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Abstract: Two new compounds of general formula [M(N3)2(dmbpy)] in which dmbpy = 5,5′-
dimethyl-2,2′-bipyridine, and M = Mn(II) or Co(II), have been solvothermally synthesized and
characterized structurally and magnetically. The structures consist of zig-zag polymeric chains with
alternating bis-µ(azide-N1)2M and bis-µ(azide-N1,N3)2M units in which the cis-octahedrally based
coordination geometry is completed by the N,N’-chelating ligand dmbpy. The molecular structures
are basically the same for each metal. The Mn(II) compound has a slightly different packing mode
compared to the Co(II) compound, resulting from their different space groups. Interestingly, relatively
weak interchain interactions are present in both compounds and this originates from π–π stacking
between the dmbpy rings. The magnetic properties of both compounds have been investigated down
to 2 K. The measurements indicate that the manganese compound shows spin-canted antiferromag-
netic ordering with a Néel temperature of TN = 3.4 K and further, a field-induced magnetic transition
of metamagnetism at temperatures below the TN. This finding affords the first example of an 1D
Mn(II) compound with alternating double end-on (EO) and double end-to-end (EE) azido-bridged
ligands, showing the coexistence of spin canting and metamagnetism. The cobalt compound shows a
weak ferromagnetism resulting from a spin-canted antiferromagnetism and long-range magnetic
ordering with a critical temperature, TC = 16.2 K.

Keywords: azide; chain compounds; ferromagnetism; antiferromagnetism; metamagnetism; spin
canting

1. Introduction

Coordination compounds with azide ligand have been studied for decades, not only
for their potential use as detonation agents or explosives [1–5], but also because of the
intrinsic properties of N3

− as a “pseudo halogen” [6,7] and as a subject of magnetism [8].
Many studies of stable azide coordination compounds have been reported, and the Cam-
bridge Structural Database (2020 release) contains over 5000 items having at least one
coordinated azide ligand [9].

Azide ligands can bind monodentately to metal ions in an end-on mode (N1), or
they can bridge between two or more metal ions. Bridging azide between two metals
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can take place using one terminal nitrogen only (i.e., N1,N1, known as end-on mode,
abbreviated in this manuscript as EO), or two terminal nitrogens (i.e., N1,N3 or end-to-end
mode, abbreviated as EE). In the bridging mode, dinuclear compounds can be formed,
like in M(azide)2M species [10], as depicted in Figure 1, but also polynuclear compounds,
including polymeric linear or zig-zag species of formula ···(azide)2M(azide)2M(azide)2
···. Mixed species with both terminal (non-bridging) and bridging azide are known in the
literature [8,11–14], but are not so common.
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metal ions M.

In earlier reports from our laboratories, we have given attention to metal–azide
compounds as bridging ligands for dinuclear compounds, or higher aggregates up to 2D
networks [15–18] and we have found both ferromagnetic and antiferromagnetic cases. The
ferromagnetic cases are only known for the EO azido-bridged compounds. It appears that
the choice of the non-bridging co-ligands plays a major role on the formation of specific
compounds and structures, and also whether EO, EE or a combination is found. As the
azido ligands are rather small or narrow, to generate relative stable coordination spheres
around the metal, the co-ligands should be rather bulky, as shown from the literature
examples above.

In the present paper, we report on two new compounds that have alternating modes
(EE and EO) of bridging azide, forming zig-zag chains in the solid state. The compounds
have interesting magnetic properties and these are studied in detail using magnetic suscep-
tibility and magnetization studies at low-temperature (down to 2 K). We feel that the study
is relevant in the search for potentially cheap, stable and useful new magnets.

2. Results and Discussion
2.1. Synthetic Efforts

Both title compounds were easily synthesized by the hydrothermal method and the
synthesis was found to be reproducible. Despite several attempts, no pure crystalline
materials could be isolated for the similar Fe(II) compound. In most attempts, two crys-
talline forms could be obtained, one isomorphous with the Mn(II) compound and the other
isomorphous with the Co(II) compound. Therefore, this compound was not considered
suitable for the study of the magnetic properties. In contrast, pure bulk samples for the
Mn(II) and Co(II) compounds were available, as evidenced by powder diffraction data,
which are consistent with patterns simulated from single-crystal data (Figure S1).
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2.2. Characterization of the Compounds by IR and Elemental Analysis

Both compounds display very similar infrared spectra (Figure S2), where bands resem-
bling the free dmbpy ligand are easily recognized. Most characteristic is the broad strong
band (doublet) near 2087 cm−1, typical for the coordinated bridged azide ligand [19–21].
The elemental analyses of both compounds are in full agreement with the values calculated,
and with the 3D structures presented below, indicating that no secondary phases were
obtained with the used synthetic methodology.

