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Abstract: The aim of the present study was to develop magnetic liposomes (MLPSs) incorporating
an agent with the ability to act both as a photosensitizer and as a fluorophore for optical imaging.
We therefore aimed to develop a preparation method for indocyanine green (ICG)-containing MLPS,
followed by a detailed characterization of their physicochemical and magnetic properties. The ability
of intravenously administered ICG-containing MLPSs to accumulate in tissue exposed to a constant
magnetic field was tested in vivo. Using the thin film hydration method, 170-nm aqueous liposomes
containing magnetic nanoparticles and indocyanine green were synthesized, followed by a detailed
characterization of their physicochemical properties. It was shown that ICG-containing MLPSs
possess the properties of T2 contrast for MRI. Apart from this, ICG-containing MLPSs were clearly
visualized using near infrared fluorescent imaging, which was demonstrated in in vivo experiments
showing an accumulation of ICG-containing MLPSs in the zone of magnetic field distribution
produced by a previously implanted constant magnet in the tissue. Although not directly tested in
the present study, therapeutic applications of ICG-containing MLPSs include magnetic hyperthermia,
as well as the photodynamic, photothermal, and photoacoustic effects of ICG. Taking into account
the fact that liposomes, iron oxide nanoparticles, and ICG are all FDA-approved agents, it is highly
likely that ICG-containing MLPSs could be successfully translated to clinical practice.

Keywords: magnetic liposomes; fluorophores; magnetically controlled delivery

1. Introduction

Targeted drug delivery using nano-sized carriers emerged as a clinically relevant
concept in the late 1980s [1,2], resulting in the rapid development of the field over the past
three decades. Targeted delivery results in preferential accumulation of the drug in the
area of interest, thereby both increasing its therapeutic efficacy and minimizing potential
side effects on unaffected tissues [3–5]. A prototypical platform for targeted delivery is
composed of a nanoparticle with an incorporated or immobilized drug. Drug delivery
to the tumor tissue is achieved by using two complementary strategies, i.e., passive and
active targeting. In passive targeting, drug-loaded nanoparticles accumulate within the
tumor mass because of the increased permeability of atypical tumor vasculature associated
with diminished lymphatic drainage [6]. While maintaining the advantage of passive
targeting, active delivery could potentially provide extra tissue selectivity by means of
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anchoring the nanoparticles carrying targeting ligands to the specific molecular markers
expressed on cancer cells [7]. Although the most impressive results for targeted drug
delivery were obtained in the field of oncology, the concept was successfully extrapolated
to other local pathologies, such as myocardial ischemia–reperfusion injury [8], infectious
processes [9], and inflammation [10]. Another major development occurred with the intro-
duction of theranostics, which is a combination of targeted drug delivery and diagnostic
imaging [11,12]. For attaining this purpose, the typical nanoplatform is additionally supple-
mented with an imaging agent, which could be a radioisotope, quantum dot, MRI contrast
agent, or fluorescent label.

A wide variety of materials were used to prepare nanoparticles for targeted drug
delivery (for review, see [13,14] and references therein), with the initial enthusiasm about
inorganic nanocarriers progressively changing to the appreciation of the advantages of
organic materials, i.e., lipid-, protein-, and polysaccharide-based nanocarriers. Among
lipid-based nanoparticles, liposomes are considered the most commonly used type for
delivery of both hydrophilic and hydrophobic drugs [15]. Compared with other organic and
especially inorganic nanoparticles, liposomes are characterized by superior drug-loading
profiles, excellent biocompatibility, ease of preparation, and low immunogenicity. On one
hand, surface modification of liposomes with polyethylene glycol offers the advantage
of making them invisible for the macrophages of the reticuloendothelial system, thereby
increasing their residence in the circulation. On the other hand, outer liposomal membrane
could be doped with different targeting ligands, which is used for active liposome-mediated
targeting [16]. These liposome advantages contributed to the successful clinical approval of
at least 15 liposomal drug formulations intended for treatment of cancer, fungal infection,
age-related macular degeneration, and chronic pain [17].

