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Abstract: The effect of the double exchange in a square-planar mixed-valence dn+1
− dn+1

− dn
−

dn–type tetramers comprising two excess electrons delocalized over four spin cores is discussed.
The detailed analysis of a relatively simple d2

− d2
− d1

− d1–type tetramer shows that in system
with the delocalized electronic pair the double exchange is able to produce antiferromagnetic spin
alignment. This is drastically different from the customary ferromagnetic effect of the double exchange
which is well established for mixed-valence dimers and tetramers with one excess electron or hole.
That is why the question “Can double exchange cause antiferromagnetic spin alignment?” became
the title of this article. As an answer to this question the qualitative and quantitative study revealed
that due to antiparallel directions of spins of the two mobile electrons which give competitive
contributions to the overall polarization of spin cores, the system entirely becomes antiferromagnetic.
It has been also shown that depending on the relative strength of the second-order double exchange
and Heisenberg–Dirac–Van Vleck exchange the system has either the ground localized spin-triplet or
the ground delocalized spin-singlet.

Keywords: mixed-valence; electron transfer; double exchange; magnetic exchange; tetrameric mixed
valence clusters; quantum cellular automata

1. Introduction

Mixed-valence (MV) compounds have been discovered more than a century ago and proved to
be in focus of a wide range of chemistry and physics forming basis for the concept of intramolecular
electron transfer. Fundamental contributions formulated as semiclassical vibronic Marcus–Hush theory
and quantum mechanical treatments of the electron transfer by Piepho–Krauzs–Schatz (PKS theory)
laid the foundations for understanding of chemical transformations and spectroscopic properties of
molecules and crystals. A detailed survey of the development and numerous applications of the
classical theoretical concepts of electron transfer in chemistry and spectroscopy is given in Ref. [1].

A milestone in the development of the concept of mixed valence was the discovery of the double
exchange [2–4] as an origin of the ferromagnetic ordering in perovskite structure (LaXCa1-x)(MnIII

IMnIV
1-x)O3 containing MV fragment MnIII-O2−-MnIV. The double exchange can be referred to as

a spin-dependent electron transfer over the magnetic metal sites whose spins are polarized by the
mobile electron giving rise to the ferromagnetic spin alignment. Migration of these ideas from
solid state physics to chemistry was stimulated by the study of molecular systems of biological
significance, such as two-iron (Fe2+-Fe3+) ferredoxin, protein with [Fe3S4] core [5] and also of other
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complex polynuclear MV systems like reduced polyoxometalates with Keggin and Wells–Dawson
structures [6–8]. Molecular applications of the concept of double exchange gave impact to the
generalization of the theory as applied to the systems with arbitrary number of mobile electrons and to
large multicenter systems [9,10]. Success of the theory was proved by the treatment of polynuclear MV
clusters such as hexanuclear octahedral clusters [Fe6(µ3-X)8(PEt3)6]+ (X = S, Se and Et = C2H5) [11] and
giant reduced polyoxovanadates [V18 O48]n− (n = 4 ÷ 18) [12,13]. Finally, formulation of the symmetry
assisted approach to the solution of multidimensional vibronic problem in nanoscopic MV systems
completed the theoretical development of this stage of the field [14,15].

In recent years, the well outlined field of magnetic MV molecules has received a strong impulse
for new development, caused by the emerging problem of the so-called quantum cellular automata
(QCA). The QCA technology assumes that the binary information is stored in charge distributions
(rather than in quantum states of qubits employed in quantum computing schemes) in the QCA cells
and is transmitted via Coulomb forces. The initial proposal in the area of QCA has been based on the
use of quantum dots to compose cells coupled via Coulomb interaction to form a cellular automata
architecture [16–21]. Each such cell typically consists of four quantum dots situated in the vertices of a
square and two excess electrons tunneling between the dots. The idea of molecular QCA within which
the cells are represented by molecules rather than by the arrays of quantum dots is expected to result
in further miniaturization of QCA devices and also gives a number of important advantages [19–21]
(see review [22]).

