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Abstract: Two multi-dentate nitronyl nitroxide radicals, namely, bisNITPhPy ([5-(4-pyridyl)-1,3-bis(1′-
oxyl-3′-oxido-4′,4′,5′,5′-tetramethyl-4,5-hydro-1H-imidazol-2-yl)]benzene) and NIT-3Py-5-4Py (2-{3-
[5-(4-pyridyl)]pyridyl}-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide), were assembled with CuII ions
to obtain two-dimensional heterospin 2p–3d coordination polymers [Cu7(hfac)14(bisNITPhPy)2]n

(1) and [Cu2(hfac)4(NIT-3Py-5-4Py)]n (2) (hfac: hexafluoroacetylacetonate). In both compounds, the
bisNITPhPy and NIT-3Py-5-3Py radicals acted as pentadentate and tetradentate ligands, respectively,
to connect with CuII ions, generating a 2D layer structure. The analysis of the magnetic behavior
indicated that strong antiferromagnetic coupling and ferromagnetic interaction (J = 17.1 cm−1)
coexisted in 1. For 2, there were ferromagnetic couplings between the CuII ion and NO group, as
well as the CuII ion and radical via the pyridine ring with J1 = 32.8 and J2 = 2.2 cm−1, respectively.

Keywords: multi-dentate nitronyl nitroxide; Cu(II) ion; two-dimension; magnetic properties

1. Introduction

The metal–radical heterospin strategy, in which metal ions link with stable organic
radicals, is extremely fascinating for designing molecular magnetic materials [1–6]. Based
on this kind of heterospin approach, 3d [7–9], 4f [10–17], and 3d–4f [18–23] compounds
have been obtained so far by employing various organic radicals, such as N2

3− [15,16],
HAN3− [24], TTF+ [25], thiadiazoyl [14], and nitronyl nitroxide radical ligands
[6,7,10,13,19,23,26–32]. In particular, nitronyl nitroxide radicals are often used as build-
ing blocks to construct metal compounds with various topology structures due to the
substituent groups of nitronyl nitroxides being able to effectively regulate the spatial ar-
rangement of magnetic building blocks [33]. However, it is worth noting that most of
the nitronyl nitroxide–metal compounds display zero- [34–37] and one-dimensional (1D)
structures [10,11,26,27], while nitronyl nitroxide radicals bridged two-dimensional (2D)
metal complexes are scarce so far. This could be attributed to the fact that metal centers
require electron-attracting coligands, such as hexafluoroacetylacetonate, to promote the
coordination of nitronyl nitroxide radicals. Nevertheless, these coligands occupy some
coordination sites of the metal center and possess a large steric hindrance, going against the
formation of higher-dimensional structures. In this regard, multi-dentate nitronyl nitroxide
with multiple coordination groups, such as functionalized biradicals and mono-radicals
with two additional coordination groups, is able to link several metal ions to generate
high-dimensional heterospin complexes. Recent examples of 2D compounds involving
multi-dentate nitronyl nitroxide illustrate this point [38–41].

Along this line, to further expand nitronyl-nitroxide-based 2D heterospin systems,
herein we utilized functionalized biradical bisNITPhPy ([5-(4-pyridyl)-1,3-bis(1′-oxyl-3′-
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oxido-4′,4′,5′,5′-tetramethyl-4,5-hydro-1H-imidazol-2-yl)]benzene) and tetradentate mono-
radical NIT-3Py-5-4Py (2-{3-[5-(4-pyridyl)]pyridyl}-4,4,5,5-tetramethylimidazoline-1-oxyl-3-
oxide) (Scheme 1) to bridge Cu ions, constructing two novel 2D rad–Cu complexes, namely,
[Cu7(hfac)14(bisNITPhPy)2]n (1) and [Cu2(hfac)4(NIT-3Py-5-4Py)]n (2). Magnetic property
investigations were undertaken, where ferromagnetic and strong antiferromagnetic Cu(II)–
rad exchanges were observed in compound 1, while ferromagnetic coupling dominated
the magnetic system of complex 2.
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Scheme 1. bisNITPhPy and NIT-3Py-5-4Py ligands.

