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Abstract: We studied the polarization of light in a thin film of ferrofluid subjected to a magnetic field
using the Mueller matrix formalism. By observing the results of some experiments, we relate the
observed light patterns with Stokes vectors that can be operated by Mueller matrices, which represent
the magnetic field applied to the sample. We observed that the changes in the dichroism of this
system can be monitored along the sample, allowing for the visualization of magneto-optical effects
mainly for linear polarized light, and the effects of circular polarized light are related to birefringence.
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1. Introduction

Light is an electromagnetic wave, and to manipulate this type of wave we need
devices with electro-optical or magneto-optical properties. In this work, we will focus
on the observation of the polarization of light in a magneto-optical device known as a
Ferrocell [1], which is composed of a thin layer of ferrofluid that controls the polarization
of the light incident on this layer by applying a magnetic field, based on Stokes vectors
operated by matrices [2], known as Mueller matrices [3]. This type of matrix calculus is a
common algebraic resource in areas that involve the study of some kind of electromagnetic
scattering by particles, such as in biological applications [4–6] based on selective connective
tissue staining techniques that allow a qualitative analysis of collagen fibers in connective
tissue to increase birefringence in images observed in oncology tests. This includes material
characterization [7,8] used to characterize chiral films that have been processed from
bacterial cellulose. The matrix calculus is also used in optical device development [9], such
as in polarimetric imaging analysis of optical components for the generation of cylindrical
vector beams, and in astrophysics [10], where the polarization state of the radiation provides
much more astrophysical information than just the light intensity; it is also used in remote
sensing [11] as a tool to enhance the information available in a variety of remote sensing
applications, as well as in astrobiology [12], in the study of entopic phenomenon [13], to
elucidate the perception of Haidinger brushes and horocycles of light [14], which shows
some of the connections between topology and optics. Mueller matrices are also used in
many other areas [15].

To introduce some concepts that we will explore in this paper, we begin with the
following question: what is the relationship between the polarization of light in a thin film
of ferrofluid and the magnetic field applied to this sample? We can answer this question by
projecting the magnetic field of a dipole

→
p that is distributed through space, as is shown in

Figure 1a on a thin layer of ferrofluid.The expressions for the potential Φ and the magnetic

field
→
B of a dipole

→
p in a point at distance

→
r with angle θ from the origin are given by the

following equation:

Φ =
pz

(x2 + z2)
3/2 (1)
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tern with isogyres marked with yellow lines. 

When this magnetic field with certain intensity acts on the thin film of ferrofluid, 

the nanoparticles align with the magnetic field, forming a diffraction grating that can po-

larize light. Placing this thin film of ferrofluid influenced by this magnetic field between 

a pair of crossed polarizers, we obtainthe axially symmetrical light pattern of Figure 1c 

with light and dark regions. The dark regions within the pattern are a direct conse-

quence of the alignment of the magnetic field with the orientation of one of the polariz-

ers, since the Jones vector related to the polarization of light is perpendicular to the 

magnetic field; these are known as isogyres. Furthermore, in regions where the magnetic 

field has a weak intensity (less than 200 gauss), the grating does not form and light is not 

Figure 1. (a) Diagram of the magnetic field around a magnetic dipole. (b) Magnetic dipole diagram
in the xz plane, with its respective dipole coordinate system. (c) Example of a luminous pattern of
polarization of light in a Ferrocell witha magnetic dipole. (d) Diagram of a luminous pattern with
isogyres marked with yellow lines.