Along with conventional and stealth liposomes, magnetic liposomes (MLPSs) recently
gained significant interest as delivery platforms [18]. MLPSs combine liposomes and
magnetic iron oxide nanoparticles in a single nanosystem [19]. Compared with conventional
liposomes, MLPSs have several advantages. First, given the presence of a strong magnetic
moment, their transport to the area of interest can be additionally guided by the magnetic
field. Second, moderate heating of MLPSs with an external alternating magnetic field may
contribute to a controlled drug release instead of the slow and uncontrolled release observed
in conventional liposomes [20]. Third, more intense external alternating magnetic field-
mediated heating of MLPSs (e.g., up to 43–45 ◦C) can be used for the thermal destruction
of tumor cells, providing an additional physical mode of antitumor action. Meanwhile, the
temperature-controlled release of a chemotherapeutic agent and hyperthermia itself may
synergize and, therefore, provide an enhanced antitumor effect [21,22]. Fourth, MLPSs
can be used for MRI-assisted theranostics because iron oxide nanoparticles are known to
exhibit a T2-shortening effect, resulting in a potent contrasting ability [23].

Different molecules were incorporated into MLPSs for theranostic applications [19].
In the majority of published studies, MLPSs were filled with various anticancer agents
such as doxorubicine [22], methotrexate [24], cisplatin [25], and gemcitarabine [20]. In
addition, there are several reports on the properties and applications of MLPSs containing
photosensitizers [26,27] and small interfering RNA [28].

The aim of the present study was to develop MLPSs incorporating an agent with
the ability to act both as a photosensitizer and as a fluorophore for optical imaging. In
theory, such a construction should improve the functionality of theranostic MLPSs since
they would be able to be visualized by two different modalities, MRI and optical imaging.
Among several candidates, we selected indocyanine green (ICG) for loading into MLPSs.
ICG is an FDA-approved agent for fluorescent angiography [29,30]. In addition, ICG
behaves as a photosensitizer and photothermal agent [31]. We therefore aimed to develop a
preparation method for ICG-containing MLPSs, followed by a detailed characterization of
their physicochemical and magnetic properties. Besides, we were interested in testing the
ability of intravenously administered ICG-containing MLPSs to accumulate in the tissue
exposed to a constant magnetic field in vivo.
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2. Materials and methods
2.1. Synthesis of Iron Oxide Magnetic Nanoparticles

All chemicals were purchased from Sigma-Aldrich (St. Louis, MO, USA). Iron oxide
magnetic nanoparticles (MNPs) were synthesized by coprecipitation of ferrous and ferric
iron ion solutions as described earlier [32]. Briefly, FeSO4, Fe2(SO4)3, and ammonium
oxalate were successively dissolved in 250 mL of distilled water in a molar ratio of 1.0:1.0:0.1.
Next, a solution of ammonia in water in a ratio of 1:1 was gradually added to the reaction
mixture under intensive stirring until the pH had increased to 8.0. The resulting MNPs
were washed five times with distilled water, each time followed by magnetic separation
using a permanent magnet for 15 min and then redispersed at a concentration of 10 mg/mL,
followed by stabilization with sodium citrate (0.1% by weight of magnetite).

2.2. Preparation of ICG-Containing Magnetic Liposomes

Magnetic liposomes were prepared using the thin film hydration approach [33]. Briefly,
75 mg of soy lecithin was dissolved in 15 mL of chloroform, followed by the addition of
10 µL of α-tocopherol acetate (vitamin E). The mixture thus prepared was transferred into
a 2000 mL round-bottom flask. The organic solvent was removed by rotary evaporation
(RE-5000 Rotary Evaporator, Henan Lanphan Industry Co., Zhengzhou, China) using a
vacuum pump (Labport N 810, KNF, Freiburg im Breisgau, Germany) without heating until
a thin film was formed. The resulting thin lipid film was dried in a water bath at 35 ± 5 ◦C
until it became transparent. Next, the resulting dry film was hydrated with an aqueous
suspension of MNPs containing 0.9% NaCl and ICG at a concentration of 1 mg/mL. The
hydration process was continued until the lipid film was completely washed off the walls
of the flask. After hydration, the liposomal form was transferred into a polypropylene tube
and sonicated with an ultrasonic dispergator (UZG13-0.1/22, VNIITVCH, St. Petersburg,
Russia) at a frequency of 20 kHz for 25–30 min to obtain unilamellar ICG-containing MLPSs
(MLPSICG). The scheme of MLPSICG synthesis is shown in Figure 1. Such an approach
resulted in the formation of aqueous magnetoliposomes incorporating both MNPs and ICG
in the membrane-enveloped hydrophilic core.