One can expect that MV complexes containing mobile excess electrons can be viewed as natural
candidates for molecular cells. In particular, tetrameric MV system with two mobile electrons can
be bistable and hence be able to encode binary information 0 and 1 in the two charge distributions.
To ensure a proper action of the QCA cell, it should be sensitive to the external control, which means
that switching between the two charge configurations should occur in an abrupt nonlinear manner.
The problem of the rational design of the cells based on MV molecules is of crucial importance for the
area of molecular QCA [23–28]. All molecules proposed up to now as candidate of cells, belong to MV
systems in which the mobile charges are delocalized over the network of diamagnetic sites. In this
context the idea of using MV systems involving magnetic ions seems to be tempting due to potentiality
to employ not only charges as carriers of information but also spin degrees of freedom. Anticipating
the study of the functional properties of the molecular cell, in the present article we examine square
planar transition metal MV tetramers of dn+1

− dn+1
− dn

− dn type in which both double exchange
and Heisenberg–Dirac–Van Vleck (HDVV) exchange are operative. The detailed results are given for
the model system d2

− d2
− d1
− d1 in which two electrons are shared among four spin-1/2 cores.

2. Basic Model for a Mixed-Valence Tetrameric Square-Planar System

We consider a square-planar MV unit composed of four high-spin paramagnetic centers, which
can be referred to as ”spin cores” and two excess electrons, shared among these centers. This cluster
belongs to the D4h point group. There are six possible distributions of the two excess electrons over
the four sites as shown in Figure 1. In two of these distributions (electronic configurations) the extra
electrons are localized on the antipodal sites forming diagonals of the square, while in the remaining
four configurations the electrons occupy neighboring positions forming its edges. The two diagonal
electronic configurations (denoted as D1 and D2 in Figure 1) minimize the Coulomb energy of the
electronic repulsion due to the fact that in these configurations the two electrons occupy the most
distant positions from each other and thus form the ground Coulomb manifold, while the remaining
four configurations (D3 . . . D6) with shorter interelectronic distance give rise to the excited Coulomb
levels separated from the ground manifold by the energy gap U. Note that the two ground diagonal
configurations are transformed to each other under the action of the operation of rotation around C4

axis within the D4h point group, as well as the four excited configurations. At the same time, the excited
configurations cannot be obtained from the ground ones by the D4h group operations thus showing
that these two kinds of configurations are physically different.
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white balls. 
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Figure 1. Numeration of the sites of the square-planar tetrameric cluster with two mobile electrons,
two antipodal distributions denoted as D1 and D2 and four excited neighboring distributions D3 . . .

D6. The sites occupied by the extra electrons are shown by black balls, the spin cores are indicated as
white balls.

The overall double exchange is determined by the one-electron transfer processes occurring from
dn+1 to dn centers. As distinguished from the previous considerations of a bi-electronic square planar
molecules proposed as cells for QCA applications, [29,30] in the system under consideration the excess
electrons jump over the spin cores, and each such electron hopping results in the change of the energy
of the tetramer by the Coulomb energy U. As distinguished from the previous consideration [29,30]
of a bi-electronic square planar tetramer, in the system under consideration the extra electrons jump
over spin sites which just constitutes the basis for considering the double exchange. For the sake
of definiteness, we will focus on the case of n ≤ 4 (less than half-filled d-shells). We assume that
the dn-ion is the high-spin one and its spin is S0 = n/2. When the excess electron is trapped in some
metal site (i.e., this site is occupied by the dn+1-ion) its spin is coupled ferromagnetically with the
core spin S0 to give the spin S0 + 1/2 as schematized in Figure 2a,b. For the sake of simplicity only
the transfer processes between the neighboring sites located along the sides of the square tetramer
are assumed to be nonvanishing, consequently t is the transfer parameter. Figure 2a,b shows the
transfer processes which produce mixing of the two kinds of charge configurations, for example,
mixing of the ground neighboring D3 (dn+1