The components of the magnetic field for the dipole are as follows:

Bx =
3pxz

(x2 + z2)
5/2 =

3p sinθ cosθ

r3 (2)

Bz =

[
3z2

(x2 + z2)
5/2 −

1

(x2 + z2)
3/2

]
=

p
(
3 cos2θ − 1

)
r3 (3)

When this magnetic field with certain intensity acts on the thin film of ferrofluid, the
nanoparticles align with the magnetic field, forming a diffraction grating that can polarize
light. Placing this thin film of ferrofluid influenced by this magnetic field between a pair of
crossed polarizers, we obtainthe axially symmetrical light pattern of Figure 1c with light
and dark regions. The dark regions within the pattern are a direct consequence of the
alignment of the magnetic field with the orientation of one of the polarizers, since the Jones
vector related to the polarization of light is perpendicular to the magnetic field; these are
known as isogyres. Furthermore, in regions where the magnetic field has a weak intensity
(less than 200 gauss), the grating does not form and light is not transmitted, resulting in the
dark parts around the pattern. In our previous paper involving Jones vectors [9], we have
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considered the electric field of the light expressed as two-component vector with 0 ≤ λ ≤ 1;
in the following, κ is an amplitude parameter [16]:

|E〉 =
[

Ex
Ey

]
= |E|

[
κ(√

1− κ2
)(

eiθM
)]. (4)

In this experiment, the applied magnetic field creates a diffraction grating in the
ferrofluid, rotated at angle θM with respect to x-axis, which is basically a projection on
the operator

∣∣TθM

〉
, while the intensity I is the modulus squared of the inner product

I =
∣∣〈TθM

∣∣E〉∣∣2 of the system discussed previously, giving the following:

I(θM) = |E|2
[
κ2cos2θM +

(
1− κ2

)
sin2θM + κ

√
(1− λκ2)sin2θMcos∆

]
(5)

where ∆ is a constant related to the partial polarization of the electromagnetic wave.
To discuss the effects of the magnetic field on the polarization of light, we produced

the diagram in Figure 2, where we highlight the isogyre pattern of this system with the
yellow lines. The straight horizontal and vertical lines show the magnetic field on the z-axis
and x-axis aligned with one of the polarizers.
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Figure 2. Hyperbolas representing the isogyres that are projected on the Ferrocell as a function of the
distance of the center of the magnetic dipole in relation to the y-axis. The horizontal and vertical lines
that pass through the origin are also isogyres. The two red lines that pass through the diagonals are
the limit for the formation of two hyperbolas.

The curved lines can be approximated by hyperbolas, and they represent the geometric
locus where any of the components of the magnetic field Bx or Bz projected on the Ferrocell
cancels out, making this field aligned with the polarizer at the entrance of the light or with
the analyzer.
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Now that we have recognized some of the possible patterns in this system, we must
considerthe central question of this article, as follows: how do we explore these results in
the context of the Mueller calculus?

One of the objectives of this work is to show how Mueller matrices can be used
to analyze the light polarization properties observed in a thin film of ferrofluid, and
the relevance of this work has two aspects. First, the answer to this question helps us
understand some aspects of the magneto-optics of this system. Second, this experiment is
an excellent tool for teaching light polarization caused by particle scattering. To develop
this work relating the Mueller matrices with the luminous patterns of light polarization in
a Ferrocell, we will present our materials and methods in the next section, and then we will
draw a parallel between the angular distribution of intensities and the types of polarization
in an image obtained experimentally and with a Mueller matrix representing a radial grid.
In the concluding section, we will make our final remarks.

2. Material and Methods

The ferrofluid used in the experiment is the EFH1 (Ferrotec) variety, with a saturation
magnetization of 440 G, and 10 nm size single-domain iron oxide nanoparticles. The
ferrofluid solution is placed between two glass plates, with each glass plate having a
thickness variation of around 1 µm. The thin film has a thickness of around 10 µm.
The response time for the ferrofluid is of the order of 200 ms, and the scattering pattern
disappears almost instantly after removing the magnetic field. The ferrofluid is isotropic
for very low magnetic fields. The source of the magnetic field is made using neodymium
super magnets, which are placed close to the Ferrocell, and the maximum magnetic field
of the magnets used in this experiment is in the order of 1000 G. We have placed a video
about the materials used in this video in the Supplementary Materials section to detail
other aspects of this experiment.

