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Abstract: Reaction of Fe(II) with the tris-(pyridin-2-yl)ethoxymethane (py3C-OEt) tripodal lig-
and in the presence of the pseudohalide ancillary NCSe− (E = S, Se, BH3) ligand leads to the
mononuclear complex [Fe(py3C-OEt)2][Fe(py3C-OEt)(NCSe)3]2·2CH3CN (3), which has been char-
acterised as an isomorph of the two previously reported complexes, Fe(py3C-OEt)2][Fe(py3C-
OEt)(NCE)3]2·2CH3CN, with E = S (1), BH3 (2). X-ray powder diffraction of the three complexes
(1–3), associated with the previously reported single crystal structures of 1–2, revealed a monomeric
isomorph structure for 3, formed by the spin crossover (SCO) anionic [Fe(py3C-OEt)(NCSe)3]−

complex, associated with the low spin (LS) [Fe(py3C-OEt)2]2+ cationic complex and two solvent
acetonitrile molecules. In the [Fe(py3C-OEt)2]2+ complex, the metal ion environment involves two
py3C-OEt tridentate ligands, while the [Fe(py3C-OEt)(NCSe)3]− anion displays a hexacoordinated
environment involving three N-donor atoms of one py3C-OEt ligand and three nitrogen atoms
arising from the three (NCSe)− coligands. The magnetic studies for 3 performed in the temperature
range 300-5-400 K, indicated the presence of a two-step SCO transition centred around 170 and 298 K,
while when the sample was heated at 400 K until its complete desolvation, the magnetic behaviour
of the high temperature transition (T1/2 = 298 K) shifted to a lower temperature until the two-step
behaviour merged with a gradual one-step transition at ca. 216 K.

Keywords: tripodal ligands; pseudohalide coligands; iron complex; spin crossover; magnetic properties

1. Introduction

The spin crossover (SCO) materials are by far the most investigated molecular systems
among switchable systems during the last decade due to their many possible applica-
tions for the development of new generations of electronic devices, such as displays [1–4],
memory devices [4–8], and sensors [9–14]. Although the SCO behaviour can be essen-
tially observed in octahedral complexes based on metal ions allowing spin state changes
between the low spin (LS) and high spin (HS) states under external stimulus, such as
temperature, pressure, light irradiation, or magnetic field, those based on Fe(II) ion exhibit-
ing d6 electronic configuration remain the most studied systems [15–29]. Nevertheless,
such complexes are mostly either cationic or neutral, and the Fe(II) anionic complexes
exhibiting SCO behaviour have been relatively scarcely reported [21–29]. Furthermore,
the few anionic SCO examples are restricted to only three different systems. The first
one is the series [FeIIH3L][FeIIL]X, (X− = AsF6

−, BF4
−, ClO4

−, PF6
− and SbF6

−), based
on the ligand tris-(2-(((2-methylimidazol-4-yl)methylidene)amino)ethyl) amine (H3L) and
on its deprotonated anionic form (L3−) [21]. The second one consists of the trinuclear
[FeII

3(µ-L)6(H2O)6]6− complex involving the 4-(1,2,4-triazol-4-yl)ethanedisulfonate anion
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(L2−) [22], which displays a HS-HS-HS to HS-LS-HS transition around room temperature
and a large hysteresis loop (>85 K). The last system concerns the series of mononuclear com-
plexes involving the tris(2-pyridyl)methane (py3C-R, R = CnH2n+1, aryl group, O-CnH2n+1,
O-aryl, O-CO-CnH2n+1), tridentate functionalized ligands (Scheme 1a) [23–29]. Such com-
plexes, of general formula {A[Fe((py3C-R)(NCE)3)]m} (A = [(CnH2n+1)4N]+, [Fe(py3C-R)2]2+,
E = S, Se, BH3), are based on the mononuclear [Fe((py3C-R)(NCE)3)]− anion composed
by an Fe(II) metal centre, one py3C-R tridentate ligand, and three terminal κN-SCE linear
coligands (Scheme 1b). The different studies, reported essentially by Ishida et al. and
some of us [23–29], have concerned the study of different chemical effects, such as those
of the cationic counter ion or of the functional group (R) covalently linked to the tripodal
py3C motif, on the transition temperatures and the cooperativity. More recently, some of
us extended such effects to that of crystal packing by designing a series of polymorph
complexes [29].
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tals due to their instability. In addition, while magnetic behaviours of complexes 1 and 2 
remained unchanged in the heating and cooling scan modes, complex 3 showed signifi-
cant changes during the cooling/warming scan modes. These unexpected observations 
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Scheme 1. (a) The tris-(2-pyridyl)methane (py3C-R) ligands and their tridentate coordination
mode (b).