Magnetochemistry 2022, 8, x FOR PEER REVIEW 4 of 21 
 

 

 
Figure 1. Scheme of the synthesis of aqueous MLPSICG. 

2.3. Characterization of MLPSICG 
The size distribution and zeta potential of MLPSICG were studied in an aqueous me-

dium by dynamic light scattering (DLS) and electrophoretic light scattering (ELS), respec-
tively, using a Zetasizer Ultra (Malvern Instruments Ltd., Worcestershire, UK). 

The static magnetic characteristics of MLPSICG were analyzed in air at a temperature 
of 25 °C using a vibrating sample magnetometer (Lake Shore 7410, Lake Shore Cryotronics 
Inc., Westerville, OH, USA). 

Microphotographs of “large” multilayered liposomes were obtained using a light mi-
croscope (Nikon Eclipse E200, Nikon Inc., Tokyo, Japan). MLPSICG size and morphology 
were assessed by transmission electron microscopy (TEM; JEM-2010, JEOL, Tokyo, Japan). 

The content of crystalline phases in the samples was studied on an automatic powder 
diffractometer (D2 PHASER, Bruker AXS, Billerica, MA, USA) using the following set-
tings: X-ray tube radiation—CuKα1+2, tube operation mode—30 kV/10 mA, position-sen-
sitive detector, reflection geometry, Bragg–Brentano focusing scheme, T = 25 °C, air at-
mosphere. The phases were identified using the PDXL-2 software package (Rigaku, To-
kyo, Japan) using the Powder Diffraction File (PDF-2, International Center for Diffraction 
Data) database. To obtain crystalline samples, MLPSs were preliminarily lyophilized by 
freeze drying (VaCo2, ZirBus, Bad Grund, Harz, Germany) at a temperature of −50 °C and 
an absolute pressure of 3 Pa. To avoid destruction of liposomes at low temperatures, a 
cryoprotectant, glucose, was added in an amount of 10 wt % [34]. 

The Mössbauer measurements were performed in absorption geometry at room tem-
perature on a commercial Mössbauer spectrometer (WISSEL, Ortenberg, Germany). The 
source of Mössbauer radiation was 57Co in a chromium matrix with an activity of 30 mCi. 
The parameters of the isomeric chemical shift obtained from processing the experimental 
spectra are given relative to the standard α-Fe sample. 

2.4. In Vitro MRI Relaxivity Measurements 
In vitro MR imaging of the MLPSICG was performed using 9.4 T NMR spectrometer 

(Bruker Avance III 400 WB, Uster, Switzerland). The MR contrast properties of the MLPSs 
were evaluated using 1.0% agarose matrix phantoms which simulate human soft tissue 
[35]. The content of MNPs and MLPSICG in the agarose matrix was 0.1 mg/mL. This con-
centration was chosen after a series of preliminary experiments as giving the optimal color 
intensity. Layers of pure agarose and agarose with 1 cm-thick samples were alternately 
poured into a 15 mL polypropylene tube. Although superparamagnetic nanoparticles are 
almost exclusively T2 contrast agents, for comparison, longitudinal (T1) relaxation times 
were also determined. T1- and T2-weighted imaging was performed with the following 
parameters: repetition time = 2500 ms, slice thickness = 1 mm. Echo time was 16.2 and 11.0 
ms for T1- and T2-weighted images, respectively. The resulting data were converted to 
HDR format and analyzed using the free MRIcro software. Staining intensity was assessed 
using 11 sections for each sample (6 agarose matrix controls, 5 sample sections). 