In the present paper we are exploring the use of the Stokes vector, because Mueller
matrices operate on such vectors and involve real parameters that can be measured directly
with suitable optical instruments. The incident light is represented with a Stokes vector and
the result obtained with the Ferrocell acting on this incident light is the signal represented
by another final Stokes vector.The Stokes parameters I, Q, U, and V are defined as the
elements of a 4 × 1 column vector S of the components of the electric oscillations of light,
which describes a full state of polarization with the couplet (θ,φ) as the polar angle and the
azimuth angle, respectively. They are related with the Stokes vector SPP observed in the
patterns in a Ferrocell with the six values of intensities, namelyIP, IS, I+45, I−45, IR, and IL,
as follows [2]:

S =


I
Q
U
V

 =

√
ε

µ


E0θE∗0θ + E0φE∗0φ

E0θE∗0θ − E0φE∗0φ

−2ReE0θE∗0φ

2ImE0θE∗0φ

⇒ SPP =


Ip + Is
Ip − Is

I+45 − I−45
IR − IL

 (6)

With the final vector shown in Equation (6), we can find all the representation necessary
to describe the polarization state of light that will be observed in this system.

An interesting graphic way to interpret the Stokes vector is to consider the approxima-
tion that this vector can be related to the Si elements of the Poincaré sphere for the case of a
completely polarized light beam. In this graphical representation, the radius of this sphere
is S0, which represents the incident irradiance of the light beam, while Sx is the difference
in radiant energy flux per unit area, or irradiances, between the horizontal Ip and vertical
polarization Is components of the beam. The preference for +45◦ or −45◦ polarization is
given by Sy, and Sz is related to the influence of right or left circular polarization states that
affect light.
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In this way, any polarization state is defined by the vector oriented from the origin at the
center of the sphere to a point on the surface of this sphere according to the following equation:

S2
0 ≥ S2

x + S2
y + S2

z . (7)

When the beam is fully polarized we have the identity and, when the beam is partially
polarized, the square of S0 is greater than the sum of the square of the components Sx, Sy,
and Sz.

Now let usrelate how the light at each point of the polarization pattern is related to its
respective Stokes vector for the case of a dipole magnetic field applied to the plane where
the thin film of ferrofluid is located in Figure 3. As discussed in our previous works [1,14],
ferrofluid particles are oriented by the applied magnetic field, as if forming the field lines
of Figure 3a. For the case of a system with a linear polarizer and linear analyzer, we have
determined that the orientation of the polarization is perpendicular to these field lines. In
this way, light polarization vectors parallel or perpendicular to one of the input or output
elements of the polarizer/analyzer system will be blocked and, consequently, we will
have dark regions in the polarization pattern, as is shown in Figure 3b. Points where the
polarization of the light is at 45◦ in relation to any of the elements of the polarizing/analyzer
system will have maximum light intensity. For the intermediate angles between these two
cases, we will have the light intensity varying according to the projection on a trigonometric
circle that is characteristic of harmonic functions.

Magnetochemistry 2022, 8, x FOR PEER REVIEW 5 of 15 
 

 

When the beam is fully polarized we have the identity and, when the beam is par-

tially polarized, the square of S0 is greater than the sum of the square of the components 

Sx, Sy, and Sz. 

Now let usrelate how the light at each point of the polarization pattern is related to 

its respective Stokes vector for the case of a dipole magnetic field applied to the plane 

where the thin film of ferrofluid is locatedinFigure 3. As discussed in our previous 

works [1,14], ferrofluid particles are oriented by the applied magnetic field, as if forming 

the field lines of Figure 3a. For the case of a system with a linear polarizer and linear an-

alyzer, we have determined that the orientation of the polarization is perpendicular to 

these field lines. In this way, light polarization vectors parallel or perpendicular to one 

of the input or output elements of the polarizer/analyzer system will be blocked and, 

consequently, we will have dark regions in the polarization pattern, as is shown in Fig-

ure 3b. Points where the polarization of the light is at 45° in relation to any of the ele-

ments of the polarizing/analyzer system will have maximum light intensity. For the in-

termediate angles between these two cases, we will have the light intensity varying ac-

cording to the projection on a trigonometric circle that is characteristic of harmonic func-

tions. 

