Electronic Supplementary Information (ESI)

Structure and magnetic properties of two $\left\{\mathrm{Co}^{\text {III }} \mathrm{M}^{\text {II }}\right\}$ cyanide bridged chains

Maria-Gabriela Alexandru, Diana Visinescu, Sergiu Shova, Abdeslem Bentama, Francesc Lloret, Joan Cano and Miguel Julve

Figure S1. FTIR spectrum for 1.

Figure S2. FTIR spectrum for 2.

Figure S3. Thermal curves (TG, DTG, and DSC) of $\mathbf{1}$ (a) and 2 (b) in the $25-1000{ }^{\circ} \mathrm{C}$ temperature range.

Figure S4. View of a fragment the chain structure of 2, along with the atom labelling.

Figure S5. A view of the hydrogen bonding pattern in 2. The DMSO molecules were omitted for clarity [Symmetry code: (c) $=x,-1+y, z$].

Table S1. Results of the SHAPE analysis of the $\left\{\mathrm{Co}^{\text {III }} \mathrm{C}_{4} \mathrm{~N}_{2}\right\}$ and $\left\{\mathrm{M}^{\prime \prime} \mathrm{N}_{2} \mathrm{O}_{4}\right\}$ chromophores from the $\left\{\mathrm{Co}^{\prime \prime \prime}(\mathrm{DPP})_{1 / 2}(\mathrm{CN})_{4}\right\}^{\prime}(\mathbf{1}$ and $\mathbf{2})$ and $\left\{\mathrm{M}^{\prime \prime}(\mathrm{CN})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{DMSO})_{2}\right\}$ fragments $\left[\mathrm{M}=\mathrm{Co}{ }^{\prime \prime}(\mathbf{1})\right.$ and $\mathrm{Fe}^{\prime \prime}$ (2)].

$\left[\mathrm{Co}^{\mathrm{III}} \mathrm{C}_{4} \mathrm{~N}_{2}\right]$	HP-6	PPY-6 a	OC-6 a	TPR-6 a	JPPY-5 a
$\mathbf{1}$	31.162	28.446	0.212	15.716	31.709
$\mathbf{2}$	31.029	28.283	0.202	15.743	31.588
$\left[\mathrm{M}^{\mathrm{II}} \mathrm{N}_{2} \mathrm{O}_{4}\right]$					
$\mathbf{1}(\mathrm{M}=\mathrm{Co})$	31.623	29.481	0.093	16.046	32.835
$\mathbf{2}(\mathrm{M}=\mathrm{Fe})$	31.460	29.244	0.065	16.442	32.513

$\overline{{ }^{\mathrm{H}} \mathrm{HP}-6, D_{6 h}}$, Hexagon; PPY-6, $C_{5 v}$ Pentagonal pyramid; OC-6, O_{h} Octahedron; TPR-6, $D_{3 h}$ Trigonal prism; JPPY5, $C_{5 v}$ Johnson pentagonal pyramid (J2).

Figure S6. Thermal dependence of $\chi_{M} "$ for 1 under an applied static field of $H_{d c}=1000 \mathrm{G}$ with $a \pm 5 \mathrm{G}$ oscillating field at frequencies in the range $0.3-10 \mathrm{kHz}$.

Figure S7. Cole-Cole plots in the temperature range 3.5-7.0 K for 1 under an applied static field $H_{\mathrm{dc}}=1000 \mathrm{G}$. The solid lines are the best-fit curves.

Table S2. Energy of the calculated quartet $\left(\mathrm{Q}_{\mathrm{i}}\right)$ and doublet $\left(\mathrm{D}_{\mathrm{i}}\right)$ excited states and their contributions to the D and E values for $\mathbf{1}$ obtained from CASSCF/NEVPT2 calculations. D_{ss} is the spin-spin contribution to axial $z f s$ parameter, and D_{Q} and D_{D} are the sum of spin-orbit contributions coming from quartet and doublet excited states

State	Energy $^{\mathrm{a}}$	S	D^{a}	E^{a}	State	Energy $^{\mathrm{a}}$	S	D^{a}	E^{a}
D_{SS}		4	+0.000	+0.000	D_{5}	20091.0	2	-1.217	-1.194
D_{Q}		4	+56.696	+12.251	D_{6}	20133.8	2	-0.580	+0.577
D_{D}		2	+6.472	-1.558	D_{7}	20769.4	2	-0.746	+0.670
Q_{1}	847.0	4	+32.999	+33.576	D_{8}	20998.3	2	-0.036	-0.055
Q_{2}	1343.4	4	+18.949	-18.953	D_{9}	23166.6	2	+3.869	-0.001
Q_{3}	7894.0	4	-1.684	+3.725	D_{10}	23514.6	2	-0.007	+0.005
Q_{4}	8262.3	4	+5.780	-5.951	D_{11}	23722.3	2	-0.005	+0.000
Q_{5}	10058.1	4	+0.371	-0.144	D_{12}	25873.8	2	-0.028	-0.032
Q_{6}	17976.3	4	+0.006	+0.002	D_{13}	29237.8	2	-0.397	+0.095
Q_{7}	22258.8	4	+0.079	-0.074	D_{14}	29261.4	2	-0.357	-0.031
Q_{8}	22721.1	4	+0.019	-0.015	D_{15}	30383.8	2	+0.005	-0.059
Q_{9}	23477.5	4	+0.087	+0.085	D_{16}	30500.1	2	+0.021	-0.015
D_{1}	11514.6	2	+1.101	+0.123	D_{17}	30773.6	2	-0.018	+0.015
D_{2}	13216.4	2	+4.063	-1.426	D_{18}	31985.3	2	-0.029	+0.029
D_{3}	18488.5	2	-0.055	+0.039	D_{19}	32301.0	2	+1.018	-0.209
	19630.6	2	-0.007	+0.003	D_{20}	33135.2	2	-0.122	-0.092