Figure 1. Scheme of the synthesis of aqueous MLPSICG.

2.3. Characterization of MLPSICG

The size distribution and zeta potential of MLPSICG were studied in an aqueous
medium by dynamic light scattering (DLS) and electrophoretic light scattering (ELS),
respectively, using a Zetasizer Ultra (Malvern Instruments Ltd., Worcestershire, UK).

The static magnetic characteristics of MLPSICG were analyzed in air at a temperature
of 25 ◦C using a vibrating sample magnetometer (Lake Shore 7410, Lake Shore Cryotronics
Inc., Westerville, OH, USA).

Microphotographs of “large” multilayered liposomes were obtained using a light
microscope (Nikon Eclipse E200, Nikon Inc., Tokyo, Japan). MLPSICG size and morphology
were assessed by transmission electron microscopy (TEM; JEM-2010, JEOL, Tokyo, Japan).

The content of crystalline phases in the samples was studied on an automatic powder
diffractometer (D2 PHASER, Bruker AXS, Billerica, MA, USA) using the following settings:
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X-ray tube radiation—CuKα1+2, tube operation mode—30 kV/10 mA, position-sensitive
detector, reflection geometry, Bragg–Brentano focusing scheme, T = 25 ◦C, air atmosphere.
The phases were identified using the PDXL-2 software package (Rigaku, Tokyo, Japan) us-
ing the Powder Diffraction File (PDF-2, International Center for Diffraction Data) database.
To obtain crystalline samples, MLPSs were preliminarily lyophilized by freeze drying
(VaCo2, ZirBus, Bad Grund, Harz, Germany) at a temperature of −50 ◦C and an absolute
pressure of 3 Pa. To avoid destruction of liposomes at low temperatures, a cryoprotectant,
glucose, was added in an amount of 10 wt % [34].

The Mössbauer measurements were performed in absorption geometry at room tem-
perature on a commercial Mössbauer spectrometer (WISSEL, Ortenberg, Germany). The
source of Mössbauer radiation was 57Co in a chromium matrix with an activity of 30 mCi.
The parameters of the isomeric chemical shift obtained from processing the experimental
spectra are given relative to the standard α-Fe sample.

2.4. In Vitro MRI Relaxivity Measurements

In vitro MR imaging of the MLPSICG was performed using 9.4 T NMR spectrometer
(Bruker Avance III 400 WB, Uster, Switzerland). The MR contrast properties of the MLPSs
were evaluated using 1.0% agarose matrix phantoms which simulate human soft tissue [35].
The content of MNPs and MLPSICG in the agarose matrix was 0.1 mg/mL. This concen-
tration was chosen after a series of preliminary experiments as giving the optimal color
intensity. Layers of pure agarose and agarose with 1 cm-thick samples were alternately
poured into a 15 mL polypropylene tube. Although superparamagnetic nanoparticles are
almost exclusively T2 contrast agents, for comparison, longitudinal (T1) relaxation times
were also determined. T1- and T2-weighted imaging was performed with the following
parameters: repetition time = 2500 ms, slice thickness = 1 mm. Echo time was 16.2 and
11.0 ms for T1- and T2-weighted images, respectively. The resulting data were converted to
HDR format and analyzed using the free MRIcro software. Staining intensity was assessed
using 11 sections for each sample (6 agarose matrix controls, 5 sample sections).

2.5. In Vitro Fluorescent Measurements

Fluorescent properties of MLPSICG were studied using an Ivis Lumina LT fluorescence
tomograph (PerkinElmer, Waltham, MA, USA). To register ICG fluorescence, a 745 nm
excitation filter was used, and an extraction filter for ICG. The samples studied were:
normal saline (background signal), aqueous solution of ICG, aqueous solution of ICG
plus albumin in an equivalent amount by weight, aqueous suspension of MLPSs, and a
suspension of MLPSICG. The measurements were performed in triplicate. Fluorescent
signals were digitized using Living Image 4.5.5 software (PerkinElmer Inc., Waltham,
MA, USA).