In order to determine the effect of the ancillary anionic coligands (NCE− with E = S,
BH3, Se) on the transition temperatures and the cooperativity, we have reported recently
two isomorphic complexes of general formula, [Fe(py3C-OEt)2][Fe(py3C-OEt)(NCE)3]2·
2CH3CN (NCE− = NCS−, NCBH3

−), based on the SCO [Fe(py3C-OEt)(NCE)3]− anion
and on the cationic LS complex, [Fe(py3C-OEt)2]2+, as counter ion [28]. At the same time,
the NCSe− analogue complex (E = Se), which completes such isomorphic series, has been
also prepared. However, this complex, of a presumably chemical formula of [Fe(py3C-
OEt)2][Fe(py3C-OEt)(NCSe)3]2·2CH3CN (3), could not be obtained as single crystals due
to their instability. In addition, while magnetic behaviours of complexes 1 and 2 remained
unchanged in the heating and cooling scan modes, complex 3 showed significant changes
during the cooling/warming scan modes. These unexpected observations pushed us to
explore in detail the peculiar switching behaviour of this compound. Here, we report the
syntheses, structural characterization, infrared spectroscopy, and magnetic properties of the
new isomorph [Fe(py3C-OEt)2][Fe(py3C-OEt)(NCSe)3]2·2CH3CN (3) exhibiting solvent-
induced hysteresis loop of 50 K.

2. Results and Discussion
2.1. Syntheses

The py3C-OEt (tris-(pyridin-2-yl)ethoxymethane) tripodal ligand was prepared as
previously described [28–31]. Compound 3 was obtained as a red polycrystalline powder
and as single crystals by mixing a solution of [N(C2H5)4](NCSe) with a solution of FeCl2
and tris(pyridin-2-yl)ethoxymethane at −32 ◦C (see details in Section 3).

2.2. Structural Characterization and Magnetic Properties

In contrast to complexes 1 and 2, for which the crystal structures were determined
using single crystal X-ray diffraction, complex 3, which was expected to be isomorph to
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the structure observed for 1 and 2, showed poor quality single crystal diffraction patterns
that clearly precluded any correct single crystal structural characterization. However, after
several attempts at 100 K, we succeeded in collecting some intensities, which led to unit
cell parameters depicted in Table S1. Comparison of these parameters to those of the two
isomorph complexes 1 and 2, indicated that the structure of complex 3 was isomorphic to
complexes 1 and 2 (Table S1). This conclusion was supported by the experimental X-ray
powder diffraction pattern observed for the polycrystalline powder of complex 3, which
was very similar to the one observed for complex 1, as well as to the simulated pattern
derived from the single crystal structure of complex 1 (Figure 1 and Figure S1).
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Figure 1. X-ray powder diffraction patterns for [Fe(py3C-OEt)2][Fe(py3C-OEt)(NCE)3]2·2CH3CN
(E = S (1), Se (3)) and the simulated pattern derived from the crystal structure of complex 1.

It is also worth mentioning that the elemental analyses of complex 3 agreed with
the chemical formula, [Fe(py3C-OEt)2][Fe(py3C-OEt)(NCSe)3]2·2CH3CN, expected for a
complex isomorph to 1 and 2. Therefore, all the data strongly support that the crystal
structure of complex 3 is isomorphic to those of complexes 1 and 2 [28]; and therefore its
crystal structure consists of a low spin (LS) [Fe(py3C-OEt)2]2+ cationic complex (Figure 2b),
an anionic [Fe(py3C-OEt)(NCE)3]− (E = S (1), BH3 (2) Se (3)) complex (Figure 2a) and two
CH3CN solvent molecules.
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(b) complexes in [Fe(py3C-Oet)2][Fe(py3C-OEt)(NCS)3]2·2CH3CN (1) [28]. Codes of equivalent
positions: (a) = -x, -y, -z.

