence in the in-phase
(χ′) and out-of–phase (χ”) can be observed for all compounds. The DC field-dependencies of AC
susceptibility were recorded under fields of 0–3000 Oe at 2.0 K and two frequencies (100 Hz, 1000 Hz)
in search of an optimal field for the suppression of quantum tunneling of magnetization (QTM),
Figure S4. When applying a DC field of 1000–2000 Oe, a maximum of χ” was observed for all
complexes, Figure S4. To probe the relaxation behavior of complexes 1–7, the frequency dependence
of AC susceptibility was studied in the presence of the optimal static DC field for each complex at
different temperatures (Figure 6). Both the χ′ and χ” susceptibilities show frequency-dependent
signals indicating slow relaxation of magnetization. These results clearly indicate that the mononuclear
complexes 1–7 are field-induced SIMs. The χ” peaks for different frequencies appear one after another
and the frequency dependence data show the clear and steady shift of the peaks towards higher
frequencies with increasing temperature that is characteristic of SMMs. In contrast to complexes 1–3
and 5–7, in which one set of maxima is observed on the frequency dependencies of χ” (Figure 6), in the
complex 4 at T < 5 K, there is a second high frequency set of maxima (Figure 6), which indicates the
existence of the two-step relaxation processes in 4 [44,45]. Only the main low frequency peaks in 4
will be discussed here. More detailed information on the effects of the applied DC field on the slow
magnetic relaxation processes and the reasons for observing two or even three relaxation processes
in Co(II) complexes can be obtained from the works of Boča and co-workers [46–49]. The obtained
data for the AC susceptibility were fitted in cc-fit program [50] by using the one- and two-component
generalized Debye model for the complexes 1–3, 5–7 and 4, respectively [45,51], which gave the values
and distribution of the relaxation time (τ and α; Tables S4–S10). The α values are in the range 0.02−0.34
for all complexes suggesting the narrow distribution of relaxation time. The best representation of
the obtained parameters is Cole-Cole plots (Figure S5). The simulations using these parameter sets
are in a good agreement with the experimental data. For all complexes, the relaxation times (τ) were
plotted versus T−1, giving Arrhenius–like curves (Figure S5), which were successfully fitted in whole
temperature range with following equation:

τ−1 = CTn + A(HDC)
2T (2)

where the first and second terms describe Raman and direct spin–phonon processes, respectively.
The direct one-phonon process is dominating at low temperatures, while the contribution of the
two-phonon Raman process becomes important with increasing temperature. The best-fit parameters
for 1–7 are summarized in Table 4. The Orbach process was not included in the relaxation time τ
approximation for these complexes because there is no any real energy barrier between spin states in
the Co(II) complexes with D > 0 [39,52,53]. As regards the process of fast temperature independent
relaxation via QTM, this process is partially or completely suppressed in the presence of a small
external DC field [54].
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Figure 6. Frequency-dependence of in-phase (χ’) and out-of-phase (χ”) AC susceptibility in the
temperature range of 2–8 K for 1 (a), 2(b), 3 (c), 4 (d), 5 (e), 6 (f), and 7 (g) under a DC fields.

Table 4. Parameters for the magnetic relaxation of complexes 1–7 obtained by fit of the experimental
relaxation times to Equation 2.

1 2 3 4 5 6 7

n 9 (Fixed*) 7.4(3) 7.3(2) 5.6(3) 5.8(4) 4.2(2) 9 (Fixed*)
A,

Oe−2s−1K−1 1.03(2) × 10−3 4.10(9) × 10−4 1.29(2) × 10−4 7.7(6) × 10−5 2.9(1) × 10−4 2.9(1) × 10−4 1.11(3) × 10−4

C, s−1K−n 1.06(6) × 10−3 0.02(1) 0.017(6) 0.4(2) 0.26(6) 0.26(6) 2.43(5) × 10−4

* Fixed n = 9, since during approximation the parameter n exceeded this value, which is characteristic for the Raman
process (~CT9).

3. Materials and Methods

General remarks: The ligand H2dapsc and complexes [Co(H2dapsc)(H2O)2](NO3)2·2H2O (6),
[Co(H2dapsc)(H2O)(Cl)]Cl 2H2O (7) were prepared by a methods described in references [27–29].
All other chemicals were used as supplied from Aldrich.