1 − dn+1
2 − dn

3 − dn
4) configuration with the antipodal excited

D1 (dn+1
1 − dn

2 − dn+1
3 − dn

4) one. In Figure 2c the orbital scheme illustrating the transfer of the excess
electron from the site i to the site k is shown for the simplest case when n = 1. Electrons of spin cores
occupy orbitals denoted as ϕi and ϕk, while the excess electron may move over the upper orbitals
denoted as ψi and ψk resulting in the polarization of the spin cores in accordance with the conventional
double exchange mechanism. In general case each metal site forming the MV tetramer should contain
n + 1 orbitals, with n of these orbitals (core orbitals) being single occupied and the highest (n + 1)-th
orbital being either empty or single occupied depending on the position of the excess electron. Note
that in the present consideration of the double exchange the excited non-Hund states of each ion are
assumed to be separated from the ground Hund states by the energy gaps strongly exceeding both
the value of the electron transfer parameters and the Coulomb energy U. Under such assumption
(that seems to be reasonable in many cases) one can truncate the double exchange problem defining
it within the space involving only the ground states of each ions as is it is usually accepted in the
modelling the properties of MV clusters exhibiting double exchange.
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Figure 2. Schemes of the magnetic sites, exchange and transfer parameters for the tetrameric MV
cluster with two mobile electrons shown for the neighboring Coulomb configuration D3 (a) and for
distant configuration D1 (b), and also the orbital scheme of the one electron transfer between the two
sites i and k shown for the simplest case of one-electron spin cores. φ are the orbitals occupied by the
localized electrons (spin-core orbitals), and ψ are the upper orbitals available for the transfer of the
excess electron (c).

The Hamiltonian describing the double exchange and the intercenter Coulomb repulsion between
the two excess electrons in the square planar MV cluster is the following:

Ĥ = t
∑

i<k, σ

(1− δk, i+2)
(
ĉ+ψi σ

ĉψk σ
+ ĉ+ψk σ

ĉψi σ

)
+

∑
i<k

Ui kn̂ψi n̂ψk ≡ ĤDE + Ĥ0 (1)

where the first term ĤDE describes the one-electron transfer between the nearest neighboring sites
i and k, interrelated with the double exchange, while Ĥ0 represents the Coulomb repulsion term.
In Equation (1) ĉ+ψi σ

and ĉψk σ
are the creation and annihilation operators, σ is the spin projection, n̂ψi

are the extra electron occupation number operators. On the first glance the Hamiltonian, Equation (1),
looks quite similar to the Hubbard Hamiltonian, which also includes the transfer term and the Coulomb
repulsion term. However, these two Hamiltonians are quite different in their nature. Indeed, the
Hubbard Hamiltonian acts within the space comprising configurations with two excess electrons per
metal site and the parameters Uii involved in such Hamiltonian represent the on-site interelectronic
Coulomb energies, while in the Hamiltonian, Equation (1), the electronic configurations with two excess
electrons occupying the same metal site are excluded, and the parameters Ui k describe the Coulomb
repulsion between the excess electrons occupying different metal sites i and k. According to Figure 1
the Hamiltonian, Equation (1), contains two different Coulomb energies Ud ≡ U13 = U24 (diagonal
configurations D1 and D2) and Un ≡ U12 = U23 = U34 = U14 (nearest neighboring distributions
D3 . . . D6) separated by the energy gap U ≡ Un −Ud as discussed above. As to the states with two
excess electrons per site, they are strongly excited and their mixing with the low-lying electronic
configurations D1 . . . D6 for which each site may contain no more than one excess electron gives rise to
the HDVV exchange interaction between the metal ions. Below this HDVV exchange will be taken into
account in the framework of the extended model (see next Section 3).

3. Extended Model: Exchange Interaction

As far as all ions in the considered system are magnetic, the basic model in general should be
supplemented by the Heisenberg–Dirac–Van Vleck (HDVV) exchange, which will also be restricted
to the pairs of nearest neighboring sites. In contrast to the double exchange determined by the
electron transfer between the upper ψ-orbitals of the metal sites, the HDVV exchange also involves
the ϕ-orbitals of the spin-cores and the electron transfer between these orbitals that contributes to the
HDVV exchange coupling. Hereunder we will not discuss the microscopic mechanisms of HDVV
exchange, assuming that all these mechanisms are fully incorporated in the exchange parameters
Ji,k. The HDVV Hamiltonian acts within the full set of the states that can shortly be specified as
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〈Dλ