2.3. Structure Description of the Compounds

Single crystal structures were determined for both synthesized compounds (1 and 2)
[M(N3)2(dmbpy)], with M = Mn(II) and Co(II) and dmbpy = 5,5’-dimethyl-2,2’-bipyridine
(C12H12N2). The Mn(II) compound (1) crystallizes in space group P-1, while the Co(II)
compound (2) crystallizes in space group P21/c. Even though the space groups are different,
both compounds share the same molecular structure (see Figure 2 for the Mn(II) compound).
The metal center is coordinated by the bidentate dmbpy ligand and two azido anions. Since
both pseudohalides, azido N3

− ligands, bridge between symmetry-related metal centers in
the crystal, a one-dimensional polymeric structure is formed, in which each azido anion
has a different function: two anions N3/N4/N5 form a centrosymmetric double-bridge,
with the µ-1,1 mode of coordination (EO). Two other anions, N6/N7/N8, also form a
centrosymmetric double-bridge, but this time with the µ-1,3 coordination mode (EE).
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Figure 2. Part of the polymeric structure of catena-poly-[Mn(N3)2(dmbpy)] with displacement ellipsoids for non-H atoms at
the 30% probability level. Mn and N atoms belonging to the asymmetric unit are labelled, as well as symmetry-related
metallic centers along the chain. Symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) −1 + x, y, z; (iii) 2 − x, 1 − y, 1 − z; (iv) 1 + x, y, z.

Both coordination modes alternate along the zig-zag polymeric chains, which run
parallel to the a-axis regardless of the crystal system, triclinic (M = Mn) or monoclinic
(M = Co). Relevant coordination bond lengths and angles are given in Table 1. The trend of
the well-known smaller ionic radii going from Mn(II) to Co(II) is clearly visible.
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Table 1. Selected bond lengths (in Å) and angles (deg.) for both compounds.

Compounds [Mn(N3)2(dmbpy)] [Co(N3)2(dmbpy)]

M–N1 2.272(3) 2.115(5)
M–N2 2.256(4) 2.133(5)
M–N3 2.215(4) 2.144(5)
M–N3 2.222(3) (a) 2.198(6) (c)

M–N6 2.208(3) 2.140(6)
M–N8 2.263(3) (b) 2.204(6) (d)

N1–M–N2 72.26(11) 76.7(2)
N3–M–N6 99.50(15) 95.2(2)
N1–M–N3 95.59(12) (a) 94.1(2)
N1–M–N6 162.97(15) 170.6(2)
N2–M–N6 91.83(14) 94.3(2)
N3–M–N3 79.08(12) (a) 78.6(2) (c)

N6–M–N8 90.56(12) (b) 88.8(2) (d)

N2–M–N3 168.67(12) 167.5(2)

Symmetry for the last N atom: (a) 1 − x, 1 − y, 1 − z; (b) 2 − x, 1 − y, 1 − z; (c) −x, −y, 1 − z; (d) 1 − x, −y, 1 − z.

Along the chain, long and short M···M separations alternate, 5.430(1) and 3.422(1) Å
for M = Mn and 3.361(2) and 5.317(2) Å for M = Co. These distances are slightly shorter for
the Co(II) compound as a result of the smaller ionic radii of the cations. The polynuclear
zig-zag chains are packed efficiently in the crystal. With M = Mn, chains are parallel, and
the dmbpy ligands of two neighboring chains are stacked in such a way that they interact
with a rather short distance, 3.440 Å. For M = Co, the arrangement of chains in the crystal is
slightly modified, because of the monoclinic cell symmetry. However, the relative position
of two neighboring chains is essentially preserved, and the π–π interactions between the
dmbpy ligands are even strengthened, with separations between ligand mean planes of
3.283 Å (Co). In Figure 3, both different packings are depicted.