3.1. Synthesis

[Co(H2dapsc)(SCN)2]·0.5C2H5OH (1). Method A. The complex [Co(H2dapsc)(H2O)2](NO3)·2H2O [28]
(0.146 g, 0.5 mmol) was dissolved in ethanol (15 mL). The solution was heated to 50 ◦C and stirred
for 10–15 min, and then KSCN (97 mg, 1 mmol) in methanol (5 mL) was added. The resulting clear
solution was filtered and cooled. The solution was slowly evaporated at 20 ◦C for one to three days.
The precipitated red brown crystals were filtered off, washed with a small amount of water, and dried in
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vacuo. For 1 yield: 40%. Anal. calc. for CoC15H21N9O3S2 (498.46): C, 36.11; H, 4.21; N, 25.29%. Found:
C, 35.81; H, 4.63; N, 25.03%. IR data (cm−1): ν(N–H) = 3176, 3334; ν(C≡N) = 2075; ν (C=N) = 1652.

Complexes [Co(H2dapsc)(SeCN)2]·0.5C2H5OH (2), [Co(H2dapsc)(N(CN)2)2]·2H2O (3) and
[Co(H2dapsc)(C(CN)3)(H2O)](NO3)·2H2O (4) were obtained similarly to complex (1) using KSeCN,
NaN(CN)2, and KC(CN)3 instead of KSCN (Scheme 1). For 2 yield: 36%. Anal. calc. for CoC15H21

N9O3Se2 (592.25): C, 30.42; H, 3.57; N, 21.29%. Found: C, 30.73; H, 3.49; N, 21.78%. Characteristic
IR data (cm−1): ν(N–H) = 3167, 3328; ν(C≡N) = 2087; ν(C=N) = 1661. For 3 yield: 73%. Anal.
calc. for CoC15H19N13O4 (504.34): C, 35.72; H, 3.80; N, 36.10%. Found: C, 35.93; H, 3.99; N, 35.87%.
Characteristic IR data (cm−1): ν(N–H) = 3182, 3311; ν(C≡N) = 2160; ν(C=N) = 1668. For 4 yield: 66%.
Anal. calc. for CoC15H19N11O7.16 (526.92): C, 34.16; H, 3.61; N, 29.23%. Found: C, 34.63; H, 3.45; N,
29.81%. Characteristic IR data (cm−1): ν(N–H) = 3176, 3305; ν(C≡N) = 2185; ν(C=N) = 1663.

{[Co(H2dapsc)(H2O)(N3)][Co(H2dapsc)(N3)2]N3}·4H2O (5). Method B. The ligand dapsc (2,6-
diacetylpyridinebis(semicarazone)) (148 mg, 0.5 mmol) was suspended in ethanol-water mixture (4:1,
20 mL) at 55◦C. Then a solutions of cobalt(II) nitrate hexahydrate (146 mg, 0.5 mmol) in 4 mL water and
NaN3 (65 mg, 1 mmol) in the same amount of water were added to the ligand suspension. The resulting
clear solution was filtered and cooled. The solution was slowly evaporated at 20◦C for one to three
days. The precipitated red brown crystals were filtered off, washed with a small amount of water,
and dried in vacuo. For 5 yield: 53%. Anal. calc. for Co2C22H40N26O9 (930.60): C, 28.39; H, 4.33;
N, 39.13%. Found: C, 28.53; H, 4.68; N, 38.41%. Characteristic IR data (cm−1): ν(N–H) = 3174, 3305;
ν(–N=N+=N−) = 2017, 2046; ν (C=N) = 1662.

3.2. X-ray Crystal Structure

X-ray data for a single crystals of 1–5 were collected on a CCD diffractometer Agilent XCalibur with
EOS detector (Agilent Technologies UK Ltd., Yarnton, Oxfordshire, UK) using graphite-monochromated
MoKα radiation (λ= 0.71073 Å) and treated by CrysAlisPro software for cell refinement, data collection,
and data reduction with empirical absorption correction (Scale3AbsPack) of the experimental
intensities [55]. The structure was solved by direct methods and refined against all F2 data
(SHELXTL) [56]. All non-hydrogen atoms were refined with anisotropic thermal parameters, positions
of hydrogen atoms were obtained from difference Fourier syntheses and refined with riding model
constraints. The X-ray crystal structures data have been deposited with the Cambridge Crystallographic
Data Center, with reference codes CCDC 1952369- 1952373. Selected crystallographic parameters and
the data collection and refinement statistics are given in Table S11.