As previously described, complex 1 exhibited an incomplete SCO transition (T1/2 = 205 K),
while 2 displayed a complete two-step transition at 245 K and 380 K (Figure 3). Their
magnetic properties were studied in warming and cooling modes (300-2-400-2 K for 1;
300-2-500-2 K for 2), but no significant hysteretic effects or any change due to possible
desolvation were detected. Also, irradiation at 10 K with a green light for several hours re-
vealed no noticeable increase of the thermal variation of the product of the molar magnetic
susceptibility times the temperature (χmT) for both compounds. As for complex 1, suscepti-
bility measurements for complex 3 were performed in the 300-5 K and 5-400 K temperature
ranges. The thermal variation of the χmT product for the three complexes (1–3) are shown
in Figure 3. For compound 3, the χmT value per formula at 400 K (≈6.71 cm3 K mol−1)
was in agreement with the value expected for two isolated Fe(II) ions (S = 2 and g ≈ 2.1),
revealing the presence of two magnetically isolated HS Fe(II) ions [15–29]. On cooling,
the χmT value of 3 showed an initial abrupt drop, at around 298 K, reaching a value of
ca. 3.40 cm3 K mol−1 at 265 K. On further cooling, we observed a second drop, at around
170 K, to reach a plateau at ca. 0.56 cm3 K mol−1 below 116 K. This low temperature χmT
value implies the presence of a residual HS fraction of ca. 8 %. This behaviour indicates the
presence of an incomplete HS to LS two-step transition centred at around 170 and 298 K.

In contrast to isomorphs 1 and 2, where the magnetic properties did not show any
change after successive cooling and heating scans in the ranges 2–400 K for 1 and 2–500 K
for 2, the two-step behaviour described above for complex 3 (Figure 3) was irreversible
due to a gradual desolvation of the sample at 400 K, as previously observed in several
solvated systems [32–40]. As a matter of fact, when the sample was maintained at 400 K
until its complete desolvation, the second cycle (400-50-400 K) in 3 produced a shift to
lower temperatures for the high temperature step, while the transition temperature of the
low temperature step remained unchanged (See Figure 4). Similar trends were observed
for the third and fourth cycles, until the fifth cycle where the initial high temperature
step merged with the low temperature step (Figure 4), to lead to the gradual one-step
transition depicted in Figure 5a. There were no hysteretic effects and the HS fraction of ca.
8% remained unchanged after the different heating and cooling cycles.
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the crystal packing in 3 has larger cavities that allow an easy desolvation (see below). 
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Irradiation of the sample with a green laser (λ = 532 nm) at 10 K produced an increase
of the χmT product, indicative of the presence of a light-induced excited spin state trapping
at low temperatures (LIESST effect). After ca. 4 h, the χmT product reached saturation at
a value of ca. 1.6 cm3 K mol−1 (Figure S3). This value indicates that around 1/3 of one
of the two LS Fe(II) centres in the [Fe(py3C-OEt)(NCS)3]− anions were excited to the HS
state. After switching off the light irradiation, heating the sample further increased the
χmT value up to ca. 2.0 cm3 K mol−1 (representing ca. 44 % of one of the two Fe(II) centres).
On further heating, the sample relaxed to the LS state at a TLIESST of ca. 58 K (Figure 5b).

One of the major points, deserving special attention in regards to the three isomorphic
complexes, concerns the origin of the unexpected and singular magnetic behaviour that
only occurred for isomorph 3 (see Figures 3 and 5a). To try to understand the process
that occurred at high temperatures, we performed thermogravimetric analysis (TGA) and
X-ray powder diffraction on the three isomorphs to know more about the desolvation
and solvation processes of this system. Thus, TGA measurements were performed for
the three isomorphs, which were heated at 5 ◦C min−1, under nitrogen atmosphere, from
room temperature to 390 K. In Figure 6, the mass evolution with temperature for the three
complexes were gathered, showing clearly that the two isomorphs 1 and 2 remained stable
and retained their solvent molecules up to 390 K, while complex 3 started to lose weight
from room temperature and lost 4.37 % of its mass when heated up to 370 K, corresponding
to two CH3CN solvent molecules per formula unit. These measurements revealed that
despite their isomorphic structures, complexes 1 and 2 retained their crystallization solvent
molecules while complex 3 lost them even at moderate temperatures, suggesting that the
crystal packing in 3 has larger cavities that allow an easy desolvation (see below).

To check for the reversibility of this desolvation process, we performed successive des-
olvation and resolvation cycles, by heating the solvated sample and by adding two drops of
CH3CN on the desolvated sample, respectively. After resolvation, magnetic measurements
(Figure S4) and X-ray powder diffraction (Figure 7) showed that the sample recovered its
original behaviour, supporting the reversibility of the desolvation/resolvation process.
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Figure 7. Experimental X-ray powder diffraction patterns of solvated and desolvated samples of 3,
confirming the reversibility of the desolvation/resolvation process.