In [Mn(N3)2(dmbpy)], the N–N bond lengths are symmetrical in the EE azido ligands
but are asymmetric in the EO ligands. The bite angle exhibited by the dmbpy ligand
(72.26(11)◦) is the largest distortion in the geometry of the cis-octahedral coordination
sphere. The four-membered Mn2(EO-N3)2 ring is planar as a result of the inversion center.
The eight-membered Mn2(EE-N3)2 ring adopts a chair configuration. The dihedral angle
δ, defined by the N6/Mn1/N8 plane and the (EE-N3)2 plane, is 9.69(3)◦ and Mn1 sits
0.266(7) Å out of the (EE-N3)2 plane. The Mn–azido–Mn torsion angle τ, defined by the
dihedral angle between the mean planes of Mn1-N6-N7-N8 and Mn1-N8-N7-N6, is 20.3(6)◦.
Similarly, in [Co(N3)2(dmbpy)], the N–N bond lengths are approximately symmetrical in
the EE azido ligands but are asymmetric in the EO ligands. The bite angle exhibited by
the dmbpy ligand (76.7(2)◦) is the largest distortion in the geometry of the cis-octahedral
coordination sphere. The four-membered Co2(EO-N3)2 ring is planar as a result of the
inversion center. The eight-membered Co2(EE-N3)2 ring adopts a chair configuration. The
dihedral angle δ, defined by the N6/Co1/N8 plane and the (EE-N3)2 plane, is 25.2(4)◦. Co1
sits 0.66(1) Å out of the (EE-N3)2 plane. The Co–azido–Co torsion angle τ, defined by the
dihedral angle between the mean planes of Co1-N6-N7-N8 and Co1-N8-N7-N6, is 47.7(6)◦.

The azide ligand is well known for its versatility in coordination behavior, as explained
in the introduction. When involved in metal-to-metal bridges, coordination modes EO
and EE are frequent; however, the EO mode is roughly ten times more common than
the EE mode, based on a survey of the Cambridge Structural Database [9]. Toggling
EO and EE modes along a 1D polymeric structure is rare, but not unprecedented (see
Table S1). Indeed, quite similar azido-bridged structures have been described using other
ancillary ligands and a variety of transition metals: Schiff bases and Mn(II) [22,23] pyridine
derivatives and Mn(II) [24,25], Co(II), Ni(II) [14] or Zn(II) [21] amine/pyridine derivatives
and Ni(II) [11,26,27], among others. The nearest structurally related compound is certainly
[Mn(N3)2(2,2′-bipyridine)], which crystallizes in space group P-1, with unit–cell parameters
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quite close to those of [Mn(N3)2(dmbpy)] [13,28] and in fact is even isostructural with the
Fe(II) and Co(II) analogues [29].

Compounds based on azido-EE/EO double bridges are of interest in the field of
magnetochemistry, because the type of interaction between magnetic centers is not unex-
pected. Therefore, it was decided to perform a detailed magnetic analysis down to very
low temperatures. The results are described in the next section.
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interchain metal–metal (M–M) distances are quoted in both crystals. Closest M–M contacts are greater than 8.2 Å for 1 and
greater than 7.9 Å for 2.

2.4. Magnetic Properties

For compounds with two different azide binding modes, one can expect interesting
magnetic properties, as metal–metal exchange can occur via two different pathways. It
is clear that the EE bridges, with their large metal···metal separations, will always be
involved in antiferromagnetic coupling (AF) [8]. The AF interaction is increased if the
eight-membered metallacycle M(N3)2M’ is essentially planar. In contrast, EO bridges may
promote ferromagnetism (F), provided the M–N–M angle is less than 108◦ [8]. Regarding
the AF component, the triclinic compound (M = Mn) is expected to display a similar or
even greater AF interaction than the monoclinic compounds (M = Co), since the former
has an EE bridge almost flat, while the bridges in the latter have a butterfly conformation:
the dihedral angle δ between the (N3)2 mean plane and the plane formed by M and the
bonded Nazido atoms is δ = 9.69(3)◦ for M = Mn, and δ = 25.2(4)◦ for M = Co. Regarding
the F component, both compounds fulfil the requirement for potentially having J > 0. The
observed angles at EO bridges are 100.92(12) and 101.4(2)◦ for M = Mn, Co, respectively.

On the other hand, the six-coordinated metal ions used in this work are located
in a slightly distorted octahedral ligand field, and their electronic configurations allow
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for either a low, or a high-spin state, depending on the crystal field splitting ∆o for 3d
orbitals. In the present case, the spectrochemical series indicates that N3

− is a relatively
weak ligand, while dmbpy is a relatively strong ligand. There is thus a competition
between π-donation and π-backdonation in the coordination sphere, which makes the
ground spin state not straightforward to anticipate. However, crystal structures are helpful
in this regard, because ∆o is also related to the strength of any Jahn–Teller (JT) effect
in a crystal field with octahedral symmetry. Assuming a small tetragonal distortion, a
symmetry measure accounting for the octahedral character of the field can be computed as
S(Oh) = 5.39∆2 − 0.33|∆|, where ∆ is the difference between the largest and the shortest
coordination bond lengths. Structures with S(Oh) < 4.42 are closer to the octahedron than
to the trigonal prism geometry [30].