3.3. Physical Measurements

The C, H, and N elemental analyses were carried out with a vario MICRO cube analyzing device.
IR spectra were recorded on a Vertex 70 V instrument in the range from 600 to 4000 cm−1 using
polycrystalline samples. Absorption bands in the IR spectra were assigned on the basis of literature
data. Static magnetic properties measurements (DC magnetization) were performed using vibrating
sample magnetometer (VSM) installed to physical properties measurements system (PPMS-9, Quantum
Design). Dynamic magnetic properties measurements (AC magnetization) were performed using AC
Measurement System (ACMS) installed to the PPMS-9 set-up.

The sample in polycrystalline (powder) form was loaded into a gelatin capsule and glued to
the standard sample holder. In order to get magnetic properties of the metal center diamagnetic
contribution of sample holder and the ligand was subtracted. For this purpose, the sample holder with
the capsule were measured independently. The diamagnetic contribution from ligand was calculated
using Pascal’s constants.

3.4. Computational Calculations

Quantum chemical calculations of the ZFS (D-tensor) and g-tensor parameters for all complexes
were performed with post-Hartree-Fock multireference wavefunction (WF) approach based on the state
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averaged complete active space self-consistent field calculations (SA-CASSCF) [57–59] complemented
by the N-electron valence second-order perturbation theory (NEVPT2) [60–63]. In the state-averaged
approach, all multiplets for a given electron configuration were equally weighted. Scalar relativistic
effects were taken into account by a standard second-order Douglas-Kroll-Hess (DKH) procedure [64].
For calculations a segmented all-electron relativistically contracted version [65] of Ahlrichs polarized
triple-ζ basis set def2-TZVP [66–68] was used for all atoms. Dominant spin–orbit coupling contributions
from excited states were calculated through quasi-degenerate perturbation theory (QDPT) [69], in which
an approximation to the Breit–Pauli form of the spin–orbit coupling operator (SOMF approximation) [70]
and the effective Hamiltonian theory [71] were utilized. The CASSCF active space was constructed
from five MOs with predominant contribution of 3d-AOs and seven electrons, corresponding to Co(II)
ion—CAS (7.5). All possible multiplet states arising from the d7 configuration were included into WF
expansion – 10 quartet (S = 3/2) and 40 doublet (S = 1/2) states. The ab initio ligand field theory [72,73]
analysis was done for CAS (7.5) calculations. Atomic coordinates have been taken from the single
crystal X-ray diffraction data. In selected inconsistent structures, positions of hydrogen atoms were
optimized employing density functional theory with BP86 functional and Ahlrichs polarized basis set
def2-TZVP. Molecular frame of axes has been chosen in such a way that Z axis goes along Co ion and
donor atoms of axial ligands, X axis lies in the plane of the H2dapsc ligand, while Y axis is orthogonal
to it. All calculations were done by the ORCA program (ver. 4.0.1.2) [74,75].

4. Conclusions

The five new Co(II) heptacoordinate complexes with the equatorial 2,6-diacetylpyridine
bis(semicarbazone) ligand (H2dapsc) and various axial pseudohalide ligands were synthesized.
The complexes reveal distorted pentagonal bipyramidal geometry which results from pentacoordination
of the nearly planar H2dapsc (N3O2), and two the same or different apical ligands (SCN−, SeCN−,
[N(CN)2]−, [C(CN)3]−, N3

