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Abstract: The magnetic separation of cells based on certain traits has a wide range of applications in
microbiology, immunology, oncology, and hematology. Compared to bulk separation, performing
magnetophoresis at micro scale presents advantages such as precise control of the environment,
larger magnetic gradients in miniaturized dimensions, operational simplicity, system portability,
high-throughput analysis, and lower costs. Since the first integration of magnetophoresis and
microfluidics, many different approaches have been proposed to magnetically separate cells from
suspensions at the micro scale. This review paper aims to provide an overview of the origins
of microfluidic devices for magnetic cell separation and the recent technologies and applications
grouped by the targeted cell types. For each application, exemplary experimental methods and
results are discussed.
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1. Introduction

Magnetic cell separation, namely magnetophoresis, refers to the selective isolation of
certain cell populations from a more complex, heterogeneous suspension with the aid of
an external magnetic field targeting the magnetically susceptible components within the
sample. For biological samples, these targeted components are often the deoxygenated
hemoglobin present in the red blood cells (RBCs), which shows paramagnetic properties [1],
diamagnetic behavior of white blood cells (WBCs) in blood plasma [1], or superparamag-
netic nano-/micro-particles selectively tagging desired cell populations [2–4]. To supply
a magnetic gradient to the system, permanent magnets, electromagnetic coils/wires or
a combination of these two approaches can be applied. Furthermore, magnetophoresis
can be tuned for positive and negative isolation. Positive isolation refers to isolating the
cellular population of interest by using a magnetic field gradient to create a magnetic
force in the direction of the magnetic field gradient. Subsequently, the magnetic force
is applied to targeted cells to attract them away from the rest of the sample. Negative
enrichment, on the other hand, focuses on eliminating every cell other than the population
of interest by magnetically depleting them, leaving the non-magnetic desired cells purified
and untouched. While positive isolation offers high-purity yields (>99%) compared to a
negative enrichment, which may suffer from unintentional collection of non-target cells,
the negative enrichment mode allows separation without stressing the target cells and the
possibility of purifying cell populations without a known biomarker [5].

Although magnetic cell separation is widely practiced for research, it is also ac-
tively used in clinical environments [4], from diagnostic microbiology [6], collection of
stem cells [7,8] and purifying manufactured CAR-T cells [9,10] to selection of motile
sperms [11,12]. The main advantages of magnetophoresis in these applications over
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fluorescence-based separations technology, where the cell population of interest are tagged
with fluorescent labels and selectively refined into a collection vessel [13], was their straight-
forward protocols and rapid processing with high throughput.

Magnetic separation in the macro domain has long been established for isolating
cells populations such as RBCs [14–17], WBCs [18–20] and rosette-forming cells [21], as
well as to separate ultra-fine particles [22]. These technologies all used a high-gradient
magnetic field to compensate for the miniscule magnetic susceptibility in their respective
biological samples [23]. Since then, significant effort has been dedicated to miniaturizing
magnetic separation in order to achieve precise control in the micro-environment [24],
geometrical advantages of miniaturization [25], microfabrication of devices in batches [26],
low cost [27], and superior assay portability [28]. Furthermore, microfluidic devices offer
capability of integration with other mechanisms to increase performance [29,30], high-
throughput measurements [31,32], and rapid detection rates [33–35], making them ideal
for clinical applications at the point of care [36,37].

This paper reviews the origins of the magnetic separation demonstrated in microfluidic
platforms and the current literature grouped by the types of cells being separated. The next
section (Section 2) provides an overview of how microfluidics and magnetic sorting were
brought together. Section 3 presents the current platforms developed to separate blood cells
as well as their specific subpopulations. The isolation of tumor cells in general microfluidic
platforms was recently reviewed by Farahinia et al. [38], and the magnetic separation
techniques for circulating tumor cells were briefly mentioned by Surendran et al. [39].
Compared to these recent reviews, we discuss the different magnetic sorting approaches to
isolate cancer cells in detail in Section 4. In Section 5, we review the technologies enabling
a multiplexed sorting in the magnetic domain, as well as the cases where magnetophoresis
was used to uncover population-level dynamics instead of a binary-level separation.