For the Mn(II) compound, SMn(Oh) ∼ 10−3, reflecting a very small departure from
the ideal Oh symmetry, which, in turn, confirms that the JT distortion indeed is not present,
consistent with a high-spin configuration. For the Co(II) compound, the JT distortion is
much more noticeable, with SCo(Oh) ∼ 13× 10−3, in line with weak JT distortions, as
expected for high-spin d7 ions; (in particular, a low-spin configuration for Co2+, with an
odd number of electrons in the eg orbitals would give rise to a strong JT effect, associated
to a symmetry measure of the field S(Oh)� 10−2).

It is evident that the crystal structures for the newly synthesized compounds allow one
to predict the ground spin state for each one, S = 5/2 and S = 3/2 for M = Mn(II) and Co(II),
respectively. On the other hand, both antiferromagnetic and ferromagnetic interactions
should alternate along the 1D chains. Structural features obtained from X-ray structures
are, however, not enough to confidently assess the balance between F and AF interactions
in these materials, and a comprehensive experimental study of magnetic susceptibility was
thus warranted.

Mn Compound (1). The temperature dependences of χM and χMT are depicted in
Figure 4. At 300 K, the χMT value per Mn(II) ion of compound 1 is 3.80 cm3 mol−1 K, which
is lower than the spin-only value of 4.38 cm3 mol−1 K expected for a magnetically isolated
octahedral high-spin Mn(II) ion with g = 2.00. Upon cooling, the χMT values decrease
gradually and show the cusp around 3.5 K, with a χMT value of 0.317 cm3 mol−1 K at
3.5 K, decreasing to a value of 0.194 cm3 mol−1 K at 2.0 K. The monotonic χMT decrease
at a high temperature is indicative of the existence of antiferromagnetic coupling. Upon
cooling, the χM increases smoothly from 0.013 cm3 mol−1 at 300 K to reach a plateau
of 0.035 cm3 mol−1 at about 14.6 K, and then increases rapidly, reaching a maximum
of 0.098 cm3 mol−1 at 2.5 K, before a slight decrease to a value of 0.096 cm3 mol−1 at
2.0 K. The sharp increase in χM at a low temperature is likely due to a small amount
of paramagnetic impurities, e.g., at crystal edges and vacancies along the plane, as is
known for related cases [31,32], or perhaps to some features of uncompensated spin. The
temperature dependence of 1/χM at temperatures above 110 K can be fitted by the Curie–
Weiss law with C = 4.64(4) cm3 mol−1 K and θ =−64.7(6) K (Figure S3). The negative Weiss
constant suggests the presence of overall antiferromagnetic coupling between the adjacent
Mn(II) ions.

To try to obtain intrachain magnetic couplings between Mn(II) ions through the double
EO–N3 and double EE–N3 bridges, the magnetic susceptibility of compound 1 was fitted
using the expression proposed by Cortés [13,28], for alternating chains of classical spins on
the Hamiltonian H = −J1ΣS2iS2i+1 − J2ΣS2i+1S2i+2.

χM = [Ng2β2S(S + 1)/3kT][(1 + u1 + u2 + u1u2)/(1 − u1u2)] (1)

where ui = coth[JiS(S + 1)/kT] – kT/[JiS(S + 1)] (i = 1 and 2) with S = 5/2, J1 and J2 are the
F and AF exchange constants through double EO–N3 and double EE–N3 superexchange
pathways, respectively.
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The data above 20 K were fitted and the best fit to experimental data led to J1=
2.87(7) cm−1, and J2 = −11.3(9) cm−1 with a fixed g = 2.0. The J1 and J2 parameters are
consistent with the reported results for related compounds. As in the earlier theoretical
and experimental studies, the magnetic couplings between Mn(II) ions via the double
EO–N3 bridge were usually ferromagnetic due to small Mn–N–Mn angles which would
lead the orthogonality of the magnetic orbitals of the adjacent Mn(II) centers. In contrast,
the antiferromagnetic couplings were usually dominated via the EE–N3 bridge due to
the well overlap of magnetic orbitals of the adjacent Mn(II) centers. The ferromagnetic
interaction decreases with the increasing Mn–Nazide–Mn angle, while the antferromagnetic
couplings via double EE–N3 bridges were dependent on the δ angle, the dihedral angle
between the Nazide–Mn–Nazide plane and the plane defined by the two azido bridges, the
magnetic coupling decreases with the increasing δ angles [13]. The obtained magnetic
coupling of two Mn(II) ions is ferromagnetic for a double EO–N3 bridging with a small
Mn–Nazide–Mn angle of 100.92(12)◦, and is antiferromagnetic for a double EE–N3 bridging
with a small δ angle, 9.69(3)◦, which are consistent with the reported results for related
compounds [13,22,23,33–38]. In Table S1, a detailed overview of the literature is given with
structural details and J values for a variety of Mn compounds, including the present two
new compounds.