2. Results and Discussion
2.1. Structural Investigation and Description

X-ray diffraction of both CuII compounds 1 and 2 showed that they all crystallized
in the triclinic space group Pı̄. The particulars of the crystallographic structural data of
two-dimensional polymers are included in Table 1. For compound 1, the asymmetric part
contained seven Cu(hfac)2 moieties and two bisNITPhPy biradical ligands (Figure 1). In 1,
one NIT unit of each bisNITPhPy ligand bridged two different copper(II) ions (Cu4 and
Cu5) through its two NO groups, leading to infinite linear chains. Meanwhile, 1D chains
were connected to Cu(II) ions (Cu2 and Cu3) via another NIT moiety with the [Cu3-NIT-
Cu2-NIT-Cu3] structural units to generate one two-dimensional layer. Meanwhile, the N
atom of the pyridine ring of each bisNITPhPy ligand was connected to one CuII ion (Cu1)
in its equatorial position (Figure 2).
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Table 1. Crystallographic structural data of two-dimensional polymers 1 and 2.

Complex 1 2

Formula C120H76Cu7F84N10O36 C53H38F36Tb2N6O17
M (g·mol−1) 4274.76 1266.67

T (K) 113(2) 113(2)
Crystal system Triclinic Triclinic

Space group Pı̄ Pı̄
a (Å) 13.4647(13) 11.172(2)
b (Å) 16.7473(18) 15.205(3)
c (Å) 18.793(2) 15.890(3)
α (◦) 109.221(2) 78.94(3)
β (◦) 96.022(2) 85.98(3)
γ (◦) 98.901(2) 70.21(3)

Z 1 2
Dcalcd (g·cm–3) 1.821 1.688

µ (mm–1) 1.113 0.998
θ (◦) 3.00–25.00 1.93–25.00

F(000) 2113 1254
Reflns collected 36,087 24,124

Unique reflns/Rint 13,715/0.0429 8784/0.0598
GOF (F2) 0.983 1.007

R1/wR2 (I > 2σ(I)) 0.0497, 0.1412 0.0927, 0.2159
R1/wR2 (all data) 0.0663, 0.1511 0.1149, 0.2363
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Cu2, Cu4, and Cu5 adopted distorted octahedral geometries (Figure S1). The equato-
rial positions were filled by two ß-diketonate coligands (1.935(2)–1.951(2) Å for Cu2–Ohfac,
1.930(3)–1.943(3) Å for Cu4–Ohfac and 1.941(3)–1.950(3) Å for Cu5–Ohfac), while the api-
cal sites were held by two NO groups from two mono-radicals (Cu(2)–O(15): 2.420(1) Å,
Cu(4)–O(17): 2.428(3) Å, and Cu(5)–O(18): 2.330(1) Å). These axial bond lengths were
longer than equatorial distances, suggesting the Jahn–Teller effect was in action [42,43].
Five-coordinated Cu1 and Cu3 both had distorted pyramidal geometries, which were
assessed using a shape program [44] (Figure S1, Table S3). The coordination environment
of Cu1 was built of a pyridyl N atom of the radical and four O atoms of the hfac− lig-
ands, in which the O3 atom was located in the axial position (Cu1–O3: 2.166(3) Å). For
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Cu3, the equator plane was generated by several O atoms (O16, O5, O7, and O8) from
a nitroxide unit of the bisNITPhPy ligand (Cu3–O16: 1.989(3) Å) and two hfac− ligands
(Cu–O: 1.904(3)–1.963(3) Å), and the O6 atom of one hfac− ligand occupied the vertex
(Cu3–O6: 2.146(3) Å). Within the two-dimensional sheet, the shortest distance of Cu· · ·Cu
was 6.246 Å (Figure 2). Adjacent 2D planes stacked with the closest interlayer Cu· · ·Cu
distance of 9.364 Å.