2. The Origins of Microfluidic Magnetophoresis

Microfluidics and magnetic sorting were integrated together to overcome the relatively
small magnetic flux gradients possible in macro-scale magnetic separators. Using the
advantages of micromanipulation and miniaturization, magnetic sorting was applied to
the separation of droplets [40], polystyrene beads [40,41], magnetic beads [41,42], and
agglomerates [41]. Berger et al. [43] demonstrated some progress in cell sorting with
magnetophoresis with a microfabricated device containing microwires made out of a cobalt–
chrome–tantalum alloy; however, the group failed to fully fractionate the cell populations.
They highlighted the challenges of optimizing the hydrodynamic forces, preventing the
entrapment of beads under magnetic field and the importance of surface passivation. One
of the first implementations of a cell sorting in microfluidics-based magnetophoretic was
created to segregate RBCs and WBCs using their native magnetic properties. Initially,
Han et al. [44] developed a theoretical model RBC movement under laminar flow and
the magnetic forces focused by a ferromagnetic wire, which was made out of nickel,
under an external magnetic field. Using this model, Han et al. [44,45] also developed a
magnetophoretic cell separator with one inlet and three outlets to separate RBCs from
whole blood (Figure 1). By focusing an external magnetic field into a microfluidic channel
using a micropatterned ferromagnetic wire, they achieved 92% efficiency in separation of
RBCs from whole blood with this microfluidic device.

By altering the direction of the external magnetic field, Han et al. demonstrated both
diamagnetic [46] and paramagnetic [47,48] modes for the separation. The group showed
that when the external field was normal to the microfluidic plane, the ferromagnetic wire
deformed the magnetic field in its vicinity and created a high magnetic gradient forcing
paramagnetic particles towards the edges of the microfluidic channel (Figure 2a). In contrast,
when the magnetic field was applied perpendicular to the ferromagnetic wire within the
plane of the microfluidic features, the magnetic flux was concentrated towards the wire,
generating an increasing magnetic gradient towards the center of the microfluidic channel
(Figure 2b). In diamagnetic mode, Han et al. achieved an efficiency of 89.7% for RBCs and
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72.7% for WBCs [46]. These numbers were improved in their paramagnetic mode with
separation efficiencies of 93.5% and 97.4% for RBCs and WBCs, respectively [47].
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Figure 2. Operational modes for the microfluidic sorter. (a) Diamagnetic mode. Copyright 2005 IEEE.
Reproduced with permission from [46]. (b) Paramagnetic mode for operation. Reproduced with
permission [48]. Copyright 2006 IET.

Alternative to using the native magnetic properties of blood cells, Inglis et al. [49] used
paramagnetic nanoparticles that are used in the bulk separation. They specifically used
nanobeads conjugated with CD45, a common leukocyte surface marker, to amplify the
magnetic force on WBCs. The ferromagnetic strips with an angle shift with respect to the
direction of fluidic flow were micropatterned out of Nickel on the floor of the microfluidic
device. These nickel features allowed them to direct tagged WBCs away from RBCs under
a magnetic field as low as 0.08 T [49] compared to the 0.6 T in the first magnetic-activated
cell sorting system [50] or 0.2 T used by Han et al. [46,47].

Furdui et al. [51] developed a microfluidic device with capture beds to isolate T-cells
from blood samples using a simple NdFeB permanent magnet and CD3-conjugated mag-
netic beads without any additional patterning of paramagnetic features. The magnetic
particles were first deposited into the capture beds, then 2 µL of blood sample was intro-
duced into the device to selectively grab CD3+ T-cells under continuous flow. Under the
optimized flow rate of 0.25 µL/min, a capture efficiency of 42% was achieved.

The application of magnetic separation outside of WBC versus RBC field was demon-
strated for label-free negative enrichment of breast cancer cells circulating in the blood
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stream. In this study, Han et al. [52] applied their paramagnetic separator with Nickel wire
as an enrichment stage which was then coupled with a micro-scale electrical impedance
spectroscopy (µ-EIS) [53] for detection. Using the paramagnetic properties of deoxygenated
RBCs, WBCs and the breast cancer cells spiked in blood were separated from the RBCs, and
their subsequent µ-EIS measurements not only distinguished the malignant cells from the
healthy population, but also detected different pathological stages of the cancer cells [52].

3. Advances in Magnetic Separation of Blood Cells by Cell Type
3.1. RBC and WBC Separation

In recent years, efforts have been made to test different magnetophoretic systems to
separate RBCs and WBCs from whole blood, as summarized in Table 1. A microfluidic
blood cell separator was developed by Shiriny et al. [54] with magnetic elements stacked
in a Halbach array format, a spatially rotating arrangement of permanent magnets that
creates a strong and near-zero weak magnetic field side on two opposing faces of the
arrangement [55]. Although they reported slow flow rates up to 15 µL/h, the Halbach
structure allowed a straightforward scaling while keeping the separation efficiency at its
peak. Another work demonstrated self-assembling micromagnets enclosed in a polymer
layer to deplete WBCs [56]. Unlike other works where the gradients are amplified by spatial
patterning of ferromagnetic materials, this system accomplished fine tuning of the local
magnetic gradients with the arrangement of the micromagnets. However, the authors also
reported that an external magnetic field was necessary to improve the efficiency beyond
85%, especially for flow rates equal to or greater than 0.5 mL/h.

