Redox Modulation of Field-Induced Tetrathiafulvalene-Based Single-Molecule Magnets of Dysprosium

Siham Tiaouinine,^{1,2} Jessica Flores Gonzalez¹, Vincent Montigaud¹, Carlo Andrea Mattei¹, Vincent Dorcet,¹ Lakhmici Kaboub¹, Vladimir Cherkasov,³ Olivier Cador¹, Boris le Guennic¹, Lahcène Ouahab,¹ Viacheslav Kuropatov,³* Fabrice Pointillart¹*

¹ Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France

² Laboratory of Organic Materials and Heterochemistry, University of Tebessa, Algeria

³ G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, 603950, GSP-445, Tropinina str., 49, Nizhny Novgorod, Russia

* Correspondence: fabrice.pointillart@univ-rennes1.fr,

Figure S1. ORTEP view of **Dy-H₂SQ**. Thermal ellipsoids are drawn at 30% probability. Hydrogen atoms are omitted for clarity.

Figure S2. ORTEP view of **Dy-Q**. Thermal ellipsoids are drawn at 30% probability. Hydrogen atoms and solvent molecules of crystallization are omitted for clarity.

Figure S3. (left) Frequency dependence of χ_M ' between 0 and 3000 Oe for **Dy-H₂SQ** at 2K, (b) Frequency dependence of χ_M ' between 0 and 1600 Oe for **Dy-Q** at 2 K with the best fitted curves.

Figure S4. Frequency dependence of χ_M " between 0 and 3000 Oe for Dy-H₂SQ at 2K.

Figure S5. Representation of the field-dependence of the relaxation time of the magnetization for **Dy-H₂SQ** at 2 K.

Figure S6. Representation of the field-dependence of the relaxation time of the magnetization for **Dy-Q** at 2 K.

Figure S7. Frequency dependence of χ_M ' between 2 and 15 K at 1200 Oe for **Dy-H₂SQ** (left) and **Dy-Q** (right).

Figure S8. Frequency dependence of χ_M " between 2 and 15 K for Dy-H₂SQ at 1200 Oe.

Extended Debye model.

$$\chi_{M}' = \chi_{S} + (\chi_{T} - \chi_{S}) \frac{1 + (\omega\tau)^{1-\alpha} \sin\left(\alpha \frac{\pi}{2}\right)}{1 + 2(\omega\tau)^{1-\alpha} \sin\left(\alpha \frac{\pi}{2}\right) + (\omega\tau)^{2-2\alpha}}$$
$$\chi_{M}'' = (\chi_{T} - \chi_{S}) \frac{(\omega\tau)^{1-\alpha} \cos\left(\alpha \frac{\pi}{2}\right)}{1 + 2(\omega\tau)^{1-\alpha} \sin\left(\alpha \frac{\pi}{2}\right) + (\omega\tau)^{2-2\alpha}}$$

With χ_T the isothermal susceptibility, χ_S the adiabatic susceptibility, τ the relaxation time and α an empiric parameter which describe the distribution of the relaxation time. For SMM with only one relaxation time, α is close to zero. The extended Debye model was applied to fit simultaneously the experimental variations of χ_M ' and χ_M '' with the frequency ν of the oscillating field ($\omega = 2\pi\nu$). Typically, only the temperatures for which a maximum on the χ '' vs. *f* curves, have been considered. The best fitted parameters τ , α , χ_T , χ_S are listed in Table S2 with the coefficient of determination R².

Figure S9. Frequency dependence of the in-phase (χ_M ') and out-of-phase (χ_M '') components of the ac susceptibility measured on powder at 4 K and 1200 Oe with the best fitted curves (red lines) for **Dy-Q**.

Figure S10. Normalized Argand plot for Dy-Q between 2 and 5 K.

Compounds	Dy-H ₂ SQ	Dy-Q
Formula	$C_{84}H_{66}Dy_2F_{18}O_{16}S_{10}$	$C_{86}H_{68}Cl_4Dy_2F_{18}O_{16}S_{10}$
$M / g.mol^{-1}$	2318.96	2486.8
Crystal system	Monoclinic	Monoclinic
Space group	C2/c (N°15)	$P2_{1}/c$ (N°14)
	a = 18.052(3) Å	a = 10.6086(11) Å
Cell parameters	b = 35.748(6) Å	b = 23.485(2) Å
	c = 18.254(3) Å	c = 19.414(2) Å
	$\beta = 92.984(7)^{\circ}$	$\beta = 91.767(4)^{\circ}$
Volume / Å ³	11763(4)	4834.6(9)
Z	4	2
T / K	150 (2)	150 (2)
2θ range /°	$4.10 \le 2\theta \le 55.45$	$5.87 \le 2\theta \le 54.97$
ρ_{calc} / g.cm ⁻³	1.309	1.708
μ / mm^{-1}	1.516	1.957
Number of	62737	191400
reflections		
Independent	13532	11074
reflections		
$Fo^2 > 2\sigma(Fo)^2$	9529	9273
Number of variables	544	526
R_{int}, R_1, wR_2	0.0661, 0.0981, 0.2764	0.1219, 0.0753, 0.1607