Furthermore, the temperature dependences of χMT for compound 1 under 100 Oe
were also collected (see Figure S4), showing similar behavior to that under 1000 Oe except
for that in the low-temperature range, in which the χMT value slightly increases with
decreasing temperature below 6.0 K to a maximum of 0.381 cm3 mol−1 K at 4.5 K and then
sharply decreases to 0.076 cm3 mol−1 K at 2.0 K. This suggests that a possible mechanism
involving weak ferromagnetic correlations is operative within compound 1 below 6.0 K
and the final decrease may be due to antiferromagnetic interactions between the chains
and/or saturation effects. These weak ferromagnetic correlations can be attributed to spin
canting, i.e., the antiferromagnetically coupled local spins within the –Mn–(EE-N3)2–Mn–
EO-N3)2–chains are not perfectly antiparallel, but are canted with respect to each other,
resulting in uncompensated residual spins [13,22,23,33–37].

To further characterize the low-temperature magnetic behavior of compound 1,
ZFC/FC magnetization measurements under a field of 10 Oe were carried out. As shown
in Figure S5, the ZFC/FC magnetizations were found to be non-bifurcated and show a
sharp maximum at 3.4 K, suggesting the occurrence of antiferromagnetic ordering. The
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temperature dependence of the AC susceptibility of compound 1 was also measured at
Hdc = 0 Oe and Hac = 3.5 Oe at different frequencies (Figure S6), which shows the sharp
frequency-independent value of the χM

′ signals with the peak maximum at 3.4 K. The ab-
sence of χM” signals confirms the onset of antiferromagnetic ordering with a conventional
TN = 3.4 K and implies the existence of a magnetic phase transition.

The isothermal field dependence data of the magnetization of compound 1 was col-
lected at 1.8 K (Figure 5), in which the magnetization shows a sigmoidal shape with an
abrupt increase at a field above ~0.3 kOe to reach a value of 0.36 Nβ at 70 kOe. This
sigmoidal magnetization clearly indicates a field-induced magnetic transition of metam-
agnetic nature [39–41]. In this metamagnetic transition, the net moments of spin-canting
Mn–N3 chains aligned antiparallel under a weak applied field by weak interchain antifer-
romagnetic interactions are overcome by a stronger external field and result in the state
transition from antiferromagnetic (AF) to paramagnetic (P). The critical field of magnetic
transition, HC, at 1.8 K, was estimated to be about 0.48 kOe as determined by dM/dH
(Figure 5, inset). The M value of 0.36 Nβ at 70 kOe is far below the expected saturation
value of 5.0 Nβ for an isotropic high-spin Mn(II) system, confirming the antiferromagnetic
nature of 1. Moreover, at 1.8 K, a small butterfly-shaped magnetic hysteresis loop was
obtained, indicating a soft magnetic behavior (see Figure S7). The spin canting angle was
estimated to be about α = 0.30◦, based on the equation sin(α) = MR/MS (MR = 0.026 Nβ;
obtained by extrapolating the high-field linear part of the magnetization curve at 1.8 K to
zero field, and MS = 5.0 Nβ) [42–45].
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Generally speaking, spin canting can arise from two contributions: (i) the presence of
an antisymmetric exchange Dzyaloshinsky−Moriya interaction [46] and (ii) the existence
of single-ion magnetic anisotropy [47–52]. The presence of an inversion center between
adjacent spin centers can result in the disappearance of the antisymmetric exchange. Hence,
the lack of antisymmetric exchange in compound 1 would be expected, due to the existence
of a crystallographic inversion center between the Mn(II) ions (see symmetry codes in
caption of Figure 2). However, the Mn1 center in 1 displays a distorted octahedral geometry
due to the small bite angle of 72.26(11)◦ of the dmbpy chelating ligand. Such distorted
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octahedral geometries were reported as originating from the weak single-ion anisotropy of
the high-spin Mn(II) site [53–57]. Therefore, it is assumed that the spin-canted antiferro-
magnetism in 1 can be attributed to weak single-ion magnetic anisotropy by a distorted
metal coordination environment at low temperature. Similar spin canting behavior has
been observed in a few other Mn(II) compounds containing chains of alternating double
EO and double EE bridging modes of azides [34,58].