−, and H2O) perpendicular to the equatorial pentagon plane. In the case
the N3

− apical ligand, the crystals of 5 contain two different complexes in the same lattice linked by
hydrogen bonds: Neutral [Co(H2dapsc)(N3)2] and cationic [Co(H2dapsc)(N3)(H2O)]+. The theoretical
analysis of DC susceptibility exhibited the positive magnetic anisotropy (D) for all complexes with
non-zero rhombicity parameter. The calculated values of magnetic anisotropy are in good agreement
with the experimental values of D (Table 1), which for all complexes under consideration are close
to 35−40 cm−1, indicating a weak effect of the nature of axial ligands on the magnitude of magnetic
anisotropy parameter for the seven-coordinate mononuclear Co(II) complexes with easy-plane magnetic
anisotropy. It is well established that the large positive D parameter in pentagonal bipyramidal Co(II)
complexes is a result of the spin–orbit mixing of the ground quartet state with excited states, two being
quartets and the others are doublets, Table 3 [20,33,34]. An analysis of the literature data on the
influence of the coordination environment on the ZFS parameter in the Co(II) seven-coordinated
complexes shows that the D value increases in the case of weaker axially coordinated σ-ligands and a
more symmetric equatorial ligand [20,33,34]. To increase the positive D value, the energy difference
between the ground and quartet excited states should be reduced, which will lead to an increase of the
interaction between them. The introduction of weak σ-donors into the apical positions of the complexes
will reduce the energy difference between these orbitals and thereby enhance the coupling and increase
the positive D value. Table S12 presents the D parameters of the synthesized 1–7 complexes compared
to the D parameters of previously reported mononuclear pentagonal-bipyramidal Co(II) complexes
with the 2,6-diacethylpyridine-based opened acyclic ligands. The Co(II) complexes with the equatorial
H4daps ligand (13–15, Table S12) clearly demonstrate the effect of the nature of axial ligands on the D
value [34]. Among them, complex 13 has the highest positive D value among the seven-coordination
cobalt systems and contains two weak σ-donor ligands (MeOH) in the axial positions. Full or partial
replacement of these donors by stronger σ-ligands (NCS−) leads to a decrease of D value. Along with
spin-orbit coupling of the ground state with an excited quartet states, mixing with doublet states also has
a significant effect on the parameter of easy-plane magnetic anisotropy in the pentagonal bipyramidal
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Co(II) complexes (Table 3). Note in this connection that in the complex 13, the equatorial coordination
environment is more symmetrical compared to the complexes 14, 15, since unlike the latters, complex
13 contains an equatorial ligand in a dianionic conjugated form (H2daps), which increases the positive
contribution to D parameter [34]. As for the complexes 1–7 (Table S12) synthesized by us, the high
positive D value for complex 6 compared to complexes 3, 4, and 7 is the result of the presence of weak
donor ligands (H2O) in the axial positions of 6. The experimental D values for isostructural complexes
1 and 2 with axial ligands NCS− and NCSe− are somewhat different (Table S12), while the theoretical D
values for these complexes are almost identical (38.02 and 37.73 cm−1, respectively, Table 1) and actually
coincide with the D value for complex 15 with a neutral equatorial ligand H4daps and two axial ligands
NCS−(Table S12). Relatively high D value for the azide complex 5 (Table S12), which has an unusual
structure containing two different complexes (neutral and cationic) in the same crystal lattice, possibly
related to a more symmetric coordination environment in the azide complexes compared to complexes
1 and 2. Coordination polyhedra in 5 are less distorted than in latters.

The complexes 1–7 demonstrate the slow magnetic relaxation in weak DC field, i.e., are field-
induced SIMs. For all complexes, the relaxation is well described in the whole temperature range by
combination of Raman and direct spin–phonon processes (Table 4).

Supplementary Materials: The following are available online at http://www.mdpi.com/2312-7481/5/4/58/s1,
Table S1. Shape analysis for the metal centers of complexes 1–7; Table S2. Selected bond lengths (Å) and angles
(◦) in coordination polyhedra of 1–7; Figure S1. Fragments of crystal structures of 1 (a), 2 (b), 3 (c), 4 (d), 6 (e)
and 7 (f); Table S3. Geometric parameters of H-bonds in crystal structures 1–5; Figure S2. Fragments of 5 crystal
structure: ac projection (a) and ab projection (b); Figure S3. Stacking interactions of tcm ligands of adjacent
molecules in the crystal structure of 4; Figure S4 The DC field-dependencies of AC susceptibility (χ”) at 2.0 K and
two frequencies (100 Hz, 1000 Hz) for 1 and 5; Figure S5 Argand (Cole−Cole) plots from 2.0 to 7 K and Arrhenius
plots of relaxation times as ln(τ) versus 1/T under DC fields for 1 (a), 2(b), 3 (c), 4 (d), 5 (e), 6 (f) and 7 (g); Tables
S4–S10. Best fit parameters of the generalized Debye model for the Cole-Cole plot of complexes 1–7 under DC
fields; Table S11. Crystal data and structure refinement for 1–5; Table S12. Magnetic anisotropy parameters (D
parameters) for seven-coordinated Co(II) complexes with the 2,6-diacethylpyridine-based opened acyclic ligands
(Figure 1, main text).
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