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Abstract: Magnetic properties of organic radicals based on thienyl- and furyl-substituted nitronyl
nitroxide (NN) and iminonitroxide (IN) were investigated by measuring the temperature dependence
of the magnetization. The magnetic behavior of 2-benzo[b]thienyl NN (2-BTHNN) is interpreted
in terms of the two-magnetic-dimer model, in which one dimer exhibits ferromagnetic (FM) inter-
molecular interaction and the other dimer shows antiferromagnetic (AFM) interaction. The existence
of two dimers in 2-BTHNN is supported by crystal structure analysis. The magnetic behaviors of
2-bithienyl NN, 4-(2′-thienyl)phenyl NN (2-THPNN), 2- and 3-furyl NN, 2-benzo[b]furyl NN, and
3-benzo[b]thienyl IN are also reported. The one-dimensional alternating AFM nature observed in
2-THPNN is consistent with its crystal structure.

Keywords: nitronyl nitroxide; iminonitroxide; magnetism; organic crystals

1. Introduction

Magnetism in neutral organic radicals based on nitronyl nitroxide (NN) (2-substituted
4,4,5,5-tetramethyl-4,5-dihydro-3-oxido-1H-imidazol-3-ium-2-yl-1-oxyl) and iminonitrox-
ide (IN) (2-substituted 4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-2-yl-1-oxyl) has long
been studied to find new magnetically interesting molecular crystals, since these radicals
are usually stable in the solid state [1] and have been components of many molecule-based
magnets [2–10].

Introducing sulfur atoms into the NN and IN derivatives would result in an increase
in magnetic interactions between neighboring molecules in molecular crystals, since the
sulfur atoms can make larger molecular orbital overlaps as observed in conducting organic
materials [11]. We have, therefore, been preparing thienyl-substituted NN and IN, which
include a sulfur atom, and investigating their magnetic properties [12–14]. We report here
magnetic properties of three thienyl-substituted NN derivatives, 2-benzo[b]thienyl NN
(2-BTHNN), 2-bithienyl NN (2-BiTHNN), and 4-(2′-thenyl)phenyl NN (2-THPNN) and two
thienyl-substituted IN derivatives, 2- and 3-benzo[b]thienyl IN (2-BTHIN and 3-BTHIN).
We also report here crystal structures of 2-BTHNN and 2-THPNN to discuss magneto-
structural correlations in these radicals. To discuss the effects of sulfur substitution on
magnetic interactions, magnetic properties of three furyl-substituted NN derivatives, 2- and
3-furyl NN (2-FNN and 3-FNN), and 2-benzo[b]furyl NN (2-BFNN), and a furyl-substituted
IN derivative, 2-furyl IN (2-FIN), are also described, because the furyl ring is the oxygen
analogue of the thienyl ring. The molecular structures of organic radicals reported here are
listed in Figure 1.
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Figure 1. Molecular structures of organic radicals reported here. (a) 2-BTHNN, (b) 2-BTHIN, (c) 
3-BTHNN, (d) 3-BTHIN, (e) 2-BFNN, (f) 3-FNN, (g) 2-FNN, (h) 2-FIN, (i) 2-BiTHNN, and (j) 
2-THPNN (see the text for the abbreviated names). 

This paper is a tribute to Professor Peter Day who gave us many suggestions and 
opportunities to carry out our studies of magnetochemistry. 

2. Results and Discussion 
2.1. Magnetic Properties 

Figure 2 shows the temperature dependence of the product of paramagnetic sus-
ceptibility χp and temperature T of 2-BTHNN and 2-BTHIN. Upon lowering the temper-
ature, the product, χpT, of 2-BTHNN decreases monotonically from 0.374 emu·K·mol−1 at 
300 K to 0.198 emu·K·mol−1 at around 10 K. Below about 10 K, however, χpT of 2-BTHNN 
increases slowly to 0.204 emu·K·mol−1 at 1.8 K, suggesting the existence of ferromagnetic 
(FM) interactions in 2-BTHNN. 

Figure 1. Molecular structures of organic radicals reported here. (a) 2-BTHNN, (b) 2-BTHIN, (c) 3-
BTHNN, (d) 3-BTHIN, (e) 2-BFNN, (f) 3-FNN, (g) 2-FNN, (h) 2-FIN, (i) 2-BiTHNN, and (j) 2-THPNN
(see the text for the abbreviated names).