For [Cu2(hfac)4(NIT-3Py-5-4Py)]n (2), asymmetric elements were made up of two
Cu(hfac)2 units and one NIT-3Py-5-4Py radical ligand (Figure 3). As shown in Figure 4, two
NIT-3Py-5-4Py radicals linked CuII ions by relying on nitroxide groups and nitrogen atoms
of pyridines to produce an annular structure [Cu2(NIT-3Py-5-4Py)2]. Meanwhile, each
dimer ring was linked to two Cu(hfac)2 units via two nitroxide units, yielding a 1D chain.
Meanwhile, adjacent 1D chains coordinated with CuII ions via N atoms of the pyridine
rings to construct a network structure.
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These CuII ions all adopted an elongated octahedral geometry (Figure S3). For Cu1,
the apical positions were taken over by two oxygen atoms that arose from two different
hfac− ligands (average Cu–O: 2.230(6) Å), while the equatorial plane took shape via two
nitrogen atoms from the two pyridine rings of two radicals (average Cu–N bond: 2.017(4) Å)
and two oxygen atoms belonging to hfac− ligands (average Cu–O bond: 2.039(5) Å). For
Cu3, two O atoms derived from two NO units lay in axial sites (the average Cu–Orad:
2.362(5) Å). In addition, four O atoms belonging to different hfac− ligands produced a
geometric equatorial plane (Cu–Ohfac: 2.229(5)–1.947(5) Å). For Cu2, one nitrogen atom of
one pyridine ring and three oxygen atoms of two hfac− ligands occupy equatorial sites
(Cu-N: 2.061(6) Å, Cu–Ohfac: 1.945(6)–2.002(6) Å). Meanwhile, an oxygen atom originating
from one nitroxide group of the radical ligand and the other being from one hfac− ligand
were located in axial positions (Cu–Orad: 2.326(5) Å and Cu–Ohfac: 2.237(6) Å). In a 2D layer,
the nearest Cu· · ·Cu separation was 5.911 Å (Figure 4). The shortest interlayer Cu· · ·Cu
interval between adjacent networks was 11.172 Å.

2.2. Magnetic Properties

A direct current magnetic susceptibility study of [Cu7(hfac)14(bisNITPhPy)2]n (1) was
implemented over the 2–300 K range with an extrinsic dc field of 5000 Oe. As described in
Figure 5, the χMT value of [Cu7(hfac)14(bisNITPhPy)2]n (1) at 300 K was 3.15 cm3Kmol–1,
which was lower than the desired value of 4.125 cm3Kmol–1 for uncoupled seven copper
ions and four mono-radicals, but close to the theoretical values of 2.625 cm3Kmol–1 for
uncoupled five copper ions and two mono-radicals (CuII: C = 0.375 cm3Kmol−1 and
S = 1/2; meanwhile, for the radical: S = 1/2), suggesting strong antiferromagnetic coupling.
On cooling, the χMT value increased slowly during the range of 300–35 K and then further
increased abruptly to reach the maximum value of 8.36 cm3Kmol−1 at 2.0 K. The above
phenomenon shows that strong antiferromagnetic coupling and ferromagnetic interaction
coexisted in 1.
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Based on the structure of compound 1, the O16 atom of the NO unit lay on one side of
the Cu3 equatorial plane to generate strong antiferromagnetic interaction and completely
offset the opposite spin [45,46]. Furthermore, CuII–rad magnetic coupling via the pyridyl
and phenyl rings might be very weak [47]. Thus, the magnetic behavior of 1 was mainly
derived from where the mono-radical bridged two CuII chains involving Cu4 and Cu5
ions and uncoupled three copper ions (Cu1, Cu2, and Cu1a) (Scheme 2). The observed
magnetic behavior of 1 should be analyzed using Equations (1)–(4). For the CuII chain,
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an equation (Equation (2)) for the magnetic susceptibility was based on the Hamiltonian
Ĥ = −JŜrad·ŜCu [48]. The mean field (zJ′) denotes additional magnetic coupling.