[^0]Table S3. Energy of the calculated quintet $\left(\mathrm{Q}_{\mathrm{i}}\right)$ and triplet $\left(\mathrm{D}_{\mathrm{i}}\right)$ excited states and their contributions to the D and E values for $\mathbf{2}$ obtained from CASSCF/NEVPT2 calculations. D_{SS} is the spin-spin contribution to axial $z f s$ parameter, and D_{Q} and D_{D} are the sum of spin-orbit contributions coming from quartet and doublet excited states

State	Energy $^{\mathrm{a}}$	S	D^{a}	E^{a}	State	Energy $^{\mathrm{a}}$	S	D^{a}	E^{a}
D_{SS}		4	+0.000	+0.000	D_{13}	26239.2	3	-0.006	-0.014
D_{Q}		4	+5.726	+1.028	D_{14}	26647.7	3	+0.024	-0.005
D_{D}		2	+1.284	+1.308	D_{15}	26658.5	3	+0.612	+0.044
Q_{1}	1605.9	5	+2.982	-1.782	D_{16}	26827.9	3	+0.077	+0.006
Q_{2}	1972.8	5	+1.963	+1.469	D_{17}	27904.5	3	-0.092	+0.196
Q_{3}	9725.9	5	+1.229	+1.314	D_{18}	30479.5	3	-0.203	+0.139
Q_{4}	11740.8	5	-0.448	+0.027	D_{19}	30904.0	3	-0.141	-0.155
D_{1}	14947.9	3	-0.559	+0.875	D_{20}	30987.1	3	+0.920	-0.065
D_{2}	16125.9	3	+0.080	-0.037	D_{21}	31091.8	3	-0.182	+0.063
D_{12}	26195.1	3	+0.007	-0.005					
D_{3}	16341.5	3	+1.138	+0.134	D_{22}	33095.9	3	-0.053	+0.079
D_{11}	26083.1	3	+0.018	-0.002	D_{30}	37801.1	3	-0.055	+0.022
D_{4}	19556.0	3	-0.190	-0.140	D_{23}	33417.9	3	-0.009	-0.002
D_{5}	20758.5	3	-0.025	-0.024	D_{24}	33732.8	3	-0.004	-0.003
D_{6}	21638.4	3	-0.103	+0.069	D_{25}	34738.3	3	+0.179	+0.020
D_{7}	23598.3	3	+0.003	-0.000	D_{26}	35337.2	3	+0.019	+0.000
	23835.8	3	+0.116	+0.018	D_{27}	35857.0	3	-0.007	-0.005

[^1]Table S4. Parameters of the fit of the ac magnetic susceptibility data of $\mathbf{1}$ through the Debye model

$H_{d c} / \mathrm{G}$	T/K	$\chi_{t} / \mathrm{cm}^{3} \mathrm{~mol}^{-1}$	$\chi_{s} / \mathrm{cm}^{3} \mathrm{~mol}^{-1}$	α
1000	3.50	0.442	0.0552	0.1100
	3.75	0.423	0.0510	0.1220
	4.00	0.397	0.0476	0.1230
	4.50	0.353	0.0422	0.1210
	5.00	0.312	0.0397	0.0937
	5.50	0.286	0.0369	0.0901
	6.00	0.264	0.0354	0.0801
	6.50	0.240	0.0349	0.0790
2500				
	3.50	0.415	0.0152	0.1160
	3.75	0.402	0.0131	0.1330
	4.00	0.372	0.0130	0.1220
	4.50	0.352	0.0122	0.1540
	5.00	0.312	0.0119	0.1350
	5.50	0.276	0.0117	0.1260
	6.00	0.262	0.0114	0.0972
	6.50	0.242	0.0110	0.0868

Figure S8. Temperature dependence of τ^{-1} (o) for $\mathbf{1}$ under $H_{d c}=1000 \mathrm{G}$ showing the best fit (solid line) to the combination of a direct and one Raman approach. The inset is the Arrhenius plot (o) showing the best-fit (solid line) to one Orbach process.

[^0]: ${ }^{\text {a }}$ Values in cm^{-1}.

[^1]: ${ }^{\text {a }}$ Values in cm^{-1}.