This paper is a tribute to Professor Peter Day who gave us many suggestions and
opportunities to carry out our studies of magnetochemistry.

2. Results and Discussion
2.1. Magnetic Properties

Figure 2 shows the temperature dependence of the product of paramagnetic suscepti-
bility χp and temperature T of 2-BTHNN and 2-BTHIN. Upon lowering the temperature,
the product, χpT, of 2-BTHNN decreases monotonically from 0.374 emu·K·mol−1 at 300 K
to 0.198 emu·K·mol−1 at around 10 K. Below about 10 K, however, χpT of 2-BTHNN
increases slowly to 0.204 emu·K·mol−1 at 1.8 K, suggesting the existence of ferromagnetic
(FM) interactions in 2-BTHNN.
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Figure 2. Temperature dependences of χpT of 2-BTHNN (open circles) and 2-BTHIN (open trian-
gles). The solid line for 2-BTHNN indicates a fit using the two-magnetic-dimer model (see the text). 

Since the temperature dependence of χpT of 2-BTHNN shown above appears not to 
be simple, we examined several models to fit the data and then found that the 
two-magnetic-dimer model, in which one molecular dimer (which we denote as the FM 
dimer hereafter) exhibits FM intermolecular interactions and the other dimer (which we 
denote as the AFM dimer) shows antiferromagnetic (AFM) intermolecular interactions, 
can explain the temperature dependence of χpT of 2-BTHNN, as represented by the solid 
line in Figure 2. At temperatures lower than about 10 K, the moderately strong AFM in-
teraction operating in the AFM dimer, mentioned below, leads to an almost complete 
vanishing of the contribution of the AFM dimer to χp. This AFM interaction is interpreted 
in terms of the two-spin dimer model [15] with the exchange coupling constant J/k = −55 K 
and the Curie constant C = 0.197 emu·K·mol−1. This magnitude of C is about a half of 0.376 
emu·K·mol−1 for the uncorrelated S = 1/2 spins in 2-BTHNN 

As a result, the temperature dependence of χpT of 2-BTHNN below about 10 K 
would come from only the contribution of the FM dimer. This contribution is modeled in 
terms of the Curie–Weiss law with the Weiss temperature θ = +0.06 K and C = 0.197 
emu·K·mol−1. The positive Weiss temperature obtained here clearly indicates the exist-
ence of the FM intermolecular interactions in the FM dimer. In addition, we observed 
further evidence for the FM interactions by measuring the magnetization isotherms at 
low temperatures below 10 K. Upon lowering temperature, magnetization isotherms 
deviate from the S = 1/2 Brillouin function curve onto the S = 1 curve as shown in Figure 
3. Since the Curie constant for the FM dimer is the same as that of the AFM dimer and it is 
just a half of the Curie constant for the uncorrelated S = 1/2 spins of 2-BTHNN, it is con-
cluded that the half of the molecular spins exhibit the FM intermolecular interactions and 
the other half of spins show the AFM interactions in 2-BTHNN. This conclusion is sup-
ported further by analyzing the crystal structure of 2-BTHNN as mentioned below. 
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Figure 2. Temperature dependences of χpT of 2-BTHNN (open circles) and 2-BTHIN (open triangles).
The solid line for 2-BTHNN indicates a fit using the two-magnetic-dimer model (see the text).

Since the temperature dependence of χpT of 2-BTHNN shown above appears not
to be simple, we examined several models to fit the data and then found that the two-
magnetic-dimer model, in which one molecular dimer (which we denote as the FM dimer
hereafter) exhibits FM intermolecular interactions and the other dimer (which we denote as
the AFM dimer) shows antiferromagnetic (AFM) intermolecular interactions, can explain
the temperature dependence of χpT of 2-BTHNN, as represented by the solid line in
Figure 2. At temperatures lower than about 10 K, the moderately strong AFM interaction
operating in the AFM dimer, mentioned below, leads to an almost complete vanishing of
the contribution of the AFM dimer to χp. This AFM interaction is interpreted in terms of the
two-spin dimer model [15] with the exchange coupling constant J/k = −55 K and the Curie
constant C = 0.197 emu·K·mol−1. This magnitude of C is about a half of 0.376 emu·K·mol−1