2.3. Variable Temperature Magnetic Properties and Infrared Spectroscopy

In order to confirm the Fe(II) spin state at high and low temperatures and the presence
of the incomplete HS to LS transition for 3 (see Figure 3), we measured the infrared spectrum
at 100 and 300 K in the range of the fundamental stretching vibration of the NCSe− units
(1975–2130 cm−1), since it has been clearly established that the intensities of these stretching
vibrations are very sensitive to the spin state of the Fe(II) metal ion [28,29,41–47]. We thus
recorded the infrared spectra for 3 at 350 and 100 K, according to the thermal evolution of
the χmT product depicted in Figure 5a. The infrared spectra for 3 in the C≡N frequency
region (1975–2130 cm−1) at 350 and 100 K are displayed in Figure 8. At 350 K, two νC≡N
stretching broad bands, characteristic of the HS state, appeared at 2050 and 2075 cm−1,
while at 100 K, four strong bands, characteristic of the LS state, appeared at 2044, 2075, 2082,
and 2109 cm−1. In agreement with the presence of an 8 % HS fraction at low temperatures
(see magnetic section), the three bands observed at 2044, 2075, and 2082 cm−1 can be
viewed as resulting from the decrease in intensity of the two broad and strong bands
observed for the HS state, while the band observed at a higher frequency (2109 cm−1)
appeared as the specific band of the LS state.
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2.4. Magneto-Spectroscopic Relationships

Based on the magnetic behaviours (Figure 5a) and on the main bands that were
temperature sensitive (Figure 8) of both solvated and desolvated phases of complex 3, we
investigated the thermal evolution of the infrared spectra of the stretching vibration of
the NCSe− in the range 1975–2130 cm−1. For both phases (solvated and desolvated), we
recorded the infrared spectra in the vicinity of the SCO transitions from 100 to 350 K. First,
we recorded the infrared spectra for the freshly prepared complex 3, heating the sample
from 100 to 350 K to avoid the partial desolvation of the sample (Figure 9a). Then, the same
sample was heated during one hour at 400 K to ensure its complete desolvation, and the
corresponding infrared spectra were then recorded cooling the sample from 350 to 100 K
(Figure 9b).
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The intensities of the two ν(NCSe) broad bands (2050 and 2075 cm−1) attributed to the
HS state decreased gradually with decreasing temperature from 350 to 100 K, but persisted
even at 100 K, supporting the presence of a fraction of HS Fe(II) centres, as revealed
by the magnetic data. In parallel, a new band, characteristic of the LS state, appeared
at higher frequencies (2109 cm−1), whose intensity gradually increased with decreasing
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the temperature. However, as can be easily observed in both Figure 9a,b, the infrared
spectra did not show any clear difference between the infrared band evolutions of the
solvated (Figure 9a) and desolvated (Figure 9b) phases of complex 3, as revealed by the
magnetic data. Thus, in order to show more clearly this difference and to appreciate, at least
qualitatively, the consistency of the experimental infrared data, we correlated the thermal
variation of the χmT product derived from magnetic study and the thermal evolution of
the intensity of the infrared bands. The results, depicted in Figure 10, showed that the
intensities of the characteristic infrared bands (2109, 2075, 2050 cm−1) fit perfectly with the
thermal evolution of the χmT product, in agreement with the presence of a two-step SCO
transition in the solvated sample (Figure 10a) and a gradual one-step SCO behaviour in the
desolvated sample (Figure 10b).
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desolvated (b) samples of 3.