 

Figure 3. Diagram of the field lines of a magnetic dipole with linear polarization orientation at 

some points in (a), showing that the polarization of light is perpendicular to the field lines. (b) Im-

age of the light pattern of a magnetic dipole for the ferrofluid sample placed between two crossed 

linear polarizers. In the figures, each number represents a type of linear polarization of light, as 

follows: (1) 45 degrees positive polarization (red), (2) horizontal polarization (green), (3) negative 

45 degrees polarization (orange), (4) vertical polarization (yellow). 

To verify if the light is partially polarized, we set up three different systems with 

this dipolar configuration. The first useda linear polarizer and a linear analyzer, and we 

obtained the image inFigure 4a. The second system used a linear polarizer, the Ferrocell, 

and a circular analyzer oriented to the right, and we obtained the following image in 

Figure 4b. Then, we changed the analyzer to another left-oriented circular polarizer and 

obtained the other image in Figure 4c. 

Figure 3. Diagram of the field lines of a magnetic dipole with linear polarization orientation at some
points in (a), showing that the polarization of light is perpendicular to the field lines. (b) Image of
the light pattern of a magnetic dipole for the ferrofluid sample placed between two crossed linear
polarizers. In the figures, each number represents a type of linear polarization of light, as follows:
(1) 45 degrees positive polarization (red), (2) horizontal polarization (green), (3) negative 45 degrees
polarization (orange), (4) vertical polarization (yellow).

To verify if the light is partially polarized, we set up three different systems with
this dipolar configuration. The first useda linear polarizer and a linear analyzer, and we
obtained the image in Figure 4a. The second system used a linear polarizer, the Ferrocell,
and a circular analyzer oriented to the right, and we obtained the following image in
Figure 4b. Then, we changed the analyzer to another left-oriented circular polarizer and
obtained the other image in Figure 4c.
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Figure 4. (a) Image of the linear polarization of a magnetic dipole. (b) Image of the polarization
pattern of light with the same dipole, but with a linearly polarized light input and analyzed with
a right-hand circular polarizer. (c) Image of the polarization pattern of light with the same dipole,
but with a linearly polarized incoming light and analyzed with a left circular polarizer. In order
to emphasize the polarization pattern, we have diagram (d) for the case shown in (a), the diagram
in (e) for the case (b) and the diagram in (f) for the case in (c). Circular polarization patterns are
complementary. With this experiment, we realized that the light that passes through the ferrofluid
layer is partially polarized.

To emphasize the main differences between the three patterns, we made diagrams
of Figure 4d–f. The first point we notice is the intensities of the light patterns for the case
involving circular analyzers. Another interesting aspect is that we have an alternation in
the most intense regions with circular polarization when compared to the case of linear
polarization shown in Figure 4d; in addition, the light patterns obtained with the analyzers
with circular polarization are complementary, as we can see in the diagrams of Figure 4e,f.
With these observations, we can conclude that linearly polarized light becomes partially
polarized when passing through ferrofluid, with linear and circular components, depending
on the orientation of the magnetic field.

Considering the ideal cases of light polarization shown in the previous light patterns
with the numbers 1, 2, 3, 4 for linear polarization and 5 and 6 for circular polarization, we
present Figure 5 with the Stokes vectors for the ideal cases of polarization. In order to find
the partial polarization cases in our system with ferrofluids, we will now analyze some
Mueller matrices operating on some input Stokes vectors.
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Figure 5. Stokes vectors and Poincaré sphere for the light polarization observed in the pattern of a
dipolar magnetic field for a Ferrocell. Each number represents a type of light polarization, as follows:
(1) 45 degrees positive polarization, (2) horizontal polarization, (3) negative 45 degrees polarization,
(4) vertical polarization, (5) right-hand circular polarization, and (6) left-hand circular polarization.