χ = 4χrad−Cu(chain) + 3χCu (1)

χrad−Cu(chain) =
Ng2β2

4kT
×

[
N
D

] 2
3

(2)

N = 1.0 + 5.7979916y + 16.90253y2 + 29.376885y3 + 29.832959y4 + 14.036918y5

D = 1.0 + 2.7979916y + 7.0086780y2 + 8.6538644y3 + 4.5743114y4

y =
J

2kT

χCu =
Ng2β2

3kT

[
1
2

(
1
2
+ 1

)]
(3)

χtotal =
χ

1−
(

2zJ′χ
Ng2β2

) (4)
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The rational evaluation of the measurement data produced J = 17.11 cm−1, g = 2.08,
zJ′ = −0.044 cm−1, and R2 = 0.9963. The positive J parameter signifies the ferromagnetic
Cu–radical coupling, which was derived from the axial CuII–ON bond to give rise to
orbital orthogonality of the π* orbital of the NO group and the dx2−y2 orbital of the CuII

ion [49,50]. The magnetic coupling is analogous to some reported CuII–nitronyl nitroxide
compounds [42,51].

The isothermal M versus H curve for complex 1 was investigated at 2.0 K in 0–70 kOe
(Figure 5). The magnetization displayed a sharp rise below 15 kOe, suggesting the existence
of ferromagnetic couplings, in agreement with the precipitous increase of the χMT value in
the low-temperature range. Then, M increased slowly to 7.16 Nβ at 70 kOe, in accordance
with the theoretical values (7.0 Nβ) found using the Brillouin functions for free seven
S = 1/2 spins, which verified the strong CuII–rad antiferromagnetic interaction in the
equatorial plane.

The χMT–T curve for [Cu2(hfac)4(NIT-3Py-5-4Py)]n (2) is described in Figure 6. The
room temperature value of χMT was 1.21 cm3Kmol−1, which approached the desired
value of 1.125 cm3Kmol−1 for two uncoupled CuII ions and one radical. On cooling, the
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χMT value of compound 2 increased steadily to 4.66 cm3Kmol−1 at 2 K, showing that
ferromagnetic coupling dominated the 2p–3d magnetic system.
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For the magnetic system of compound 2, a negligible magnetic CuII–NIT exchange
through the two pyridyl rings was anticipated. Based on the above analysis, two effective
exchange pathways should be considered: (i) the directly axial coordinated NO–Cu ex-
change (J1) and (ii) the Cu–NO coupling via pyridine heterocycle (J2). Accordingly, from a
magnetic point of view, this 2D complex could be considered as the radicals bridged 1D
chains plus the uncoupled mononuclear copper(II) units. There is no available magnetic
expression for such a 1D system. Thus, the MAGPACK procedure was employed to investi-
gate the dc magnetic susceptibilities involving a closed cycle containing two [Cu-{Cu2NIT2}]
units (Scheme 3) with two additional uncoupled CuII ions with the Hamiltonian.
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Ĥ = −2J1
(
Srad1 SCu1 + Srad2 SCu2 + Srad2 SCu3 + Srad3 SCu3 + Srad3 SCu4 + Srad4 SCu5

)
−2J2

(
Srad1 SCu2 + Srad2 SCu1 + Srad3 SCu5 + Srad4 SCu4

)
The best-fitting result gave J1 = 32.8 cm−1, J2 = 2.2 cm−1, and g = 2.16. The ferromag-

netic interaction (J1) as a result of the NO group was axially bound to the CuII ion [49,50].
Meanwhile, the ferromagnetic CuII–rad coupling through one pyridine ring (J2) was ex-
plained in terms of a spin-polarization model (Scheme S1), which is comparable to other
Cu–rad compounds [19,52].

The magnetization value was 3.24 Nβ at 2 K for 70 kOe, which is in agreement with
the desired result of 3 Nβ. Beyond that, the experimental magnetization (M) was larger
than the theoretical curve involving the Brillouin functions with one S = 1/2 and two
S = 1/2 uncoupled spins, indicating the existence of a ferromagnetic property.

3. Experimental Section
3.1. Raw Materials and Physical Investigation

Multi-dentate radicals bisNITPhPy [31] and NIT-3Py-5-4Py [53] were prepared ac-
cording to the related literature. Elemental analyses of both 2D Cu complexes were
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implemented by means of Perkin-Elmer elemental analytical equipment. A Bruker TENOR
27 spectrograph was used to measure the Fourier infrared spectra. The magnetic data
of both compounds were corrected using Quantum Design SQUID VS and diamagnetic
corrections of both Cu compounds were carried out using Pascal’s constants.