(
S̃(Dλ)

)
SM |. In this notations the set of the two intermediate spin values arising upon coupling of

the four local spins are indicated as (S̃(Dλ) (for example, this set can be (S13(Dλ), S24 (Dλ)), S is the
quantum number of the total spin, and M is the quantum number of the total spin projection. Note
that the numbers of the electrons populating different sites and hence the local spins are defined by the
electronic distribution. This is ensured by the symbol Dλ which indicates that the set of spin functions
belong to a certain distribution Dλ of the mobile electrons (λ = 1, 2..6, Figure 1). Consequently,
the intermediate spins in the four-spin coupling scheme are also defined by a certain distribution Dλ.

Since by definition the HDVV exchange acts within the system of localized spins it requires a
following non-standard notation as applied to an MV system:

Ĥex(Dλ) = −2
∑

i<k, σ

Ji k(Dλ)(1− δk, i+2) Ŝi(Dλ)Ŝk(Dλ) (2)

In the extended model the HDVV exchange Hamiltonian, Equation (2), should be added to
the Hamiltonian, Equation (1), in order to obtain the full Hamiltonian of the tetramer. Such full
Hamiltonian relates to the so-called t-J model. In Equation (2) the symbol Dλ indicates that the
exchange Hamiltonian Ĥex(Dλ) acts within the space of spin-functions 〈Dλ S̃(Dλ), SM| defined for a
certain electronic configuration Dλ. This means that the matrix of Ĥex has block-diagonal structure,

〈Dλ S̃′(Dλ), SM
∣∣∣∣Ĥex(Dλ)

∣∣∣∣Dµ S̃
(
Dµ

)
, SM〉 ∼ δλµ, where the Kronecker symbol δλµ ensures action of

the exchange Hamiltonian within the set of spin states belonging to a definite distribution and
excludes off-diagonal matrix elements. On the contrary, the double exchange Hamiltonian ĤDE links

states belonging to different distributions Dλ so that 〈Dλ S̃′(Dλ), SM
∣∣∣∣ĤDE

∣∣∣∣Dµ S̃
(
Dµ

)
, SM〉 ∼ 1− δλµ .

The notation of spin-operators contains symbol Dλ of configuration in addition to the running symbol
i numerating the sites that defines the value of si. For example, for the distribution D1 (Figure 2)
s1 = s3 = s0 + 1/2, while the two remaining sites have spins s0. Each distribution Dλ generates a
specific network of the exchange interactions whose parameters are reduced to the three independent
quantities, J

(
dn+1

− dn
)
≡ J, J

(
dn+1

− dn+1
)
≡ J1 and J(dn

− dn) ≡ J2 as illustrated in Figure 2a,b for
particular cases of distributions D3 and D1.

4. Combined Effect of the Double Exchange and Coulomb Repulsion

We will illustrate the main features of the double exchange in a bi-electronic system considering a
simple case of tetrameric unit d2

− d2
− d1
− d1- type in which the paramagnetic spin-core contains the

only unpaired electron (s(d1) = s0 = 1/2, s
(
dn+1

)
= 1). The total spin of such tetramer consisting of

two spins 1/2 and two spins 1, takes the values: S = 3, 2, 1, 0. The calculation of the energy spectrum can
be performed with the aid of angular momentum approach (see review articles) [31,32] and MVPACK
program based on this approach [33]. In order to elucidate the effect of the double exchange we present
in Figure 3 the energy spectrum calculated within the basic model taking into account only the double
exchange and the Coulomb repulsion (the HDVV exchange will be included in consideration later on).