Separation of blood cells in microfluidics transitioned into clinical applications. This
trend was reviewed in depth both in terms of the analytes in clinical and forensic field [57]
and in terms of technical aspects [58]. One of these applications where magnetophoresis
was employed to separate blood cells was for non-invasive prenatal diagnostics. Cascading
a commercial positive enrichment with a magnetophoretic chip, Byeon et al. [59] developed
a platform that isolated the nucleated red blood cells from maternal blood for further
fluorescent and genetic testing. In this work, magnetic micropatterns were fabricated to
eliminate magnetically labeled WBCs from the initially enriched population of nucleated
blood cells (Figure 3). The system worked remarkably well to enrich the rare, nucleated
RBCs, yet the system had to resort to a pre-concentration of the blood sample to be effective.
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Figure 3. Magnetophoretic platform for prenatal diagnostic testing. Nucleated red blood cells in the
maternal blood sample were isolated using a magnetophoretic microseparator for further testing.
Reproduced with permission [59]. Copyright 2015 Springer Nature.

Microfluidic magnetophoresis was employed for the detection and removal of malaria-
infected red blood cells (iRBCs). This application stems from the increased paramagnetism
observed in iRBCs since the parasite catabolizes the heme in hemoglobin into a highly
concentrated crystal called hemozoin [60]. Kim et al. [61] proposed a dialysis-like mi-
crofluidic system (Figure 4a) to continuously eliminate iRBCs from the blood stream by
patterning magnetic wires in a periodic grid, and they demonstrated the feasibility of such
approach by computational analysis. Later, the same group presented a prototype of their



Magnetochemistry 2022, 8, 10 5 of 19

system (Figure 4b) that achieved a removal rate of 27% in a single run at a processing rate
of 77 µL/min [62]. The authors also discussed that once scaled up, the platform could
reduce the parasitemia in patients to 1% after processing 3 units of blood in about 65 min.
However, the data in the work was limited to samples with cells that were analogous to
malaria-infested cells rather than demonstrating data from actual patient samples.
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3.2. Separation of Specific Hematological Cells
3.2.1. CD4+ T-Cell Enrichment

Magnetic beads can be conjugated with antibodies to specifically amplify the mag-
netic susceptibility of a target cell population. Glynn et al. [63] used antibody-conjugated
magnetic beads to capture CD4+ (biomarker for helper T-cells [64]) cells and estimate their
concentration in an instrument-free microfluidic chip for AIDS diagnosis and periodic
prognosis in resource-poor regions. In this work, an immunomagnetically labeled sample
was loaded into the device with a simple finger press on a fluid reservoir, which allowed
the magnetically labeled cells to be pulled by the external magnetic field and accumulate
in a stagnant flow region for quantification (Figure 5). With this platform, the authors
achieved processing of a 4-µL blood sample in a remarkable 45 s. Another work [65] used
magnetophoretic separation to enrich CD4+ cells and integrated it with a DNA-induced
bead aggregation for quantification. Their approach consisted of two consecutive enrich-
ment stages, with the first step depleting the CD14+ (biomarker for myelomonocytes [64])
cells and the second step accumulating CD4+ cells. The concentrated T-cell population
was lysed to reveal genetic content and its mass was measured by the aggregation of DNA
targeting silica coated magnetic beads. Although the measurement of genetic material,
especially the viral load, is desirable for better clinical decisions [66], this work still relied
on the phenotype of T-cells. It would be quite interesting to see this technique applied for
viral load measurements.

3.2.2. Depletion of CD19+ B-Cells in T-Cell Manufacturing

Microfluidics facilitated the precise isolation of rare cells present in blood. In CAR T-
cell manufacturing, any contaminant cell, such as leukemic B-cells, must be eliminated prior
to administration to prevent the failure of the therapy. To ensure purity of the CAR T-cells
during quality control, Wang et al. [67] developed an immunomagnetic ranking system to
purge contaminant CD19+ B-cells (Figure 6). By patterning ferromagnetic features with an
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increasing thickness throughout the device, they created capture regions sensitive to the
varying number of magnetic nanoparticles present on the cells. Passing a cell population
with contaminant cells through their microfluidic chip, 99.985% capture efficiency and
above 90% recovery of T-cells was achieved [67]. The authors claimed they exceeded the
efficiency of the leading commercial magnetic-activated cell sorting (MACS) kits (93.59%).
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3.2.3. Hematopoietic Stem Cells