for the uncorrelated S = 1/2 spins in 2-BTHNN
As a result, the temperature dependence of χpT of 2-BTHNN below about 10 K would

come from only the contribution of the FM dimer. This contribution is modeled in terms of
the Curie–Weiss law with the Weiss temperature θ = +0.06 K and C = 0.197 emu·K·mol−1.
The positive Weiss temperature obtained here clearly indicates the existence of the FM
intermolecular interactions in the FM dimer. In addition, we observed further evidence
for the FM interactions by measuring the magnetization isotherms at low temperatures
below 10 K. Upon lowering temperature, magnetization isotherms deviate from the S = 1/2
Brillouin function curve onto the S = 1 curve as shown in Figure 3. Since the Curie constant
for the FM dimer is the same as that of the AFM dimer and it is just a half of the Curie
constant for the uncorrelated S = 1/2 spins of 2-BTHNN, it is concluded that the half of the
molecular spins exhibit the FM intermolecular interactions and the other half of spins show
the AFM interactions in 2-BTHNN. This conclusion is supported further by analyzing the
crystal structure of 2-BTHNN as mentioned below.
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In contrast, the temperature dependences of χpT of 2-BTHIN can be fitted simply to
the Curie–Weiss law with C = 0.378 emu·K·mol−1 and θ = −1.23 K. In this case, our results
show that the elimination of an oxygen atom gives a drastic change of magnetic behavior.

Figure 4 shows the temperature dependences of χpT of 2-BiTHNN (open circles) and
2-THPNN (open triangles). These two radicals also have thienyl-including moieties that are
longer than those of other radicals reported in this paper, as shown in Figure 1. These two
radicals exhibit weak AFM intermolecular interactions, because the temperature depen-
dences of χpT of 2-BiTHNN and 2-THPNN are interpreted in terms of the one-dimensional
(1D) alternating Heisenberg model [16] with J/k = −2.34 K, alternating parameter α = 0.8
and C = 0.380 emu·K·mol−1, and with J/k = −0.77 K, α = 0.8, and C = 0.370 emu·K·mol−1,
respectively, as represented by the solid lines in Figure 4. The origin of the alternating
magnetic interactions in 2-THPNN is discussed below by referring to the crystal structure.
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Figure 4. Temperature dependences of χpT of 2-BiTHNN (open circles) and 2-THPNN (open tri-
angles). Solid lines represent theoretical fitting on the basis of the 1D alternating AFM Heisenberg
model (see the text).

The magnetic properties of 4-(3′-thienyl)phenyl NN (3-THPNN), which is a structural
isomer of 2-THPNN shown here, was previously reported by Coronado et al. about two
decades ago [17]. The radical 3-THPNN shows weak AFM intermolecular interactions
with θ = −1.5 K and C = 0.31 emu·K·mol−1 similar to those found in 2-THPNN.

The temperature dependences of χpT of the three furyl-substituted nitronyl nitroxide
radicals, 2-FNN (open circles), 3-FNN (open triangles), and 2-BFNN (open squares), are
shown in Figure 5 together with those of furyl-substituted iminonitroxide radical, 2-FIN.
The magnetic behaviors of 3-FNN, 2-BFNN, and 2-FIN are similar to each other, although
the magnitude of the magnetic interaction is significantly different as mentioned below,
while those of 2-FNN are quite different at temperatures lower than about 10 K. The values
of χpT do not decrease steeply with lowering temperature but show a plateau between 4
and 10 K. Although this behavior appears to be reminiscent of that observed in 2-BTHNN,
a similar kind of behavior is also characteristic of the four-spin linear tetramer model [18],
because any upturn of χpT values at low temperatures is not observed. As represented
by the solid line in Figure 5, we successfully reproduced the temperature dependence
of χpT of 2-FNN in terms of the four-spin linear tetramer model with J1/k = −3.5 K and
J2/k = −13 K, where J1/k represents the intradimer interaction and J2/k represents the inter-
dimer interaction in the linear tetramer, having S = 1/2 spin on each molecule within the
tetramer. The Curie constant used to fit the experimental data was C = 0.340 emu·K·mol−1.
This value is slightly lower than the value C = 0.376 emu·K·mol−1 that is expected for
uncorrelated S = 1/2 spins. This difference comes from the contribution of impurity spins
with Ci = 0.038 emu·K·mol−1 and θi =−0.1 K used to obtain the best fit to the experimental
data. The overall Curie constant is 0.378 emu·K·mol−1 and close to that expected for
uncorrelated S = 1/2 spins. The origin of spin interactions within the tetramer is not clear,
since we have no crystal information for 2-FNN at present.
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Figure 5. Temperature dependences of χpT of 2-FNN (open circles), 3-FNN (open triangles), 2-BFNN
(open squares), and 2-FIN (closed circles). The solid lines represent fits using the four-spin linear
tetramer model for 2-FNN, the 1D alternating AFM Heisenberg model for 3-FNN and 2-BFNN, and
the Curie–Weiss law for 2-FIN (see the text).