The main result that follows from Figure 3 is that the ground state of the MV tetramer proves to be
diamagnetic independently of the relative strength of the Coulomb repulsion and the double exchange.
At first glance this result seems to be unexpected and contradicts the basic paradigm of the double
exchange. Indeed, in the ground state of the system the spin of mobile electron is aligned parallel to
the spin core due to ferromagnetic intraatomic exchange coupling. While moving the mobile electron
polarizes the spin cores aligning them in a parallel fashion thus giving rise to ferromagnetic effect in
MV systems. Such effect is quite general and, particularly, it occurs in MV dimers [3] and square-planar
MV tetramers [34,35] comprising one excess electron or hole in which the double exchange always
leads to the ferromagnetic ground state (a special effect of frustration in MV systems discovered in
Ref. [36] is out of the scope of this topic). To elucidate the physical origin of the antiferromagnetic effect
of the double exchange in the d2

− d2
− d1
− d1 tetramer let us imagine that this MV system is divided
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into two interacting parts, d1
− d1
− d1
− d1 core (with uncoupled spins) and a bi-electronic tetramer

d1
− d1
− d0
− d0 in which two electrons are delocalized among four diamagnetic centers.

Magnetochemistry 2020, 6, x FOR PEER REVIEW 6 of 11 

uncoupled spins) and a bi-electronic tetramer ݀ଵ − ݀ଵ − ݀଴ − ݀଴  in which two electrons are 
delocalized among four diamagnetic centers. 

 
Figure 3. Combined effect of double exchange and Coulomb interaction on the energy spectrum of 
square-planar ݀ଶ − ݀ଶ − ݀ଵ − ݀ଵ– tetramer. The low-lying part of the energy spectrum with labelling 
of the energy levels is shown as insert. The energy levels are labelled as S (f), where S is the total spin 
of the tetramer and f is multiplicity of the repeated levels with the same S. The energy of the ground 
state is regarded as a reference energy. 

The energy pattern of the delocalized electronic pair in a square [29] shows that the ground state 
is the spin-singlet with the energy ൫ܷ − √ܷଶ + ⁄ଶ൯ 2ݐ16 , while the next level involves the two spin-
triplets with the energy ൫ܷ − √ܷଶ + ⁄ଶ൯ 2ݐ32 . Within the imaginative  classical picture, the two excess 
electrons in the ground state always keep their spins antiparallel in course of the electron 
delocalization. This is also valid when the two electrons are  delocalized over the network  of spin 
cores and hence the electron which keeps its spin “up” tends to polarize the core spins also “up”, 
while the second electron with spin “down” produces opposite effect. This is schematically shown in 
Figure 4a from which one can see that the delocalization of the two spins of opposite directions results 
in the full compensation of the magnetic moments and consequently to the antiferromagnetic ground 
state of the square planar MV cluster with two excess electrons. On the contrary, when the delocalized 
unit is in the spin-triplet excited state the two electrons have parallel spin and the system entire 
becomes ferromagnetic as shown in Figure 4b. This qualitative picture of manifestation of the double 
exchange in multielectron MV systems is rather general, and in particular, is applicable to the systems ݀ଵ௡ାଵ − ݀ଶ௡ାଵ − ݀ଷ௡ − ݀ସ௡ with arbitrary spin cores. 

 
(a) 
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square-planar d2
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− d1
− d1– tetramer. The low-lying part of the energy spectrum with labelling of

the energy levels is shown as insert. The energy levels are labelled as S (f ), where S is the total spin of
the tetramer and f is multiplicity of the repeated levels with the same S. The energy of the ground state
is regarded as a reference energy.

The energy pattern of the delocalized electronic pair in a square [29] shows that the ground state is
the spin-singlet with the energy

(
U −
√

U2 + 16t2
)

/2, while the next level involves the two spin-triplets

with the energy
(
U −
√

U2 + 32t2
)

/2. Within the imaginative classical picture, the two excess electrons
in the ground state always keep their spins antiparallel in course of the electron delocalization. This is
also valid when the two electrons are delocalized over the network of spin cores and hence the electron
which keeps its spin “up” tends to polarize the core spins also “up”, while the second electron with
spin “down” produces opposite effect. This is schematically shown in Figure 4a from which one can
see that the delocalization of the two spins of opposite directions results in the full compensation of
the magnetic moments and consequently to the antiferromagnetic ground state of the square planar
MV cluster with two excess electrons. On the contrary, when the delocalized unit is in the spin-triplet
excited state the two electrons have parallel spin and the system entire becomes ferromagnetic as
shown in Figure 4b. This qualitative picture of manifestation of the double exchange in multielectron
MV systems is rather general, and in particular, is applicable to the systems dn+1

1 − dn+1
2 − dn

3 − dn
4 with

arbitrary spin cores.
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alignment of delocalized spins (b).