Isolation of hematopoietic stem cells (HSCs), which are the precursors of all types
of blood cells, from peripheral blood was demonstrated using magnetophoresis. Schnei-
der et al. [68] proposed a microchip sandwiched under a magnetic dipole to sort the HSCs
by targeting their CD34 expression (common biomarker for HSCs and endothelium [64])
with nanobeads. However, this study was limited to demonstrating the sorting in the
absence of RBCs and had a low yield (47.6%) due to low expression levels of CD34 in
the target population. In another technology focusing on the HSCs, the target cells were
immunomagnetically labeled with CD133 (a stem cell biomarker [64]) conjugated super-
paramagnetic microbeads. The labeled HSCs were then separated from whole blood with
an efficiency of 96% directly from whole blood [69]. Considering the heterogeneous nature
of whole blood, the platform also demonstrated great purity, only 45–60 RBCs remaining
after processing 1 mL of blood.
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Table 1. Summary of the recent magnetophoretic separation of blood cells.

Authors Purpose Target
Biomarker Key Feature Metrics Throughput

Shiriny et al. (2020) [54] WBC/RBC
separation Hemoglobin

Straightforward scaling, minimal
external magnetic effects by

Halbach array
100% efficiency 15 µL/h

Descamps et al. (2021) [56] WBC depletion CD45, CD15 Self-assembling magnets, fine
control in localization 85–100% efficiency 0.5 mL/h

Byeon et al. (2015) [59] WBC depletion CD45, CD66b

Magnetic amplification by
ferromagnetic wire, allows

non-invasive diagnostics, but the
sample must be pre-concentrated

93.98% efficiency 0.5 mL/h

Blue Martin et al. (2017) [62]
Depletion of

malaria-infected
cells

Hemozoin
(catabolized
hemoglobin)

Dialysis-like treatment for
malaria, straightforward scaling 27% efficiency 77 µL/min

Glynn et al. (2014) [63] CD4+ cell
enumeration CD4 Instrument-free operation, simple

read-out 93% efficiency 4 µL in 45 s

Q. Liu et al. (2015) [65] CD4+ cell
enumeration

CD14, CD4,
DNA Genetic material-based 95% efficiency 100 µL/min

Wang et al. (2021) [67] B-cell depletion in
cell manufacturing CD19

Extreme sensitivity, great
performance against commercial

methods

99.985% efficiency
(90% T-cell
recovery)

4 mL/h

Schneider et al. (2009) [68] Fractionation of
CD34+ cells CD34 Differentiation based on degree of

magnetization 47.6% efficiency 3 mL/h

Plouffe et al. (2012) [69]

Enrichment of
hematopoietic and

endothelial
progenitor cells

CD133
Processing directly whole blood,

high efficiency for rare cell
populations

96% efficiency 120 µL/min

4. Advances in the Magnetic Separation of Cancer Cells

Circulating tumor cells (CTCs), which are the tumor cell populations detached from
the original site and entered the blood circulation, can provide precious information about
the cancer biology in a minimally invasive procedure. Consequently, the separation of CTCs
from blood has gained significant attention. In this section, we will discuss the recent works
which have demonstrated the isolation of CTCs via magnetophoresis in a microfluidic
platform. For simplicity, the literature will be grouped into positive and negative separation
methods. In comparison, the positive separation yields superior purity, but lower capture
rates due to use of a biomarker and less than perfect efficiency. The negative separation, on
the other hand, often presents higher CTC capture rates as the CTCs flow untouched, but
the purity of the final suspension is lower due to less than perfect efficiency. A summary
showing the performance metrics and key features of these works was also given in Table 2.

4.1. Positive Separation

Positive separation of cells refers to the collection of a target cell population by a
biomarker common to the population of interest. In terms of magnetophoresis, targets cells
are often immunomagnetically labeled with magnetic beads and diverted from the rest of
the blood sample. One recent work demonstrating this was performed by Shi et al. [70],
where a smoothed herringbone structure offered grooves for capturing immunomagnet-
ically labeled CTCs. Initially, magnetic particles conjugated with a CTC marker were
trapped in the herringbone grooves with the external magnet. When the sample was
introduced into the chip, the magnetic particles preferentially attached to the CTCs via
antigen–antibody interaction. In addition, the work used the removal of the magnet for
the release of the captured cells, and achieved a capture efficiency of 92% at 540 µL/h [70].
Similarly, Huang et al. [71] took a trapping approach, using a microwell array to confine
individual cells and eliminate aggregation issues (Figure 7). This method achieved trap-
ping of acute monocytic leukemia cells at an efficiency of 62% with a 99.6% purity. While
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the microwells made the imaging and the quantification free from aggregates, the target
biomarker in the study was a common antigen for leukocytes regardless of whether they
are healthy or malignant.
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Figure 7. Magnetic trapping of individual cells in microwells. (a) Schematic of the system and its
operation. (b) Illustration of the magnetic behavior of cells within the microfluidic chip. (c) Image
of the device. The inset shows the microscopic image of the microwells. Scale bar represents 50 µm.
Reproduced with permission [71]. Copyright 2021 Springer Nature.