The field-induced magnetic phase transition for compound 1 was further investigated
by the measurements of various fields of the FC magnetic susceptibilities, χM(T), and the
field dependence of the magnetizations, M(H), at different temperatures. As shown in
Figure S8, the maximum of χM(T) shifts to lower temperatures with increasing applied
field, until the χM(T) reaches a plateau at a field larger than 600 Oe, confirming that the
weak interchain antiferromagnetic interaction is overcome by a stronger external field. As
shown in Figure S9, at 2.0 K, the stepwise M(H) curve clearly indicates a field-induced
magnetic transition from AF to P. This stepwise magnetization becomes less pronounced
with increasing temperature, and the differentials of these curves show peaks that shift to
lower fields with increasing temperature (see Figure S10), indicating the phase transitions
of metamagnetism.

Combining M(H), FCM and the frequency-independent χM
′ data, the magnetic phase

(T, H) diagram has been plotted in Figure 6. The value of HC decreases with increasing
temperature and finally disappears at about 3.4 K. The solid line of HC (T) in Figure 6,
on an analysis of the M–H curves, signifies a typical magnetic transition from AF to P
corresponding to metamagnetic materials.
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Co compound (2). The temperature dependences of χM and χMT of compound 2 are
shown in Figure S11 and Figure 7, respectively. As the temperature decreases from 300 K,
the χM value increases smoothly, reaching a rounded maximum of 0.021 cm3 mol−1 at
about 70 K, and then decreases slightly reaching a value of 0.015 cm3 mol−1 at 20 K. Upon
further cooling, the χM value increases rapidly to a sharp maximum of 0.017 cm3 mol−1

at 12.8 K, after slightly decreasing, χM value increases again to 0.017 cm3 mol−1 at 2.0 K.
The temperature dependence of 1/χM at temperatures above 100 K has been fitted by
the Curie–Weiss law with a Curie constant C = 4.85 cm3 mol−1 K and a Weiss constant
θ = −130.5 K (see Figure S12).
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The large negative Weiss constant suggests the presence of strong spin-orbital coupling
and/or overall antiferromagnetic interactions between the adjacent Co(II) ions. As shown
in Figure 7, at 300 K, the χMT value per Co(II) of compound 2 is 3.38 cm3 mol−1 K, which is
larger than the spin-only value of 1.87 cm3 mol−1 K for a magnetically isolated octahedral
Co(II) ion (S = 3/2), with g = 2.00. Upon cooling, the value of χMT decreases monotonically
to attain a local minimum value of 0.299 cm3 mol−1 K at 18.2 K, which is indicative of the
existence of antiferromagnetic coupling. After a very small increase to a maximum value
of 0.277 cm3 mol−1 K at 14.6 K, the χMT value decreases again with further cooling to 2.0 K.
The increase in χMT below 18.2 K is field-dependent, as shown in the inset of Figure 7;
this suggests that a mechanism of weak ferromagnetic correlations due to spin canting
antiferromagnetism is operative within compound 2. The final decrease in χMT value may
be attributed to antiferromagnetic interactions between the chain and/or saturation effects.
Similar to the observations in compound 1, the lack of antisymmetric magnetic interactions
in compound 2 would be expected because of the presence of inversion centers in the P21/c
crystal structure. Thus, the spin canting of compound 2 originates from the single-ion
anisotropy of the Co(II) ion, which is in agreement with the reported Co(II) spin canting
compounds containing the same bridging mode of azide [59–61].

In order to substantiate the low-temperature magnetic properties of compound 2,
ZFC/FC magnetization studies were carried out at 50 Oe. As shown in Figure 8, upon
cooling, both ZFC and FC magnetizations increase abruptly at temperatures below 18 K
and a divergence between ZFC/FC below 16.2 K is observed, suggesting the occurrence of
magnetic ordering for the formation of an ordered state and the existence of an uncompen-
sated moment below the critical temperature of Tc = 16.2 K. Upon cooling, both ZFC and
FC magnetizations increase again below 5.0 K, which may be due to the spin-reorientations
of the domain wall. The existence of magnetic ordering was also confirmed by the AC mag-
netic susceptibility measurements of compound 2 performed at Hdc = 0 Oe and Hac = 3.5
Oe at different frequencies (Figure S13). As can be seen from Figure S13, both χM

′ and χM”
signals are frequency-independent, where the χM

′ signals show two peaks at ca. 14.8 K and
5.2 K with two corresponding non-zero χM” signals formed at temperatures below 16.2
and 6.2 K. The presence of χM

′ and χM” peaks at about 15 K are the result of the formation
of an ordered state with an uncompensated moment and the peaks of χM