3. Mueller Matrices and Light Patterns

The Mueller matrix describes the Stokes vector after the interaction with matter, and
the interaction between light and the sample for the case of the Mueller matrix and Stokes
vector is represented by the linear transformation of an incident Stokes vector S0 to an
outgoing Stokes vector S1 due to the 4 × 4 Mueller matrix M, as follows:

S1 = M·S0 ⇒ S1 =


m11 m12
m21 m22

m13 m14
m23 m24

m31 m32
m41 m42

m33 m34
m43 m44

S0. (8)

In order to study the effects of the polarization of light in a thin film of ferrofluid
for a radial field manipulating Stokes vectors, we use a matrix that simulates a radial
polarizer [17] for the case of radially symmetrical magnetic fields for the angle θ and the
parameter q, such as in the following case of a monopolar magnetic field:

M1 =
1
2


1 cos(2qθ) sin(2qθ) 0

cos(2qθ) cos (2qθ)2 sin(2qθ) cos(2qθ) 0
sin(2qθ) sin(2qθ) cos(2qθ) sin (2qθ)2 0

0 0 0 0

 (9)

We start by simulating the case where the light incident on the Ferrocell is left circularly
polarized, represented by the Stokes CircL vector, and the analyzer is a right homogeneous
circular polarizer A2, for the case of a symmetrical magnetic field centered at the magnet,
as follows:

CircL =


1

0
0
−1

, A2 =
1
2


1 0
0 0

0 1
0 0

0 0
1 0

0 0
0 1

. (10)
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The corresponding output Stokes vector has a right circular polarization that is attenu-
ated to a quarter of the initial value, represented in the polar plot of Figure 6a, considering
an angular variation with a fixed radius. This can be verified by the experiment, with a
region of white-colored maximum intensity around the magnet shown in Figure 6b.

S1 = A2·M1·CircL⇒ S1 =


1
4
0
0
1
4

. (11)
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Figure 6. Polar plot for the Stokes vector intensity parameter S1 in (a) of Equation (11). (b) Polarization
image obtained with a Ferrocell for an incoming light circularly polarized to the left and analyzed
with a circular polarizer to the right.

It is interesting to note that circularly polarized light switches from left polarization to
right polarization after passing through the Ferrocell, as in the case of polarization inversion
for the reflection of waves of circularly polarized light.

The effects of polarization depend on the strength of the field, and we can have the
same polarization of light in the region defined by this circumference for a monopolar field
with the magnet at the center of the cell, or for a field that is formed by a magnetic ring
with poles located on each side face of the ring. The difference between each case will be
restricted to the intensity in the radial direction.

In this way, circular polarization can also be seen in the case of a magnet in the form of
an axially magnetized ring, as shown in Figure 7, which occurs mainly in the region close
to the ring, where we have the maximum field strength.

Now let us apply this Mueller matrix to the case of incidence of a linearly polarized
light represented by the Stokes vector VerP and with a linear analyzer represented by a
matrix A1, as follows:

VerP =


1
−1
0
0

, A1=
1
2


1 1
1 1

0 0
0 0

0 0
0 0

0 0
0 0

. (12)

For the case of the matrix M1 we have the following Stokes vector as an answer:

S1 = A1·M1·VerP⇒ S1 =


1
4 −

1
4 (cos(θ))2

1
4 (cos(θ))2 − 1

4
0
0

. (13)
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Figure 7. Diagram of the magnetic ring with field lines on the Ferrocell (a). Image of the experiment
in (b) taking as its input the light circularly polarized to the left and analyzed with a polarizer to
the right.

The parameter I of the Stokes vector S1 can be compared with the experimental result
obtained in our experiment, as shown in the Figure 8, in which the ferrofluid sample is in
the presence of a magnet with one of the poles at the center of the Ferrocell, known as a
monopolar configuration. The ferrofluid is between two crossed linear polarizers. The light
pattern obtained in Figure 8a is in the form of four luminous lobes separated by two crossed
isogyres. The region marked by the green circles is the region where the light intensity
is measured for all angles. In Figure 8b, there is a graph in polar coordinates comparing
experimental data of light intensity (points) with Malus’ law represented by the red line.
This case is similar to the case of polarization of light which gives us Malus’ law for an
angular variation within a closed circle [16].