Ferromagnetic features have been used to overcome the rapidly decreasing magnetic
field gradient moving away from the field source. Cho et al. [72] used ferromagnetic
microwires patterned on a glass substrate for lateral separation of CTCs from blood un-
der a continuous flow. The substrate was also made to be re-usable to enable complex
microfabrication processes without resorting to periodic fabrication. The polymer layer,
however, was made to be disposable to avoid contamination of analytes. The resulting
platform was reported to outperform the commercial products by two orders of magnitude
in the purity of the isolated population (33.3% vs. 0.32%). However, one disadvantage of
the platform was that the system efficiency would be affected by other required processes
such as RBC lysis and washing. Earhart et al. [73], on the other hand, took a different
approach and used a magnetic pore structure microfabricated by deposition of permalloy
on a silicon substrate containing the pores. Unlike lateral flow systems where the fluid
flows within the plane of microfluidic features, Earhart et al. [73] designed their system to
operate like a conventional filter (Figure 8), in which the fluid flows normal to the plane of
micropores. This approached allowed them to significantly improve throughput and to
process samples at a rate as high as 25 mL per hour and reach 95.7% peak capture efficiency
at 10 mL per hour [73].

4.2. Negative Separation

Negative separation in cancer cell applications target WBCs and their elimination. To
selectively remove WBCs from the sample, the common WBC biomarkers such as CD15 [74],
CD45 and CD66b are used [75], and various commercial magnetic beads already conjugated
with these markers are available. This approach has the advantage of separating cancer
cells with unknown biomarkers and leaving these cells untouched. However, it may not
yield purities as high as positive enrichment. This stems from the fact that not all nucleated
cells in normally present in blood can be completely depleted with a single or dual target
antigen, for example endothelial progenitor cells do not express either CD45 or CD66b [76],
but express CD31 [64,77].
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Figure 8. Magnetic cell sifter. (a) Image of the sifter. (b) Optical micrograph of the pore array and the
trapped CTCs (green). (c) Operational principle. Immunomagnetically labeled CTCs are immobilized
by the high magnetic gradient on the edges of the pores while other cells pass unaffected. Reproduced
with permission [73]. Copyright 2021 RSC.

One of the most impactful displays of magnetic negative separation for CTCs was
demonstrated by Karabacak et al. [78]. In their system, RBCs were first depleted by
deterministic lateral displacement [74,79], then WBCs were sorted out using CD45 and
CD66b conjugated magnetic particles from a focused fluidic stream into waste (Figure 9).
The quadrupole magnet configuration enabled a two-step magnetophoresis. In the first
step, high-expressing WBCs (large number of magnetic beads) were eliminated under a
softer magnetic gradient, and the second step removed the lower expressors under a larger
magnetic gradient with a total WBC removal efficiency of 99.9%. The overall system had
the capability of processing large volumes of clinical samples to enrich sufficient number of
CTCs for downstream analysis.
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Figure 9. Design of the magnetophoretic module for CTC enrichment. (a) CAD design (b) Image of
the microfluidic chip (c) Electron microscopy images showing the microfluidic filtration (top), inertial
focusing (middle) and deflection channels (bottom). (d) Simplified operation of the magnetophoretic
chip. (e) Fluorescent imaging of the microfluidic features while the device is in operation. Reproduced
with permission [78]. Copyright 2014 Nature Publishing Group.
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Sajay et al. [80–82] proposed a microfluidic chip with an immunomagnetic chamber
coupled with a microslit membrane. WBCs were depleted by CD45-conjugated magnetic
beads on their surface under a sandwich setup of permanent magnets. Then, CTCs were
sifted with the microslit, while RBCs passed through the membrane. Based on the choice
of trapping WBCs on the top and bottom surfaces of the microfluidic device, the chip had
a fundamental limit of processing up to 2 mL blood samples due to the limited surface
area [80]. Regardless, their magnetic trapping offered WBC depletion up to 99.93%. In
a similar approach, Hyun et al. [83] depleted the WBCs labeled with CD45-conjugated
magnetic beads with magnets sandwiching the microfluidic chip. The device was coupled
with a downstream positive enrichment stage to further isolate the CTC selectively based on
a cancer biomarker. However, processing large volumes of a sample remained a challenge
due to the limited surface area. Moreover, the RBCs were lysed before the sample was
introduced to the device, introducing potential loss of CTCs.