The temperature dependences of χpT of 3-FNN and 2-BFNN can be fitted to the
1D alternating Heisenberg model [16] with J/k = −7.5 K, α = 0.6, C = 0.346 emu·K·mol−1,
Ci = 0.025 emu·K·mol−1 andθi =−0.0Kfor3-FNN,andwith J/k=−33K,α=0.2,C = 0.369 emu·K·mol−1,
Ci = 0.022 emu·K·mol−1, θi = −1.0 K for 2-BFNN. On the other hand, the tempera-
ture dependence of χpT of 2-FIN interpreted in terms of the Curie–Weiss law yields
C = 0.376 emu·K·mol−1 and θ = −1.0 K.

The sulfur analogues of 2- and 3-FNN, 2- and 3-THNN, show 1D alternating Heisen-
berg behavior with J/k = −6.6 K, α = 0.5, C = 0.359 emu·K·mol−1, Ci = 0.009 emu·K·mol−1,
θi = 0.0 Kfor2-THNN,and with J/k =−5.3K, α=0.6, C =0.360emu·K·mol−1, Ci = 0.016 emu·K·mol−1,
θi = 0.0 K for 3-THNN [14]. The magnetic behavior of 2-FNN mentioned above is very
different from that of 2-THNN. That is to say, 2-FNN shows the four-spin linear tetramer
behavior and 2-THNN exhibits 1D alternating Heisenberg behavior. It is, therefore, difficult
to compare magnetic interactions directly in both radicals. However, the magnetic behav-
iors of 3-FNN and 3-THNN are both interpreted in terms of the 1D alternating Heisenberg
model with J/k =−7.5 K (α = 0.6) and J/k =−5.3 K (α = 0.6), respectively. This result suggests
that the substitution of the oxygen atom in the furyl ring by the sulfur atom does not yield
stronger magnetic interactions in this case.

The magnetic interactions in 2-BTHNN, which is the sulfur analogue of 2-BFNN,
seem to become stronger. The magnetic behavior of 2-BFNN can also be explained by
using the two-spin dimer model with J/k = −35 K, although the 1D alternating Heisenberg
model with J/k = −34 K (α = 0.2) gives slightly better fit as mentioned above. The value
of J/k = −35 K is smaller than J/k = −55 K as observed in 2-BTHNN. This result indicates
that the substitution of the oxygen atom in the furyl ring by the sulfur atom yields stronger
magnetic interactions in this case.

The temperature dependences of χpT of 3-BTHIN is shown in Figure 6 together with
that of 3-BTHNN [14]. The magnetic behavior of 3-BTHIN is reproduced in terms of the 1D
AFM Heisenberg model with J/k =−1.78 K, C = 0.348 emu·K·mol−1, Ci = 0.032 emu·K·mol−1

and θi = 0.0 K, whereas that of 3-BTHNN is interpreted in terms of quasi-two-dimensional
FM intermolecular interactions with J/k = +0.16 K within the layer and J’/k = +0.02 K for the
interlayer and C = 0.384 emu·K·mol−1 [14]. Elimination of an oxygen atom from one of the
NO groups of the nitronyl nitroxide moiety of 3-BTHNN results in a remarkable change in
magnetic behavior due possibly to a change in molecular arrangements in the solid. To
discuss further, it is indispensable to determine the crystal structures of 3-BTHIN.
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2.2. Crystal Structures