′ and χM” at
about 5 K may be caused by spin-reforestation [62,63]. These data confirm the occurrence
of magnetic ordering by weak ferromagnetism due to spin canting, which is consistent
with the obtained results from ZFC/FC magnetizations data. Due to the presence of weak
non-zero χM” signals, a coercive magnetic behavior would be expected below Tc.
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To further study the magnetic ordering of compound 2, the isothermal field-dependent
magnetization was collected at 2.0 K. As depicted in Figure S14, the initial increase in
magnetization shows a positive curvature to 0.175 Nβ at 70 kOe, which is far below the
theoretical value of saturation for an isotropic high-spin Co(II) system, and the absence of
saturation of magnetization; this is an indication of an overall antiferromagnetic interaction
between the Co(II) ions in compound 2. In addition, when the field is less than 10 kOe,
a hysteresis loop is clearly observed at 2.0 K, suggesting the soft magnet property of
compound 2 (Figure S14, inset). The hysteresis loop shows a remanent magnetization
(Mr) of ≈0.007 Nβ and a coercive field of ≈350 Oe. Based on the value of Mr at 2.0 K, the
canting angle of compound 2 is estimated to be approximately 0.20◦, where MS is 2.15 Nβ
for an octahedral Co(II) at 2 K with the effective spin of S’ = 1/2 and a common value of
g’ = 4.3 [60].

Finally, to rule out any contributions of Mn(II)/Mn(III) or Co(II) oxides in the low-
temperature magnetic behaviors in compounds 1 and 2, the AC magnetic data and 2.0
K field-dependent magnetization were collected using the thermal decomposed samples
of 1 and 2 that had been heated at 350 ◦C for two hours (Figures S15–S18), in which the
disappearance of peaks in χM

′ and/or χM” and the absence of magnetic hysteresis loops in
field-dependent magnetization are obtained, excluding the contribution of the behavior of
Mn(II)/Mn(III) or Co(II) oxides.

3. Concluding Remarks

The results presented and discussed above have shown that the new compounds of
general formula [M(N3)2(dmbpy)] for M = Mn (1) and Co (2) show very similar and almost
identical linear chain structures, with alternating azide double bridging anions (EE and
EO). Using magnetic studies down to a very low T (2K), the existence of intrachain ferro-
and antiferromagnetic interactions was established, and these interactions are dominated
by the double EE and double EO azido ligand bridges. Overall, the compounds are found
to behave as antiferromagnets, and the study is relevant in the search for potentially cheap,
stable and useful new magnets.

Compounds 1·(Mn) and 2·(Co) exhibit spin-canted antiferromagnetism at very low-
temperatures, which is ascribed to the presence of single-ion anisotropy. Furthermore,
below the Néel temperature, TN, field-induced magnetic transitions have also been ob-
served, and these are indicative for metamagnetism in the case of 1·(Mn). Such coexistence
of spin-canted antiferromagnetism and metamagnetism in 1D Mn(II) compounds with
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alternating double EE and double EO azido ligands is unprecedented. Although the spin-
canted antiferromagnetism might seem incompatible with the crystal structure of 2, because
of the presence of an inversion center between the bridged Mn(II) centers, the observation
of the spin canting in 2 should be attributed to a structural phase transition, or a distortion
in the crystal at low temperature, thereby removing the inversion center. Such types of
distortions have been reported before [34,58]. The weak interchain interactions present in
both compounds are ascribed to the π–π stacking interactions between the dmbpy rings.

4. Material and Methods
4.1. General Remarks

The starting materials (metal salts, sodium azide and the ligand 5,5’-dimethyl-2,2’-
bipyridine, C12H12N2), and used solvents were purchased from commercial sources (an-
alytical reagent grade) and used without further purification. All the compounds were
synthesized solvothermally under autogenous pressure. Azido derivatives are potentially
explosive and should be handled with great care and prepared only in small quantities by
trained persons.

4.2. Synthesis

Synthesis of catena-poly-[Mn(N3)2(dmbpy)] (1) A mixture of Mn(NO3)2 · 4H2O (50 mg,
0.2 mmol), dmbpy (37 mg, 0.2 mmol) and NaN3 (26 mg, 0.4 mmol) in H2O/EtOH (3:1 v/v,
20 mL) was sealed in a Teflon-lined autoclave and heated at 130 ◦C for 2 days. After cooling
to room temperature at a rate of 10 ◦C h−1, yellow-colored crystals of 1 were obtained
(yield 32%). Anal. Calcd. (%) for C12H12MnN8: C, 44.59; H, 3.74; N, 34.67%. Found: C,
44.45; H, 3.92; N, 34.42%. Main IR band (KBr pellet, cm−1): doublet at 2089s [ν(N3