5. Double Exchange in Regime of Strong Coulomb Repulsion

We will focus on the topical case of strong Coulomb repulsion which is relevant to potential
application of the bielectronic MV square as a molecular cell for QCA. In this case the low-lying group
of levels corresponding to the antipodal electronic distributions and the excited levels arising from the
neighboring configurations are well separated from each other by the Coulomb gap U (Figure 1) which
considerably exceeds the transfer parameter t and all exchange parameters J, J1 and J2 (Figure 2).
In this case, which we will refer to as a strong U limit, one can apply the perturbation theory with the
Coulomb term Ĥ0 playing the role of zero-order Hamiltonian and the operator V̂ acting as perturbation.
In the strong U limit the non-vanishing effect of the double exchange appears within the second order
of perturbation theory, while the first order terms vanish. This is visualized in Figure 5 from which one
can see that at the first step the initial antipodal configuration D1 passes into neighboring position
D6 via one-electron transfer 1→ 2 and then the jump 3→ 4 transforms D6 into the final antipodal
configuration D2. One can see that the first order transfer does not operate within the space of only
distant configurations, while the second order process does. That is why the effective bi-electronic
transfer parameters that appear in the second order perturbation calculations is expressed as τ = t2/U.
The second order double exchange separates the energy levels according to the full spin of the system
giving rise to the two states with S = 3, six states with S = 2, eight states with S = 1 and four states with
S = 0. The energies of these states are listed in the Table 1.
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Table 1. Spin levels E(S)/τ belonging to the antipodal charge configuration in the strong U limit.
The numbers of the levels having the same spin and energy are indicated in parentheses.

S E(S)/τ

S = 3 −4 (2)

S = 2 − 5/4(2); −3(2); − 11/2(1); − 3/2 (1)

S = 1 −3/2 (2);−1/2 (1);−9/2 (1);
√

6 (2);−
√

6 (2)

S = 0 −4 (1); 0(2);−6(1)
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In compliance with the previous result the second order double exchange stabilizes the
antiferromagnetic ground state. One can see that the spin states are degenerate, for example,
the S = 3 level is repeated twice accordingly to the presence of the two antipodal localizations. As has
been reported for the well-known examples of symmetric MV clusters, such multiple degeneracy
can arise also from the orbital degeneracy of the terms that can be established by the use of the
group-theoretical assignation. As a simple example one can consider in more detail the doubled state
with maximal spin S = 3 which definitely arise from the coupling of the S = 2 state of the one-electron
tetramer and spin-triplet state of the pair. In the strong U-limit the last was attributed to the orbital
doublet 3E in D4h group (which is the excited level) while the S = 2 (S13 = 1, S24 = 1) can be designated
as 5B1g term. Then by coupling the states of the localized and delocalized units one can conclude that
the term of the d2

− d2
− d1
− d1 tetramer with the maximal spin S = 3 is 7E. One can see from the

Table 1 that the degeneracy of two S = 3 states is related to the orbital degeneracy which means that
this is an “exact” degeneracy originating from the point symmetry of the system. A comprehensive
discussion of the degeneracies in spin systems and their physical consequences can be found in review
articles [31,32]. In particular, one can observe the so-called “accidental degeneracy” interrelated with
the unitary symmetry that in general are high than the point one. Regarding the action of the double
exchange, one can conclude that two electrons in 3E term produce ferromagnetic double exchange in
the system (as schematically shown in Figure 4b).