The radical 2-BTHNN crystallizes in the monoclinic space group C2/c. The crys-
tallographic data of 2-BTHNN are listed in Table 1. Figure 7a shows an ORTEP view
of the crystal structure along the b axis. The 2-BTHNN molecules form two different
types of molecular dimers as denoted by A and B shown in Figure 7a. In dimer A, the
2-BTHNN molecules stack face-to-face and their molecular long axes make an angle of
73◦, as shown in Figure 7b. The shortest intermolecular atomic distance between N and O
atoms is 3.499(3) Å. In dimer B, the 2-BTHNN molecules stack face-to-face in a head-to-tail
manner as shown in Figure 7c. The benzothienyl rings are close to each other to avoid steric
hindrances due to bulky methyl groups on the nitronyl nitroxide moieties. The shortest
intermolecular atomic distance is 3.267(5) Å between the C atom of the benzene ring and
the C atom of the thiophene ring. Quite different molecular arrangements in these two
dimers A and B mentioned above would yield very distinctive magnetic behaviors, i.e.,
FM and AFM interactions in 2-BTHNN. Although it is not easy to attribute the origin of
FM and AFM interactions onto these different dimers, the nearly orthogonally arranged
molecules in the dimer A seems to give the FM interactions, and the face-to-face stacking
of benzothienyl groups appears to result in the AFM interactions in 2-BTHNN.

Table 1. Crystallographic data for the organic radicals 2-BTHNN and 2-THPNN.

2-BTHNN 2-THPNN

Chemical formula C15H17N2O2S C17H19N2O2S
Formula weight 289.37 315.41
Crystal system Monoclinic Monoclinic

Space group C2/c P21/n
a (Å) 17.636 (6) 13.30 (7)
b (Å) 11.400 (4) 9.57 (4)
c (Å) 29.886 (9) 14.51 (7)
β (◦) 95.442 (4) 117.28 (7)

V (Å3) 5982 (3) 1642 (14)
Z value 16 4

Dcalc (Mg·m−3) 1.285 1.276
Reflections independent 6259 3631

R, Rw [I > 2σ(I)] 0.0808, 0.1002 0.0808, 0.0967
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The radical 2-THPNN crystallizes in the monoclinic space group P21/n. The crys-
tallographic data of 2-THPNN are also listed in Table 1. Figure 8 shows an ORTEP view
of the crystal structure along the direction perpendicular to the molecular planes of the
2-THPNN within one of the molecular stacks. The 2-THPNN molecules stack side-by-side
in a head-to-tail manner along the a axis. The molecular planes of the molecules belong
to the neighboring stacks are arranged perpendicularly. In the molecular stacks, there are
two types of atomic contacts between neighboring molecules. One type of atomic contact
is formed between the O atom on the NO group and the two C atoms on the phenyl ring
with the atomic distances of 3.404(2) Å and 3.449(3) Å. The other type of atomic contact is
formed between the O atom and the C atom on the phenyl ring with the atomic distance of
3.309(3) Å and the C atom on the thienyl ring with the atomic distance of 3.462(3) Å. These
two types of atomic contacts existing in the molecular stacks along the a axis probably
result in the 1D alternating magnetic interactions observed in 2-THPNN.
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head-to-tail manner.

3. Materials and Methods

The radicals were prepared according to the procedures reported in [1] and purified
through column chromatography followed by a recrystallization. Commercially available
(Aldrich) benzo[b]thiophene-2-carboxyaldehyde, benzo[b]thiophene-3-carboxyaldehyde,
2-benzofurancarboxyaldehyde, 2-furanaldehyde, 3-furanaldehyde, 2,2′-bithio-phene-5-
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carboxyaldehyde, and 4-(2′-thienyl)benzaldehyde were used without further purification.
N,N′-Dihydroxy-2,3-diamino-2,3-dimethylbutane was obtained according to the litera-
ture [1]. Other reagents and solvents were used as purchased.