2.6. In Vivo and Ex Vivo Fluorescent Imaging

The study was performed on outbred laboratory male mice of the ICR (CD-1) strain,
weighing 25 ± 3 g. Animals were randomized into two groups (n = 3 in each group):
(1) controls, which were injected with 200 µL of normal saline, and (2) MLPSICG, which
were subjected to magnet implantation followed by the administration of MLPSICG. In
the latter group, the animals were anesthetized with isoflurane, after which a permanent
neodymium magnet was implanted in the muscle tissue of the thigh. In all experiments, a
cylindrical axially magnetized Nd-Fe-B alloy magnet, 3 mm in length and 2 mm in diameter,
was implanted. The magnet was coated with anticorrosion nickel alloy. A three-dimensional
reconstruction showing the location of the magnet and the fluorescence zone was obtained
using the multimodal imaging system, IVIS SpectrumCT (PerkinElmer Inc., Waltham, MA,
USA). The residual magnetic induction of the permanent magnet was 1.17–1.21 T, the
magnetization coercive force >876 kA/m, and the induction coercive force >955 kA/M.
The animals in the MLPSICG group were treated with 200 µL of MLPSICG suspension.
The introduction of substances in both groups was carried out through the tail vein. The
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animals were under inhalation anesthesia with isoflurane throughout the experiment. After
intravenous administration of either saline or MLPSICG, the animals were placed in a
fluorescent imaging chamber, where inhalation anesthesia with 2% isoflurane and a core
body temperature of 37 ◦C were maintained throughout the experiment. After obtaining
images at 5, 10, 15, 20, 25, and 30 min post-injection, the animals were euthanized by an
overdose of isoflurane for subsequent isolation and fluorescent image analysis of the heart,
lungs, liver, spleen, and kidneys. Analysis of fluorescent signals from selected regions
of interest was processed manually using Living Image 4.5.5 software (PerkinElmer Inc.,
Waltham, MA, USA).

2.7. Statistical Analysis

Statistical processing of the obtained data for relaxivity and fluorescence was per-
formed in GraphPad Prism software using the Mann–Whitney nonparametric U-test. Re-
sults were presented as average (mean) ± standard deviation (SD).

3. Results and Discussion
3.1. Characterization of MLPSICG

Our approach to the synthesis of MLPSICG using thin film hydration is character-
ized by an appropriate loading efficiency leading to a magnetic moment sufficient for
accumulation of nanoparticles in the area of magnetic field application.

According to DLS, the “large” magnetic liposomes obtained at the stage of thin film
hydration had an average size of about 1.2 µm (Figure 2a). This result corresponds well with
data from direct visualization of MLPSICG using light microscopy (Figure 2c). Subsequent
sonication caused the rearrangement of the liposomes with the formation of MLPSICG
with an average size of about 170 nm (Figure 2a).
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Figure 2. Physicochemical properties of MLPSICG: (a) particle size distribution with dynamic light
scattering before (1) and after (2) sonication; (b) zeta potential distribution; (c) light microscopy
image of “large” liposomes before sonication; (d) light microscopy microphotograph of dried “large”
liposomes; (e) TEM image of MLPSICG. The agglomerated MLPSICG are labeled with red lined
squares. The inset shows two enlarged individual liposomes containing magnetite nanoparticle(s) in
the core (white squares) and lipid shell (white triangles).
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The average zeta potential of the MLPSICG in an aqueous medium as determined
by ELS was −51.35 mV (Figure 2b). This value points to good stability of the synthesized
colloid. Visual inspection of the colloid demonstrated excellent stability for 6 months at a
temperature of +4 ◦C.

Light microscopic examination of the “large” MLPSICG demonstrated their spherical
shape and a size of approximately 1 µm (Figure 2c). When dried, the liposomes “burst”
leaving only a contour of phospholipids (Figure 2d). This fact led us to the conclusion that
in order to obtain TEM images of MLPSICG processed with ultrasound, it is necessary to
use a protector. For this purposed, we used glucose. TEM imaging showed the spherical
shape of the MLPSICG and yielded their size comparable to that determined with DLS
(Figure 2e). It can also be observed that each individual MLPSICG contains magnetite
nanoparticle(s) inside. The figure also shows agglomerates consisting of several adherent
liposomes. This is due to the fact that a certain time elapsed from the moment of synthesis
to the analysis of TEM images, during which some of the liposomes agglomerated.