6. Beyond Basic Model: Concomitant Effect of the HDVV Exchange

While the conceptual features of the double exchange in MV system under consideration can
be described within the basic model, the HDVV exchange plays an important role in the case of
strong U because the exchange parameters can be comparable with the residual (second order) double
exchange parameter τ = t2/U. For this reason, now we will briefly examine a combined effect of the
second-order double exchange and the HDVV exchange in the strong U limit. This can be called “τ—J
model”. Considering qualitatively the role of the HDVV exchange, it is worth to underline that the
double exchange solely aligns the non-interacting spins in the core network. Since they are free, each
spin core is able to freely adapt its direction along the mobile spin giving rise to the spin alignment in
the whole system. In contrast, the HDVV exchange itself aligns spins in each localized configuration,
and so the mobile electron polarizes already partially ordered (but not free) subsystem of spin cores.
This predetermines special spin dependence of the energy pattern of MV systems when the HDVV
exchange is operative, as well as its dependence on the parameters J and τ.

In compliance with numerous data on the magnetic properties of transition metal complexes we
assume that the HDVV exchange is antiferromagnetic (J < 0). According to the general definition in
Equation (2) the exchange Hamiltonian acting within the distant diagonal distributions D1 and D2 can
be written as:

Ĥex(Dλ) = −2J
(
Ŝ1(Dλ)Ŝ2(Dλ) + Ŝ2(Dλ)Ŝ3(Dλ) + Ŝ3(Dλ)Ŝ4(Dλ) + Ŝ4(Dλ)Ŝ1(Dλ)

)
(3)

where λ = 1, 2 and the spin values are determined for each of the two distributions as described above.
The network of exchange parameters in the two distant configurations is reduced to the only parameter
J(D1) = J(D2) = J

(
dn+1

− dn
)
≡ J as illustrated in Figure 2b, while the spin values are determined

for each distribution: S1 = S3 = s0 + 1/2, S2 = S4 = s0 for configuration D1 and S1 = S3 = s0,
S2 = S4 = s0 + 1/2 for D2. The energy levels are expressed in terms of the full spin S and the two
intermediate spins S13, S24 which are peculiar for each distribution:

Eex(S13, S24, S) = −J[S(S + 1) − S13(S13 + 1) − S24(S24 + 1)] . (4)

The energies of the system as functions of J and τ are shown in correlation diagram (Figure 6).
It is seen that depending on the relative strength of the second-order double exchange and the HDVV
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exchange the ground state can be either diamagnetic, S = 0 (for τ/|J| > 4/5) or magnetic with S = 1
(when τ/|J| < 4/5), while the remaining allowed spin values correspond to the excited states.
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Stabilization of diamagnetic ground state at strong enough second-order double exchange makes
the properties of the square planar system somewhat similar to the properties of the two-electron
reduced polyoxometalates with Keggin structure in which the combined action of electron delocalization
and the intersite Coulomb repulsion can result in the diamagnetic ground state [6]. On the other hand,
the square planar system with two mobile electrons exhibits magnetic behavior which is quite different
from the magnetic behavior of MV dimers or magnetic square planar MV tetramers with the only
mobile electron in which the double exchange interaction is known to stabilize the ferromagnetic
ground state.

7. Conclusions

We have studied the energy pattern of a square-planer tetrameric MV system of dn+1
− dn+1

− dn
−

dn type in which both double exchange and HDVV exchange are operative and the Coulomb repulsion
between the two electrons is taken into account. The detailed results are given for the model system
d2
− d2

− d1
− d1 in which the two electrons are shared among for spin-1/2 cores. It is demonstrated that

at zero HDVV exchange the ground state of this system is diamagnetic irrespectively of the interrelation
between the second order double exchange and Coulomb energy. A special attention is paid to the
case of strong Coulomb repulsion which is important for the potential application of this system as
molecular cell of QCA device.

Summing up this consideration we can go back to the question in title: can the double exchange
cause antiferromagnetic spin alignment? The double exchange as a basic mechanism of spin alignment
arising from spin polarization is undoubtedly ferromagnetic as prescribed by the Hund rule. That is
why in MV systems having the only mobile electron the double exchange produces ferromagnetic effect
(excluding special cases of frustration). In contrast, the action of this mechanism in systems comprising
two excess electrons can result in the antiferromagnetic effect due to opposite spin directions in the
subsystem of mobile electrons which can lead due to stratification of the full MV system into subsystems
with opposite spin directions as was demonstrated through a case study.
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