The final question to be answered by this study was why the isomorph based on
the NCSe− ligand (complex 3) displayed a reversible solvation/desolvation process with
CH3CN while the two other isomorphs (complexes 1 and 2) retained the solvent molecules
at temperatures exceeding 390 K. The answer could only come from the crystal packing
of this triad of isomorphs. Indeed, examination of the crystal packing revealed that the
CH3CN solvent molecules are located in tetragonal-like channels running along the [010]
direction, which are generated by eclipsed stacks of the -Fe-NCE . . . Fe . . . ECN-Fe-NCE
. . . Fe- metallacycles (see Figure 11). Even though the three isomorphs display, as expected,
similar crystal packing, the fact that they differ by the nature of the NCE− ancillary ligands
(E = S (1), BH3 (2), Se (3)), induces strong differences in the sizes of the metallacycles, due
to the different lengths of the three linear anions (the N-E distance increases from 2.72 Å for
E = BH3, to 2.80 Å for E = S and 2.94 Å for E = Se). The largest tetragonal-like channels are
expected to be those of the isomorph with the longest ancillary linear ligand (i.e., compound
3). Unfortunately, this difference could not be quantified due to the lack of single crystal
structural data of complex 3. However, in order to provide a reasonable estimation of the
effect of the NCE− ligands on the size of the metallacycles, we have calculated the relative
increase of their dimensions when passing from complex 2 to complex 1 (see Figure 11 and
Table 1 with the different Fe···Fe distances (d1–d4) determining the size of the channels).
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Table 1. Relative increase Fe···Fe distances (d1 and d2) as function of the nature of the NCE− ancillary
ligands (dN . . . .E) in the two isomorphs 1 and 2.

2 (E = BH3) 1 (E = S) 3 (E = Se)

dN . . . .E (relative increase) 2.72 Å 2.80 Å (+2.9 %) 2.94 Å (+8.1 %)
T/Spin State 200 K/LS 100 K/LS —

d1 (relative increase) 12.757 14.774 Å (+15.8%) —
d2 (relative increase) 11.683 Å 12.653 Å (+8.3%) —
d3 (relative increase) 8.146 Å 10.481 Å (+28.6%) —
d4 (relative decrease) 9.125 Å 8.907 Å (−2.4%) —

As can be seen in Table 1, when passing from complex 2 (with NCBH3
− and N···B

distance of 2.72 Å) to complex 1 (with NCS− and N···S distance of 2.80 Å), there is an
increase of +2.9 % in the size of the anion, which led to increases in the Fe···Fe distances in
the metallacycle of up to 28.6 % (see d1 to d4 in Table 1). Therefore, if we consider complex
3 based on the NCSe−linear ligand, which corresponds to the biggest linear anion (with
N···Se distance of 2.94 Å), the expected metallacycle should be significantly larger than
those observed for the isomorphs 1 and 2. These observations explain clearly why complex
3 involves larger tetragonal-like channels, allowing the easy and reversible solvation and
desolvation processes.

3. Experimental Section
3.1. Starting Materials

All starting reagents and solvents were purchased and used as received. The tris-
(pyridin-2-yl)ethoxymethane (py3C-OEt) ligand was prepared under nitrogen atmosphere
as described previously [28–31].

3.2. Synthesis of [Fe(py3C-OEt)2][Fe(py3C-OEt)(NCSe)3]2·2CH3CN (3)

Tris-(pyridin-2-yl)ethoxymethane (50.0 mg, 0.17 mmol) and FeCl2 (20.0 mg, 0.16 mmol)
were dissolved in methanol (5 mL) in the presence of a few mg of ascorbic acid. The mixture
was stirred at room temperature for 15 min. To the resulting solution was added a solution
of acetonitrile (5 mL) containing the [(C2H5)4N]NCSe salt (162 mg, 0.69 mmol). After
30 min stirring, the resulting solution was filtered and quickly cooled at −32 ◦C. After
three days, the bright red polycristalline powder of (3) as well as a few red single crystals
were obtained. Anal. Calcd. (%) for [Fe(py3C-OEt)2][Fe(py3C-OEt)(NCSe)3]2·2CH3CN
(C82H74Fe3N20O4Se6) 3: C, 48.2; H, 3.7; N, 13.7; found (%): C, 47.9; H, 3.8; N, 14.0. IR data
(ν/cm−1) for the freshly filtered sample (powder and single crystals, Figure S5): 410 (w),
423 (w), 477 (w), 500 (w), 513 (w), 530 (w), 659 (m), 726 (w), 758 (w), 886 (w), 1011 (m), 1086
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(w), 1108 (m), 1143 (m), 1205 (w), 1252 (w), 1291 (w), 1389 (w), 1434 (m), 1462 (s), 1593 (m),
2060 (s), 2244 (w), 2871 (w), 2901 (w), 2972.11 (w), 3076 (w), 3442 (br).

3.3. Characterization of the Materials

Infrared spectra of complex 3 were performed using a platinum ATR Vertex 70
BRUKER spectrometer with variable temperature cell holder (VT Cell Holder typer P/N
GS21525). 1H and 13C NMR spectra were performed using BRUKER DRX 300 MHz, Ad-
vance 400 MHz and Advance III HD 500 MHz equipment. TGA measurements were
performed on ATG-LabsysTM, Setaram (see details in Supplementary Information).