The study of the magnetization reversal curves of the MLPSICG lyophilizate made
it possible to determine a saturation magnetization equal to 5.36 emu/g (Figure 3a). This
value for magnetic fluids is 10–12 emu/g [36], which makes it possible to predict the
accumulation of MLPSICG in the area of magnetic field action. The plot of the dependence
of the magnetic moment on the field strength in the zone of low field values shows a coercive
force equal to 40 oersteds (Figure 3b). According to Bertotti (1998) [37], liposomes are soft
magnetic materials with a relatively low coercive force. After the magnetic liposomes burst
due to unprotected drying, whatever properties are measured are not those of liposomes,
but rather the properties of the fragments and spilled contents.
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(d) X-ray phase analysis of MLPSICG; (e) Mössbauer spectra of a sample of MLPSICG.
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The X-ray diffraction pattern of the MLPSICG shows the presence of magnetite
[Fe3O4] and goethite [FeO(OH)], as well as the initial magnetic nanoparticles that were
used in the synthesis of MLPSICG (Figure 3c). At the same time, the X-ray pattern also
contains a crystalline phase of glucose, which was used as a cryoprotectant for sam-
ple lyophilization, and the more complex compounds of maskagnit [(NH4)2SO4] and
morite [(NH4)2Fe(SO4)2 × 6H2O], which are by-products from the synthesis (Figure 3d).
Among all the phases detected, only magnetite is magnetic. These by-products were not re-
moved due to the difficulty of their removal when combined with phospholipids compared
with when they are combined with pure magnetite nanoparticle.

To quantitatively determine the phases of iron compounds in the MLPSICG, Möss-
bauer spectra were obtained (Figure 3e). The results of spectral analysis and decomposition
into subspectra are shown in Table 1.

Table 1. Results of processing MLPSICG Mössbauer spectra.

N Substance Chem. Shift
mm/s

Quadrupole
Splitting

mm/s

Ultrafine
Magnetic Field, Tl

Proportion of Iron
Atoms

%

1 Fe+3 1st state 0.37 ± 0.02 0.56 ± 0.05 — 20.3
2 Fe+3 2nd state 0.31 ± 0.07 0.67 ± 0.12 — 17.3
3 Fe3O4 (A) 0.32 ± 0.02 0.04 ± 0.04 46.108 ± 0.166 23.4
4 Fe3O4 (B) 0.38 ± 0.03 0.03 ± 0.06 43.068 ± 0.307 28.0
5 α–FeOOH 0.53 ± 0.05 0.21 ± 0.11 37.099 ± 0.434 11.0

In the samples under study, iron was found in five nonequivalent environments. The
first two states were non-magnetic, with the oxidation state Fe+3. Unfortunately, it was not
possible to identify these states more accurately. The percentage of iron within these two
states is 37.6%. The third and fourth states of iron were magnetite, with reduced values of
the hyperfine magnetic field. The proportion of iron in the magnetite state is 61.3%. The
fifth state corresponds in parameters to iron hydroxide α-FeOOH. The proportion of iron
in α-FeOOH is equal to 11%.

In general, the amount of magnetite in the samples is quite high. In this case, the
relatively low saturation magnetization of the MLPSICG is explained by the moderate
extent of MNP incorporation into the MLPSICG.