Lee et al. [84] developed an interesting system combining physical separation for
RBCs and magnetophoretic separation for WBCs to acquire CTCs from blood samples.
A slanted micro-weir [85] with a 7-micron gap between sides allowed RBCs to cross the
weir while the rest of the cells were driven to the second module. In the magnetophoretic
stage, WBCs carrying CD45 conjugated magnetic beads were diverted away from the main
fluidic stream, and CTCs were isolated from blood.

Using a similar microwire structure to Byeon et al. [59] and Cho et al. [72], Kang et al. [86]
established a negative separator for the purification of CTCs from blood. CD45- and
CD66b-conjugated magnetic beads were used to tag WBCs in the sample. When the sample
was introduced to the microfluidic device, unbound magnetic beads were first eliminated
using ferromagnetic wires placed parallel to the fluid flow. In this region, magnetically
labeled WBCs pass unaffected thanks to the larger drag forces due to their larger size. The
WBCs were then eliminated from the primary stream by ferromagnetic wires [59,72,86]
patterned on the substrate at an angle (Figure 10). The group also operated the device for
positive enrichment of CTCs. Comparing the two approaches, they reported significantly
lower CTC purity via negative depletion (~4–9%), which wouldn’t be sufficient for a
downstream analysis.
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Figure 10. Negative enrichment of CTCs using ferromagnetic wires. In Zone 1 and Zone 2, unbound
beads are eliminated from the rest of the sample due to low Drag forces on magnetic beads. Then,
immunomagnetically labeled cells are removed from the main fluidic stream via ferromagnetic wires
under external magnetic field. Reproduced with permission [86]. Copyright 2019 MDPI.



Magnetochemistry 2022, 8, 10 11 of 19

Table 2. Summary of the recent magnetophoretic positive and negative enrichment of CTCs.

Authors Purpose Target
Biomarker Key Feature Metrics Throughput

Shi et al. (2017) [70] Positive isolation
of CTCs

EpCAM
(CD326)

Herringbone structure to create
capture pockets 92% efficiency 0.54 mL/h

Huang et al. (2018) [71] Positive isolation of
leukemia cells CD45 Immune to cell and

bead aggregation
62% efficiency
99.6% purity 70 µL/min

Cho et al. (2017) [72] Positive isolation
of CTCs

EpCAM
(CD326)

Reusable substrate with
disposable fluidic layer

90%
33.3% purity 2 mL/h

Earhart et al. (2013) [73] Positive isolation
of CTCs

EpCAM
(CD326)

Perpendicular flow enables
higher processing speeds

95.7%
92.7% release

efficiency
10 mL/h

Karabacak et al. (2014) [78] WBC depletion for
CTC enrichment CD45, CD66b

Processing directly whole blood,
integration with other

microfluidic systems for
clinical-grade use

99.9% WBC
depletion97% CTC

recovery
8 mL/h

Sajay et al. (2014) [82] WBC depletion for
CTC enrichment CD45 Centrifugation-free,

lysis-free approach

99.98% WBC
depletion

80% CTC recovery
500 µL/min

Hyun et al. (2015) [83] WBC depletion for
CTC enrichment

CD45, EpCAM,
HER2

Downstream positive enrichment
of CTCs expressing
a specific biomarker

99.9% WBC
depletion 400 µL/min

Lee et al. (2020) [84] WBC depletion for
CTC enrichment CD45 Integration with a slanted weir for

physical filtration

97.2% WBC
depletion93.3%

purity
5 mL/h

Kang et al. (2019) [86] WBC depletion,
CTC isolation

CD45, CD66b,
EpCAM

Direct comparison of negative
and positive enrichment metrics

99.95% WBC
depletion

83.1% CTC
recovery

4-9% CTC purity

2.8 mL/h

5. Differential Sorting of Cells Using Magnetophoresis

Besides binary sorting, magnetophoresis is also used to differential analysis of samples,
as summarized in Table 3. The differential approach can further be divided into two
categories: differentiation of multiple markers in a single platform (i.e., multiplexing); and
differentiation of a population at a single cell level to uncover population-level characteristics.