3.4. Magnetic Measurements

Magnetic susceptibility measurements were performed using a Quantum Design
MPMS-XL-5 SQUID susceptometer (San Diego, CA, USA). The susceptibility data were
corrected for the diamagnetic contributions using Pascal’s constant tables [48]. The photomag-
netic studies were performed by irradiating the sample at 10 K with a green Diode Pumped
Solid State Laser DPSS-532-20 from Chylas (see details in Supplementary Information).

4. Conclusions

We have shown that the compound [Fe(py3C-OEt)2][Fe(py3C-OEt)(NCSe)3]2·2CH3CN
(3), based on the [Fe(py3C-OEt)2]2+ LS cation and the SCO [Fe(py3C-OEt)(NCSe)3]− anion,
displays a reversible desolvation process that affects the SCO behaviour. This compound
has been prepared as a polycrystalline powder and as single crystals using a similar proto-
col to that used previously for the syntheses of the two isomorphic complexes [Fe(py3C-
OEt)2][Fe(py3C-OEt)(NCE)3]2·2CH3CN (E = S (1), BH3 (2)) based on the two ancillary linear
ligands NCS− and NCBH3

− [28]. Despite being obtained in the form of prismatic-shaped
single crystals, complex 3 could not be characterized by X-ray single crystal diffraction,
because of the low stability of its single crystals, in contrast to complexes 1 and 2, which
have been structurally characterized. However, combined X-ray powder diffraction, in-
frared spectra, and CHN elemental analyses clearly revealed that complex 3 exhibits an
isomorphic structure to those of complexes 1 and 2. TGA analyses performed on the single
crystal samples of the three isomorphs revealed clearly that the two isomorphs 1 and 2, for
which the corresponding single crystals are stable, retained their solvent molecules up to
390 K, while complex 3 began to lose its CH3CN solvent molecules from room temperature.
The magnetic studies for 3 performed in cooling and heating scans in the temperature
ranges 300–5 K and 5–400 K, respectively, indicated the presence of an incomplete HS to
LS two-step like transition centred around 170 and 298 K, while when the sample was
heated at 400 K until its complete desolvation, the magnetic behaviour of the high tempera-
ture transition (T1/2 = 298 K) shifted to a lower temperature until the two-step behaviour
merged with a gradual one-step transition at ca. 216 K. Such behaviour, which can be
viewed as a solvent-induced hysteresis loop of 50 K [41–47], was confirmed by infrared
spectra recorded in the vicinity of the SCO transition for both solvated and desolvated
samples. Furthermore, successive desolvation and solvation cycles, tracked by SQUID
measurements and X-ray powder diffraction, showed that the desolvation process is fully
reversible. As shown by the TGA analysis, compound 3 exhibited a different magnetic
behaviour due to its easy desolvation and solvation process, in contrast to the two other
isomorphs, which retained their solvent molecule up to 390 K, despite their isomorphic
structures. This unexpected behaviour was elucidated by careful examination of the crystal
packing of these isomorph complexes, which clearly revealed that the solvent molecules
are located in tetragonal-like channels generated by the eclipsed stacks of the “-Fe-NCE . . .
Fe . . . ECN-Fe-NCE . . . Fe-” metallacycles. Therefore, the isomorph based on the bigger
NCSe− ancillary ligand, should display the larger tetragonal-like channels, allowing easier
solvation and desolvation as observed in isomorph 3.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/magnetochemistry7060075/s1, Table S1: Crystal data of [Fe(py3C-OEt)2][Fe(py3C-OEt)(NCE)3]2·
2CH3CN (E = S (1), BH3 (2), Se (3)), Figure S1: Experimental and simulated XRPD patterns for com-
pounds 1 and 2, and experimental one for complex 3, Figure S2: Thermal variation of χm of a freshly
prepared sample of compound 3 for different consecutive heating and cooling scans, Figure S3: Time
dependence of χmT at 10 K for compound 3 under laser irradiation with green light (λ = 532 nm,
switched on at time ca. 10 min), Figure S4: Different heating and cooling scans of the χmT product
performed on the de-solvated compound 3 after re-solvation with two drops of CH3CN, Figure S5:
IR spectra of single crystals and polycrystalline powder of complex 3.
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