3.2. Magnetic Resonance Contrast Properties of MLPSICG

It was long recognized that iron oxide nanoparticles possess superparamagnetic
properties that allow them to be used as T2 contrast agents for MRI. MLPSICG could also
be potentially used for MR imaging owing to the presence of MNPs in their core. In order
to test the MR-contrasting properties of MLPSICG, we determined their T1 and T2 values
versus the intact agarose matrix, as well as the transverse relaxivity r2 (Figure 4). The
average T1 time for a 1% agarose gel was 2672 ± 35 ms (Figure 4a), which is significantly
greater than the analogous value for biological tissue. Presumably, this is due to the fact that
the gel contains 99% water, for which this parameter is equal to 4500 ms. The T2 value for the
agarose gel was 53.0 ± 0.7 ms (Figure 4b), which corresponds well with the value typical of
soft tissues. For example, the T2 time was estimated at 22.40 ± 5.61 ms and 36.36 ± 8.77 ms
for normal glandular tissue and fat, respectively [38]. Our results show that MLPSICG had
no effect on T1 but significantly decreased the T2 value, i.e., they demonstrate the activity
of a negative contrast agent. These data are in good agreement with available evidence on
MLPSs [23]. The obtained value of r2 for MLPSICG is 43.8 mM−1 × s−1, which is within the
range reported in the literature for MLPSs, that is, from 60 to 323 mM−1 × s−1 [24,39–41].
Multiple factors are known to influence the value of the transverse relaxivity of MNPs [23].
First, most studies demonstrated an increase in r2 after the encapsulation of MNPs into
the lipid membranes. For example, Carvallo et al. showed that envelopment of 10-nm
MNPs with egg phosphatidylcholine, cholesterol, and N-[carbonyl-methoxy(polyethylene
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glycol)-2000]-1,2-distearoyl-sn-glycero-3-phosphoethanolamine resulted in an increase in
r2 from 47.4 to 210 mM−1 × s−1 [42]. Second, the r2 value is affected by the composition
of the lipid envelope. It was shown that the presence of cholesterol in the membrane is
associated with decreased r2. Although cholesterol decreases the fluidity of the membrane,
its addition might be useful because it increases the in vivo stability of liposomes. The
preparation of liposomal membrane from unsaturated lipid acyl chains, as well as the
inclusion of a negatively charged lipid into the bilayer, appeared to result in a markedly
increased negative contrast [43]. Finally, PEGylation of the MLPS surface is known to
result in increased hydration of the liposomes and, thus, an elevated r2 [44]. Taking into
account that PEGylation increases the circulatory half-life of liposomes, such a modification
is considered especially beneficial for theranostic applications. However, recent evidence
suggested a certain extent of PEG immunogenicity associated with the formation of anti-
PEG antibodies, resulting in the enhanced clearance of PEGylated liposomes from the
circulation [45]. One promising approach to circumvent this problem might include the
use of biomimetic MNP-containing nanostructures, such as encapsulation in red blood cell
membrane [46]. In conclusion, the measurements of MRI signals confirmed the feasibility
of using MLPSICG as contrast agents for MRI, although this possibility was not validated
in the in vivo settings.
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3.3. In Vitro, Ex Vivo, and In Vivo Fluorescent Properties of MLPSICG

To explore the possibility of using MLPSICG for fluorescence imaging, preliminary
in vitro studies were performed (Figure 5a). The strongest fluorescent signal was registered
in the ICG + human albumin sample, which may be attributed to the previously described
augmentation of fluorescent properties of ICG by albumin [47]. The latter effect is also
relevant to the in vivo fluorescent imaging with ICG. Supporting these findings, the ICG
sample without albumin demonstrated a lower fluorescence intensity than ICG + albumin.
MLPSICG were characterized by slightly lower fluorescence levels compared with the
free ICG solution, probably due to the shielding effect of the lipid membrane and the
absorption of secondary radiation by MNPs. The MNP suspension and blank samples
produced near-zero fluorescence. In this pilot experiment, MLPSICG demonstrated potent
fluorescent properties, which enabled us to draw a conclusion about their suitability for
in vivo fluorescent imaging.
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To monitor the accumulation of MLPSICG in the zone of action of the magnetic field,
a permanent magnet was implanted in the soft tissues of the hip, as shown in Figure 5b.
After intravenous administration of MLPSICG, their accumulation was observed in the
zone of action of the magnetic field of a permanent magnet (Figure 5c). The maximal
level of fluorescence was observed 5 min after injection. Starting from the 10th min
post-injection, the value of fluorescence remained at a relatively stable level. This might
be attributed to the process of rapid MLPSICG destruction taking place during the first
5–10 min after administration and accumulation. It is conceivable that the remaining part of
intact MLPSICG accumulated in the area of interest provides a stable level of fluorescence
in a prolonged manner, until the process of MLPSICG stepwise biodegradation starts.