5.1. Multiplexed Sorting

One major downside of magnetic sorting is that the underlying mechanism is based
on only a single parameter, which is magnetic susceptibility. Whether it is the hemoglobin
content or a magnetic bead, separating populations based on multiple biomarkers in
magnetophoresis remains challenging [41,87]. One platform addressing this limitation
was shown by Adams et al. [88]. The microfluidic device (Figure 11) incorporated two
arrays of ferromagnetic strips angled at 15◦ and 5◦ with respect to the fluidic flow. The
sample was labeled with two different magnetic beads, more specifically 4.5 µm and 2.8 µm
particles. The first sorting region with strips at a 15◦ angle generated enough transverse
magnetic force on the cells with the larger magnetic beads to overcome the drag forces and
guided them to the first outlet. Cells with the smaller magnetic beads, however, passed
through this region unaffected as the drag forces were larger than the magnetic pull force.
These cells were separated from the suspension in the second sorting region with longer
ferromagnetic strips that are angled at 5◦. The rest of the suspension was discarded through
the waste outlet. The group also applied a similar technique to sort multiple bacterial
targets from a mixed suspension by employing dielectrophoretic and magnetophoretic
labels [89]. Although other works have demonstrated separations using different-sized
magnetic beads for multiplexed sorting in microfluidics [90–92], the target population in
these works were either beads or pathogens instead of cells.
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5.2. Population Level Measurements

Magnetically sorting the cell populations into distinct outlets and their consecutive
quantification is a robust method to distinguish the single-cell-level traits in a cell pop-
ulation. This is often achieved with magnetically labeling the target cells as the mag-
netophoretic mobilities were shown to be a function of the expression of the targeted
biomarker [93–95]. Based on this principle, Pamme et al. [96,97] investigated cell sorting
based on the endocytosis of magnetic nanoparticles. Incubating the nanoparticles with
various cell types, they demonstrated differential sorting of those cell populations based
on the cell size and their magnetic susceptibility after nanoparticle uptake into different
fluidic outlets under a magnetic field. The main limitation of their approach was that the
quantification of the fractionated cells relied on optical video recordings.

Civelekoglu et al. [98], on the other hand, used differential sorting to profile a cell
population based on the expression levels of a surface biomarker. In this work, immuno-
magnetically labeled cells were continuously deflected under an external magnetic field,
and the cells in the outlets were quantified by multiplexed electrical sensors [99] as they
were being sorted. Civelekoglu et al. [100,101] also demonstrated high-dynamic-range
operation for their magnetophoretic system, with an interesting inspiration from digital
photography. By modulating the flow rate during operation, they expanded their dynamic
range to cover cases with high cell heterogeneity. Later, the group presented an integrated
magnetophoretic sorter (Figure 12) with computational measurements to estimate the num-
ber of magnetic beads present on the surface of the cells from their sensor reading and made
a direct comparison to conventional fluorescent measurements [102,103]. Furthermore,
the group showed an integrated platform that coupled their differential sorting technique
with an inline magnetic positive enrichment stage profile the surface markers in blood
samples directly [104], a capability that commercial flow cytometers do not possess. They
demonstrated up to 96% efficiency for their enrichment stage and an optimal processing
speed of 1.5 mL/h with a throughput of up to 960 cells/s.
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Figure 12. Magnetophoretic flow cytometer. (a) Operation principle. (b) Image of the microfluidic
device. (c,d) Microscopy images of the electrical sensors for in-line quantification. Reproduced with
permission [103]. Copyright 2019 RSC.

Similarly, Jack et al. [105] built a magnetophoretic sorter to separate cancer cells into
three subpopulations based on their EpCAM expression (high, moderate, and low). In
the initial stage, the high expressor population is collected via magnets placed 2.3 mm
away from the microfluidic device. In the second stage, the magnets were placed 1.2 mm
away for a larger gradient. The moderate expressors were collected from dedicated outlet,
and the population passing unsorted from the second stage was considered as the low
expressors. We should note that the platform was limited to only three levels of differenti-
ation (low, medium, and high), and relied on optical recordings for the quantification of
each subpopulation.

Using micropatterned ferromagnetic features on the device substrate, Poudineh et al. [106]
and Labib et al. [107] developed a magnetophoretic ranking system to characterize the
surface biomarker and intracellular protein expressions, respectively. The increasing size of
the ferromagnetic features created a capture region differentially trapping cells based on
their expression levels. High expressors were trapped earlier by even smaller features, while
lower expressors could only be captured by the larger features present in the later sections
of the chip. The quantification of the captured cells was performed by immunofluorescent
scanning of the chip. O’Kelley’s group demonstrated this technique to profile EpCAM
expression of CTCs at a population level [106] and the intercellular proteins (Figure 13) of
prostate cancer cells [107].
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Figure 13. Magnetophoretic cell ranking based on the intercellular protein expression. (a) Labeling
process. (b) Preparation of the cells for intercellular update. (c) Process flow. (d) Illustration of
the vertical cross section of the device to selectively capture cells based on their different magnetic
contents. (e) Visualization of the ferromagnetic features in each capture zone. (f) Average flow velocity
in each capture zone. Reproduced with permission [107]. Copyright 2021 Nature Publishing Group.