We have already seen that in the case of a magnetic dipole with two crossed linear
polarizers, we have a pattern of light polarization with eight luminous lobes with radial
symmetry and formation of hyperbolic isogyres. The limiting case would occur when the
hyperbolas become lines. In practice this would correspond to the center of the magnetic
dipole crossing the thin film layer of ferrofluid. This is difficult to do because of fluid
leakage. However, we can obtain an equivalent configuration using themagnetic field
of one sextupole of Figure 9. A sextupole magnetic field consists of six magnetic poles
(Figure 9a) placed in an alternating arrangement of north and south poles arranged around
an axis. We used this arrangement to obtain the luminous pattern that is shown in Figure 9b,
in which we have vertically polarized light passing through the ferrofluid, which was then
analyzed with a horizontal linear polarizer.
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Figure 8. Checking Malus’ law using a Ferrocell. The ferrofluid sample is in the presence of a
magnet with one of the poles at the center of the Ferrocell, known as a monopolar configuration. The
ferrofluid is between two crossed linear polarizers. The light pattern obtained in (a) is in the form of
four luminous lobes separated by two crossed isogyres. The region marked by the green circles is the
region where the light intensity is measured for all angles. (b) Graph in polar coordinates comparing
experimental data of light intensity (points) with Malus’ law represented by the red line.
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The result obtained with the Stokes Ssextupole vector confirms the formation of the 

eight luminous lobes of Figure 9c for the parameter I of Equation (15), and the limiting 

case of straight isogyres of Figure 9d, already discussed for the dipole case. 

In Figure 10, we present a direct comparison between the results obtained with the 

experiment for the case where we applied a sextupolar field in the Ferrocell and the 

Figure 9. (a) Line intensity diagram of a sextupolar magnetic field. (b) Six magnetic disks forming a
sextupolar field in the ferrofluid sample for a pair of crossed linear polarizers. (c) Polar graph of the
intensity of the Stokes vector S for the Mueller matrix, simulating a grating of a sextupolar magnetic
field, which is equivalent to what was observed for the light intensity in the experiment, as marked
with the circle with the green dashed line in (b). In (d), there is the graph of the isogyres lines of a
sextupole, which uses Equations (2) and (3) to explain the isogyres for a dipole for y = 0.0 mm.
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Now, due to the symmetry of the magnetic field, we have considered the parameter
q = 2 for the Mueller matrix M1, and we have obtained the following Stokes vector Ssextupole:

M1 =
1
2


1 cos(4θ) sin(4θ) 0

cos(4θ) cos (4θ)2 sin(4θ) cos(4θ) 0
sin(4θ) sin(2qθ) cos(4θ) sin (4θ)2 0

0 0 0 0

, (14)

Ssextupole = A1·M1·VerP⇒ S1 =


1
4 −

1
4 (cos(4θ))2

1
4 −

1
4 (cos(4θ))2

0
0

. (15)

The result obtained with the Stokes Ssextupole vector confirms the formation of the eight
luminous lobes of Figure 9c for the parameter I of Equation (15), and the limiting case of
straight isogyres of Figure 9d, already discussed for the dipole case.

In Figure 10, we present a direct comparison between the results obtained with the
experiment for the case where we applied a sextupolar field in the Ferrocell and the
simulation for this same case obtained with the intensity parameter I of the Stokes vector
of Equation (15).
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Figure 10. Intensity plots for linear polarization when applying a sextupolar magnetic field to the
ferrofluid. In (a) we have the graph obtained from the experiment with the luminous pattern of
Figure 9b in the region demarcated with the circumference made with the green dashed line. In
(b) we have the intensity graph obtained with the Stokes vector of Equation (15).