2-BTHNN and 2-BTHIN. Benzo[b]thiophene-2-carboxyaldehyde (2.56 g, 15.8 mmol)
and N,N′-dihydroxy-2,3-diamino-2,3-dimethylbutane (2.14 g, 14.4 mmol) were mixed in
15 mL of benzene at 40 ◦C. The reaction mixture was stirred for 24 h, after which the re-
sulting white solid of 1,3-dihydroxy-2-(2-bebzo[b]thienyl)-4,4,5,5-tetramethylimidazolidine
was filtered off and washed with 5 mL benzene twice and dried under vacuum. Yield: 98%.
A solution of sodium periodate (2.42 g, 11.3 mmol) in 25 mL of water was added dropwise
to a suspension of 1,3-dihydroxy-2-(2-bebzo[b]thienyl)-4,4,5,5-tetramethylimidazolidine
(2.18 g, 7.47 mmol) in 100 mL dichloromethane at room temperature. The dark-green
organic phase was separated and concentrated under vacuum. The crude product was
separated and purified by column chromatography (eluent: ethyl acetate, alumina) to
obtain 2-BTHNN (dark-green solid) and 2-BTHIN (red solid).

3-BTHNN and 3-BTHIN. A similar experimental procedure was used to obtain 3-
BTHNN (dark-green/blue solid) and 3-BTHIN (red solid) by using benzo[b]thiophene-3-
carboxyaldehyde.

2-BFNN. 2-Benzofurancarboxyaldehyde (2.58 g, 17.7 mmol) and N,N′-dihydroxy-
2,3-diamino-2,3-dimethylbutane (2.39 g, 16.1 mmol) were mixed in 15 mL of benzene at
40 ◦C. The reaction mixture was stirred for 2 h, after which the resulting white solid of
1,3-dihydroxy-2-(2-bebzo[b]furyl)-4,4,5,5-tetramethylimidazolidine was filtered off and
washed with 5 mL of benzene twice and dried under vacuum. Yield: 95%. A solution
of sodium periodate (2.74 g, 12.8 mmol) in 25 mL of water was added dropwise to a
suspension of 1,3-dihydroxy-2-(2-bebzo[b]furyl)-4,4,5,5-tetramethylimidazolidine (2.30 g,
8.33 mmol) in 100 mL of dichloromethane at room temperature. The dark-green organic
phase was separated and concentrated under vacuum. The crude product was separated
and purified by column chromatography (eluent: ethyl acetate, alumina) to obtain 2-BFNN
(dark-green solid).

3-FNN. 3-Furanaldehyde (1.20 g, 12.4 mmol) and N,N′-dihydroxy-2,3-diamino-2,3-
dimethylbutane (1.71 g, 11.5 mmol) were mixed in 10 mL of benzene at 40 ◦C. The reaction
mixture was stirred for 24 h, after which the resulting light-brown solid of 1,3-dihydroxy-
2-(3-furyl)-4,4,5,5-tetramethylimidazolidine was filtered off and washed with 5 mL of
benzene twice and dried under vacuum. Yield: 75%. A solution of sodium periodate (2.80 g,
13.1 mmol) in 25 mL of water was added dropwise to a suspension of 1,3-dihydroxy-2-(3-
furyl)-4,4,5,5-tetramethylimidazolidine (1.95 g, 8.63 mmol) in 100 mL of dichloromethane
at room temperature. The dark-blue organic phase was separated and concentrated under
vacuum. The crude product was separated and purified by column chromatography
(eluent: ethyl acetate, alumina) to obtain 3-FNN (dark-blue solid). In this case, enough
amount of 3-FIN was not obtained as a byproduct.

2-FNN and 2-FIN. 2-Furanaldehyde (1.93 g, 20.1 mmol) and N,N′-dihydroxy-2,3-
diamino-2,3-imethylbutane (2.71 g, 18.3 mmol) were mixed in 10 mL of benzene at 40 ◦C.
The reaction mixture was stirred for 20 h after which the resulting light-brown solid of
1,3-dihydroxy-2-(2-furyl)-4,4,5,5-tetramethylimidazolidine was filtered off and washed
with 5 mL benzene twice and dried under vacuum. Yield: 74%. A solution of sodium
periodate (2.14 g, 10.0 mmol) in 20 mL of water was added dropwise to a suspension of
1,3-dihydroxy-2-(2-furyl)-4,4,5,5-tetramethylimidazolidine (1.50 g, 6.64 mmol) in 100 mL of
dichloromethane at room temperature. The dark-blue organic phase was separated and
concentrated under vacuum. The crude product was separated and purified by column
chromatography (eluent: ethyl acetate, alumina) to obtain 2-FNN (dark-blue solid) and
2-FIN (red solid).