6. Discussion

From its emergence to the present day, magnetic separation in microfluidic platforms
has become a widely used technique to separate blood cells, purify rare cells, isolate CTCs,
and characterize samples at a single-cell level thanks to its simplicity and high throughput.
The separation of specific cells can be finely controlled by engineering the external magnetic
field using neodymium permanent magnets or current-carrying wires, as well as patterning
ferromagnetic features on the substrate to concentrate the magnetic flux wherever it is
desired. Whether it is the native magnetic properties of a cell, invagination of magnetic
nanoparticles, or functionalization of magnetic nano-/micro-beads with a specific surface
marker, magnetophoresis consistently delivers high-efficiency sorting with great purity.

Besides the research domain, magnetic cell sorting has established a solid presence
in the life sciences industry. Currently, there are multiple commercial product lines that
are offered for magnetic cell sorting as ready-to-go kits, such as Dynabeads® (Invitrogen,
Carlsbad, CA, USA), MACS® beads (Miltenyi Biotec, Auburn, CA, USA), EasySep® beads
(STEMCELL Technologies, Vancouver, BC, Canada) or IMAG® beads (BD Biosciences, San
Jose, CA, USA). The abundance of different bead sizes and pre-conjugated (or effortlessly
conjugatable) variations has truly accelerated the developments of new microfluidic plat-
forms. However, to date, one fundamental limitation of magnetic sorting still remains.
Although multiplexing has been demonstrated in magnetic sorting at a population level,
co-expression measurements still cannot be performed at a single-cell level. Currently,
multi-color flow cytometry can measure dozens of biomarkers on a single cell using dif-
ferent fluorescent channels. In this sense, magnetic sorting behaves like a “monochrome”
measurement that is incapable of differentiating one biomarker from another. Once this
issue is resolved, we expect to see more and more microfluidic platforms targeting diagnos-
tics and prognostics at the point of care.
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Table 3. Summary of the recent magnetophoretic platforms for non-binary separations.

Authors Purpose Target
Biomarker Key Feature Metrics Throughput

Adams et al. (2008) [88] Multitarget sorting of
bacterial populations

T7 tag (4.5 µm
bead), CPX-SA1
(2.8 µm bead)

Multiplexing magnetic
sorting beyond

binary separation
90% 109 cells/h

Robert et al. (2011) [96]

Differentiation of
monocytes and

macrophages based on
nanoparticle uptake

Endocytosis of
8.7 nm iron oxide

nanoparticles

Differential sorting into
distinct outlets

88% purity
60% efficacy

10–100
cells/s

Civelekoglu et al. (2019)
[103]

Profiling membrane
expression in cell

populations
EpCAM (CD326)

Differential sorting into
distinct outlets, integrated

electronic read-out

Used pre-purified
suspension

500
cells/min

Civelekoglu et al. (2021)
[104]

Profiling membrane
expression directly
from hematological

samples

EpCAM (CD
326), CD45, CD34

Processing directly whole
blood, integrated electronic

read-out
85–96%

1.5 mL/h
up to

960 cells/s

Jack et al. (2017) [105]
Non-binary sorting of
cancer cells based on

surface expression
EpCAM (CD326)

Fractionation can be
controlled with the separation
with of the magnets. Platform

is limited to 3 levels
of fractionation

Used pre-purified
suspension 50 µL/min

Poudineh et al. (2016) [106]
Profiling membrane

expression in cell
populations

EpCAM, HER2,
N-cadherin

Circular nickel micromagnets
with increasing cross-section

to differentially trap cells

92% cell recovery
98% cell viability 0.5 mL/h

Labib et al. (2020) [107] Profiling intercellular
proteins in rare cells

c-Myc, EpCAM,
vimentin, PARP1,
Oct4, POLRMT

Nickel features with
increasing thickness to

differential capture

~83% capture
efficiency 2 mL/h

Overall, this review provides a brief history of how magnetic cell sorting was tran-
sitioned into microfluidic domain and demonstrates the evolution of magnetophoresis
into numerous cell applications in recent years. This review specifically groups recent
applications on the basis of the types of cells targeted for separation, and the growth of
magnetophoresis beyond a simple binary sorting mechanism.
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