Although the Mueller matrix reasonably represents the in-plane angular distribution
of the Ferrocell thin film, it does not account for cell thickness. This can be observed for the
case of light polarization in the case of the magnetic dipole, or in the case of the sextupolar
magnet, when the ferrofluid interacts with circularly polarized light, as shown in Figure 11.
In Figure 11a, we see the light pattern of polarization, in which a linearly polarized light
is injected into the ferrofluid, leaving it partially circularly polarized. In the patterns of
Figure 11, just as in Figure 4, we see by contrast that the light is blocked in some parts
and not in others. The same happens with the light pattern shown in Figure 11b. The
respective intensity parameters of these Stokes vectors are shown in Figure 11c,d. We can
see from the experiment that the patterns are approximately complementary, as we have
already mentioned for the case of the luminous pattern obtained with the magnetic dipole
in Figure 4, in such a way that the polarization “petals” of Figure 10 alternate, with four
maximum intensities, as shown in the polar graphs of Figure 11c,d.
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Figure 11. Circular polarization in Ferrocell for a sextupolar magnetic field. The light entering the
Ferrocell is linearly polarized light. In (a) we have the light that emerges from the Ferrocell being
analyzed with a circular polarizer to the right, and in (b) the light is analyzed with a circular polarizer
oriented to the left. In (c) we have the graph in polar coordinates of the light intensity for the case of
the image in (a), while in (d) we have the graph in polar coordinates for the intensity of light for the
case in (d).

Following the experimental results, the Stokes vectors representing the polarization
plots of Figure 11c for right circular polarization Sred, and Figure 11d for left circular
polarization Sblue could be represented by the following Equation (16):

Sred = a


1−

{
2 cos[2(θ + 22.5)]2

}
Q
U
1

, Sblue = a


1−

{
2 cos[2(θ − 22.5)]2

}
Q
U
−1

. (16)

This may be related to the fact that the dichroism is linked to the diffraction grating
pattern with spatial orientation in a plane, while the Ferrocell thickness is linked to the
elastic scattering of light, which gives rise to polarization states different from those of the
incident beam. Thus, for a thickness inthe order of tens of 10 µm, the ferrofluid particles
extract a part of the incident energy and scatter it in all directions, at the same frequency as
the incident beam, as if it were some kind of birefringence. For future work, we suggest the
analysis of the use of Mueller matrices that represent quarter-wave plates that consist of a
spatially variable retarder with phase shift and optical axis orientation.

Graphs in polar coordinates of left and right circular light polarization are shown
in Figure 12a,b, for three different data sets of patterns similar to the case observed in
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Figure 11a,b. These curves are further from the origin than in the case of linear polarization,
as shown in Figure 12c, which indicates a lower contrast between the light and dark
regions in the polarization patterns. As there is a coexistence of different types of light
polarization, we note that, for the case of linear polarization, we have greater amplitude
between the maximum and minimum values of intensity when compared to the case of
linear polarization, as can be seen in Figure 12.
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Figure 12. Graphs in polar coordinates of the circular polarization of light to the right (a) and to
the left (b), for three data sets each represented with the color red, black, and blue. (c) Comparison
between the polarization of light between the linear case represented with the curve in blue and the
case of circular polarization represented in red.

4. Conclusions

We have studied the polarization of light in a thin film of ferrofluid subjected to a
magnetic field using the formalism of the Mueller matrix. As far as we know, for the first
time, we presented through experiments how to relate light patterns with Stokes vectors
and how they can be operated by Mueller matrices related to the magnetic field applied to
the ferrofluid. We have observed that the changes in the dichroism of this system can be
monitored throughout the sample, allowing the visualization of magneto-optical effects
mainly for linear polarized light, and the effects of circular polarized light are related
to birefringence.

In our modeling process, we see that a crucial point is the description of the magnetic
field in an angular coordinate system that can be represented in a matrix form, because the
nanoparticles will align with the magnetic field.

Compared with experimental systems where the Mueller calculation is usually applied,
our experiment allows a direct visualization of the polarization phenomena, in addition
to a flexibilization of the patterns generated due to the formation of diffraction gratings
for different magnetic field configurations. Furthermore, we observed in this work that
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different types of light polarization can coexist, indicating that the ferrofluid film forms a
more complex structure than a simple diffraction grating when a magnetic field is applied.

Supplementary Materials: The following supporting information can be downloaded at: https://iframe.
videodelivery.net/6ce692827f8149c2948bd30531ccae1b “Light Polarization by Ferrofluid Film Using Jones
Calculus”.
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