−)].
Synthesis of catena-poly-[Co(N3)2(dmbpy)] (2). This compound was prepared fol-

lowing a procedure similar to that of compound 1, except that Co(NO3)2·6H2O (58 mg,
0.2 mmol), was used instead of Mn(NO3)2·4H2O. Brown-colored crystals were obtained,
with a yield of 40%, containing 2. Anal. Calcd. (%) for C12H12CoN8: C, 44.05; H, 3.70; N,
34.24%. Found: C, 43.85; H, 3.82; N, 34.63%. Main IR band (KBr pellet, cm−1): doublet at
2085s [ν(N3

−)].
Physical Measurements. Elemental analyses of the obtained compounds (C, H and

N) were performed using a Perkin–Elmer 2400 series II CHN analyzer. Infrared spectra
were recorded as KBr pellets in the range 4000–400 cm−1 (4 cm−1 resolution) on a Perkin–
Elmer 100 FT-IR spectrometer, which was calibrated using polystyrene and CO2 bands.
The temperature dependence DC and AC magnetic susceptibility measurements were
performed on powdered samples, restrained in eicosane to prevent torquing, on a Quantum
Design MPMS-7 SQUID (Superconducting Quantum Interference Device) and a PPMS
(Physical Property Measurement System) magnetometer, equipped with 7.0 T and 9.0 T
magnets (Quantum Design, San Diego, CA, USA), respectively, operated in the range
of 2.0–300 K. Diamagnetic corrections were estimated from Pascal’s constants [64] and
subtracted from the experimental susceptibility data to obtain the molar paramagnetic
susceptibility of the compounds. Powder X-ray diffraction (PXRD) measurements of 1 and
2 were carried out on a Siemens D-5000 diffractometer (Siemens, Karlsruhe, Germany)
running in a step mode with a step size of 0.02◦ in θ and a fixed time of 10 s at 40 kV, 30 mA
for Cu-Kα (λ = 1.5406 Å).

4.3. X-ray Crystallography

Diffraction data (Table 2) were collected at 200 K on a Bruker SMART X2S (Bruker
AXS Inc., Madison, WI, USA) benchtop diffractometer [65], using the Mo Kα radiation
(λ = 0.71073 Å) and the structures were refined with SHELXL [66,67]. Crystals for M = Co(II)
were found to be twinned by a twofold rotation about the c* reciprocal axis. One batch
scale factor was refined, which converged to 0.24. All H atoms were placed in calculated
positions and refined as riding to their carrier atoms.
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Table 2. Crystal data and refinement parameters.

Compound/Deposition in CCDC 1/1954571 2/1954572

Formula C12H12MnN8 C12H12CoN8
Fw 323.24 327.23

Crystal size (mm3) 0.5 × 0.3 × 0.2 0.30 × 0.30 × 0.18
Space group P-1 P21/c

a (Å) 7.8058(18) 7.397(2)
b (Å) 9.538(3) 18.373(4)
c (Å) 10.601(3) 10.661(3)
α (◦) 113.630(8) -
β (◦) 102.610(8) 110.571(9)
γ (◦) 93.223(8) -

V (Å3) 696.4(3) 1356.5(6)
Z, Z’ 2, 1 4, 1

Diffractometer Bruker X2S Bruker X2S
Radiation Mo-Kα Mo-Kα

T (K) 200 200
Abs. coef. (mm−1) 0.954 1.272
Transmission fact. 0.56–0.83 0.51–0.80

Refl. collected 6450 8922
Sinθ/λ (Å−1) 0.62 0.61

Rint (%) 4.26 8.68
Completeness (%) 97.4 99.2
Data/parameters 2658/192 2575/194

Restraints 0 0
R1, wR2 [I > 2σ(I)] 5.87, 16.64 6.53, 16.48
R1, wR2 [all data] 7.07, 17.60 8.26, 17.88

GOF on F2 1.035 1.003

Supplementary Materials: Supplementary data (all 18 Supplementary Figures and one Table) asso-
ciated with this paper can be found at https://www.mdpi.com/article/10.3390/magnetochemistry7
040050/s1. XRD powder patterns and infrared spectra of the compounds 1 and 2, in Figures S1
and S2, as well as 16 other Figures (S3–S18) with details of magnetic studies and a supplementary
Table (S1), as indicated in the text. CCDC 1954571-1954572 contain the supplementary crystal-
lographic data for compounds 1 and 2, respectively. These data can be obtained free of charge
via http://www.ccdc.cam.ac.uk/conts/retrieving.html, or from the Cambridge Crystallographic
DataCentre, 12 Union Road, Cambridge CB2 1EZ, UK; e-mail: deposit@ccdc.cam.ac.uk.
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