2-BiTHNN. 2,2′-bithiophene-5-carboxyaldehyde (1.56 g, 7.98 mmol) and N,N′-dihydroxy-
2,3-diamino-2,3-imethylbutane (1.10 g, 7.39 mmol) were mixed in 10 mL of benzene at 40 ◦C.
The reaction mixture was stirred for 20 h, after which the resulting light-yellow/brown
solid of 1,3-dihydroxy-2-(2′-bithienyl)-4,4,5,5-tetramethylimidazolidine was filtered off and
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washed with 3 mL of benzene five times and dried under vacuum. Yield: 63%. A solution
of sodium periodate (1.50 g, 6.98 mmol) in 15 mL of water was added dropwise to a suspen-
sion of 1,3-dihydroxy-2-(2′-bithienyl)-4,4,5,5-tetramethylimidazolidine (1.50 g, 4.62 mmol)
in 100 mL of dichloromethane at room temperature. The dark-green organic phase was sep-
arated and concentrated under vacuum. The crude product was separated and purified by
column chromatography (eluent: ethyl acetate, alumina) to obtain 2-BiTHNN (dark-green
solid).

2-THPNN. 4-(2′-thienyl)benzaldehyde (1.00 g, 5.32 mmol) and N,N′-dihydroxy-2,3-
diamino-2,3-imethylbutane (0.726 g, 4.90 mmol) were mixed in 10 mL of benzene at 40 ◦C.
The reaction mixture was stirred for 24 h, after which the resulting light-brown solid of
1,3-dihydroxy-2-[4-(2′-thienyl)phenyl]-4,4,5,5-tetramethylimidazolidine was filtered off
and washed with 5 mL of benzene three times and dried under vacuum. Yield: 88%. A
solution of sodium periodate (1.39 g, 6.51 mmol) in 15 mL of water was added dropwise to
a suspension of 1,3-dihydroxy-2-[4-(2′-thienyl)phenyl]-4,4,5,5-tetramethylimidazolidine
(1.38 g, 4.32 mmol) in 80 mL of dichloromethane at room temperature. The dark-green
organic phase was separated and concentrated under vacuum. The crude product was
separated and purified by column chromatography (eluent: ethyl acetate, alumina) to
obtain 2-THPNN (dark-green solid).

Crystals suitable for X-ray diffraction studies were grown by slow evaporation from
concentrated solutions of 2-BTHNN and 2-THPNN in toluene in the dark and cold room.

The magnetization isotherms up to 7 T and the magnetic susceptibility over the tem-
perature range from 1.8 K to 300 K were measured using Quantum Design MPMSXL7
SQUID (superconducting quantum interference device) magnetometers. The contribution
of the diamagnetism to the susceptibility was subtracted by extrapolating the tempera-
ture dependence of the susceptibility to high temperatures where the Curie–Weiss law is
applicable.

X-ray diffraction intensities were recorded on a Rigaku AFC10 automatic four-circle
diffractometer with graphite monochromated Mo-Kα (λ = 71.075 pm). Intensity data were
corrected for Lorentz and polarization effects but not for absorption. The crystal structures
were solved by the direct methods and the positions of hydrogen atoms were calculated. A
full-matrix least-square refinement was carried out, in which non-hydrogen atoms were
treated with anisotropic thermal parameters and those of hydrogen atoms were treated
isotropic parameters. The X-ray crystallographic CIF files for 2-BTHNN and 2-TPHNN are
available as CCDC2079877 and CCDC2079881, respectively.

4. Conclusions

We showed magneto-structural correlations in the radicals 2-BTHNN and 2-THPNN
by considering the results of magnetic measurements and X-ray crystallographic analyses.
The coexistence of the FM and AFM intermolecular interactions in 2-BTHNN arises from
the formation of two different types of radical molecular dimers. The 1D alternating AFM
intermolecular interactions in 2-THPNN come from the molecular arrangements of chain-
like side-by-side and head-to-tail stacking. We discussed the atomic substitution effects on
magnetism by comparing the magnetic behaviors of thienyl- and furyl-substituted nitronyl
nitroxide. We also investigated the effects of O atom elimination from the NO group on
magnetism by comparing the magnetic behaviors of nitronyl nitroxide and iminonitroxide
having the same attached moieties.
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