Table S1. X-ray crystallographic data of Dy-H₂SQ and Dy-Q.

T / K	$\chi_{\rm T}$ / cm ³ mol ⁻¹	$\chi_{\rm S}$ / cm ³ mol ⁻¹	α	τ/s	R ²
2	9.87881	1.17843	0.47995	8.63066E-4	0.99731
2.2	9.6154	1.19238	0.46333	7.87665E-4	0.99905
2.4	9.11006	1.15028	0.45241	6.47181E-4	0.99945
2.6	8.42987	1.20621	0.41621	4.94235E-4	0.9987
2.8	8.21404	1.14112	0.41664	4.26137E-4	0.99939
3	7.56272	1.21513	0.37697	3.15642E-4	0.9989
3.5	6.71038	1.14576	0.36022	1.7472E-4	0.999
4	5.94654	1.26262	0.33113	9.66868E-5	0.99907
4.5	5.47045	1.16678	0.35391	5.23862E-5	0.99926
5	4.89902	1.44341	0.31628	3.24582E-5	0.99969
5.5	4.58454	1.27329	0.37174	1.65915E-5	0.99981

Table S2. Best fitted parameters (χ_T , χ_S , τ and α) with the extended Debye model **Dy-Q** at 1200 Oe in the temperature range 2-5.5 K.

Table S3. Computed energies, g-tensor and wavefunction composition of the ground state doublets in the effective spin $\frac{1}{2}$ model for Dy-H₂SQ.

KD	E / cm^{-1}	gx	gy	gz	Wavefunction*
1	0	0.11	1.10	15.08	34% ±13/2> + 25% ±15/2> +15% ±11/2> + 10% ±7/2>
2	13	0.03	1.11	14.29	26% ±11/2> + 18% ±13/2> +17% ±9/2> + 11% ±7/2>
3	155	1.92	2.18	14.69	38% ±9/2> + 19% ±15/2> +17% ±11/2> + 16% ±7/2>
4	228	2.92	5.15	11.23	24% ±5/2> + 17% ±3/2> +17% ±11/2> + 13% ±1/2>
5	274	2.22	4.32	11.93	23% ±7/2> + 18% ±3/2> +18% ±1/2> + 14% ±5/2>
6	352	0.55	1.20	16.04	31% ±15/2> + 24% ±13/2> +11% ±11/2>
7	400	10.40	8.05	0.39	50% ±1/2> + 15% ±3/2> +14% ±7/2>
8	413	10.35	8.12	0.04	32% ±3/2> + 28% ±5/2> +11% ±7/2> + 11% ±9/2>

*: only components > 10% are given for sake of clarity

Table S4. Computed energies, g-tensor and wavefunction composition of the ground statedoublet in the effective spin $\frac{1}{2}$ model for **Dy-Q**.

KD	E / cm^{-1}	gx	gy	gz	Wavefunction*
1	0	0.05	<mark>0.11</mark>	19.24	90% ±15/2>
2	80	0.14	0.26	15.86	70% ±13/2>
3	137	0.07	0.53	13.57	27% ±11/2> + 14% ±13/2> +13% ±7/2> + 12% ±5/2>
4	184	1.52	2.14	10.85	25% ±11/2> + 23% ±9/2> +19% ±5/2> + 15% ±1/2>
5	227	4.22	6.52	10.97	33% ±3/2> + 17% ±1/2> +15% ±7/2> + 13% ±5/2>
6	335	0.02	0.58	16.50	49% ±1/2> + 18% ±3/2> +11% ±9/2>
7	405	0.63	3.13	14.70	30% ±7/2> + 29% ±9/2> +12% ±3/2>
8	421	0.41	3.78	15.45	$42\% \pm 5/2 > + 20\% \pm 3/2 > +18\% \pm 7/2 > +11\% \pm 11/2 >$

*: only components > 10% are given for sake of clarity