3.2. Preparation of [Cu7(hfac)14(bisNITPhPy)2]n (1)

Anhydrous Cu(hfac)2 (0.0148 g, 0.03 mmol) was added to 25 mL of n-hexane with
stirring and reflux for 2 h. Then, CHCl3 (5 mL) with bisNITPhPy (0.0046 g, 0.01 mmol) was
introduced into the above organic solution. After stirring for 30 min, a green solution was
filtered and evaporated slowly to yield bottle-green crystals. Yield 75%. Anal. calc. for
C120H76Cu7F84N10O36 (%): C 33.70, H 1.77, N 3.27; found. C 33.74, H 1.69, N 3.56; FT-IR
(KBr, cm–1): 3415 (s), 1651 (m), 1506 (m), 1366 (s), 1257 (s), 1209 (s), 1148 (s), 1134 (s), 947 (s),
861 (s), 663 (m), 587 (m), 546 (m).

3.3. Preparation of [Cu2(hfac)4(NIT-3Py-5-4Py)]n (2)

Anhydrous Cu(hfac)2 (0.0097 g, 0.02 mmol) in 16 mL of n-hexane was refluxed for 3 h,
into which NIT-3Py-5-4Py (0.0031 g, 0.2 mmol) in 7 mL of CH2Cl2 was introduced. The
cyan solution was refluxed for about 0.5 h. The cyan solution was filtered and left for about
15 h to give cyan crystals. Yield 55%. Anal. calc. for C37H23Cu2F24N4O10 (%): C 35.09,
H 1.83, N 4.42; found. C 35.21, H 2.28, N 4.40; FT-IR (KBr, cm–1): 1650 (s), 1529 (m), 1465 (s),
1363 (m), 1251 (s), 1197 (s), 1133 (s), 799 (s), 662 (s), 578 (s), 526 (m).

3.4. Crystallographic Analysis

Structural data of both CuII networks were gathered via a Rigaku Saturn diffractome-
ter (Mo-Kα source). Utilizing SADABS, the empirical absorption correction of two CuII

compounds was carried out. The structures of both compounds were parsed via direct
methods and reasonably refined via least-squares with SHELXL-2014 on F2 [54,55]. All H
atoms were attached to suitable positions. For 2, there was a large cavity of disordered sol-
vent units, which was evaluated using the SQUEEZE [56] option. Anisotropic parameters
were applied to all non-H atoms.

4. Conclusions

In summary, two novel rad–Cu heterospin 2D networks with different spin topologies
were acquired by using multi-dentate nitronyl nitroxides. The magnetic behavior of
compound 1 was mainly derived from mono-radical bridged CuII 1D chains and [Cu-NIT-
Cu-NIT-Cu] structural units. For compound 2, the ferromagnetic interaction dominated
the magnetic system, originating from 1D loop chains and uncoupled CuII ions. Our work
not only provides intriguing 2D nitronyl nitroxide-Cu compounds but also promises a
new strategy for constructing two-dimensional magnetic materials through polydentate
nitronyl nitroxide. This work shows that multi-dentate nitronyl nitroxide can act as fine
linkers for facilitating an improvement in dimensionality to obtain a high-dimensional
heterospin complex with fascinating magnetic properties.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/magnetochemistry7050073/s1. Tables S1 and S2: Vital bond lengths and corresponding angles
for two Cu complexes; Tables S3 and S4: Structural analysis for CuII ions in two compounds; Figures
S1 and S3: The coordination polyhedron of Cu(II) ions in both CuII compounds; Figures S2 and S4:
Molecular packing arrangement for both CuII complexes; Scheme S1: Spin polarization model of the
CuII–rad interaction in compound 2; CCDC 2079603 and 2079604 involve crystallographic data of
Cu compounds, where these data can be downloaded from www.ccdc.cam.ac.uk/data_request/cif
(accessed on 23 April 2021).
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