MLPSICG biodistribution was studied at 30 min after their intravenous administration
in the same animals by means of registering the NIR fluorescence intensity in the main
organs (Table 2, Figure 6). Compared with controls, the greatest level of fluorescence
was observed in the liver, which is indicative of the pronounced liver accumulation of
MLPSICG. This is consistent with previous studies on the biodistribution of lipid-based
ICG-incorporating nanoparticles [48,49]. The liver is considered to be the main organ of
the reticuloendothelial system, with the Kupffer cells being responsible for the recognition
of opsonized foreign particles and their phagocytosis [50]. A moderate but significant
accumulation of MLPSICG was also observed in the lung and spleen which represent
secondary organs of the reticuloendothelial system owing to the activity of alveolar and
splenic macrophages, respectively. The significant elevation of fluorescence intensity in the
kidney might point to the renal excretion pathway of MLPSICG. There was no accumulation
of MLPSICG in the heart, possibly due to the low number of cardiac macrophages and the
strong barrier function of cardiac capillaries.

Table 2. Numerical characteristics of the distribution of fluorescence in organs.

Organs
Full Light Output, p/sec/sr/(µW/cm2) × 10−10

Control MLPSICG Difference

Heart 0.02 0.23 0.21
Lungs 0.10 1.53 1.43
Liver 0.39 28.90 28.51

Spleen 0.04 2.10 2.06
Kidneys 0.03 1.44 1.41
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post-injection, followed by isolation and fluorescent image analysis of the heart, lungs, liver, spleen,
and kidneys.

At present, considerable efforts are directed at examining the properties of various
ICG-incorporating nanoparticles, such as liposomes [51], polymer-based nanoparticles [52],
mesoporous silica nanoparticles [53], iron oxide [54], and calcium phosphate nanoparti-
cles [55]. In general, ICG incorporation into nanoparticles results in minimization of such
drawbacks of free ICG as concentration-dependent aggregation and self-quenching [56],
a short circulatory half-life, limited photostability, and nonspecific binding to protein
targets [57]. Some data on the beneficial effects associated with ICG incorporation into
liposomes are available. For instance, Suganami et al. demonstrated improved imaging
capacity of 191-nm ICG-containing N-(carbonyl-methoxypolyethylene glycol 5000)-1,2-
distearoly-sn-glycero-3-phosphoethanolamine-covered liposomes in the rat model of a
brain tumor compared with aqueous ICG used in the equivalent dose [51]. Using a mouse
model of colon adenocarcinoma, Beziere et al. reported better accumulation of liposomal
ICG within the tumor, as well as a greater photoacoustic signal generated by the liposomal
versus free ICG [48]. It was shown that liposomal encapsulation of ICG resulted not only
in the improved imaging characteristics of the molecule, but also in the optimization of
its therapeutic effectiveness, including photodynamic, photothermal, and photoacoustic
activity. It is well known that ICG demonstrates strong absorbance in the near infrared
(NIR) area and exhibits both photodynamic and photothermal effects after irradiation
with an 808-nm laser [58]. ICG-containing, folic acid-decorated liposomes were used for
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photothermal tumor therapy combined with NIR imaging [59]. In this work, systemic
administration of ICG-incorporating liposomes resulted in a pronounced antitumor effect
in a murine xenograft model of breast cancer. Most notable are the studies on dual-mode
therapy using ICG-containing liposomes. For example, Yan et al. successfully used 115-
nm ICG liposomes functionalized with RGD peptide for combined photodynamic and
photothermal therapy of breast cancer in mice [60]. Using a xenograft murine model of
breast adenocarcinoma, Zhao et al. showed that intratumor administration of PEGylated
liposomes co-encapsulating doxorubicin and ICG resulted in the synergistic photothermal
efficacy of ICG and the chemotherapeutic efficacy of doxorubicine [61]. Thus, ICG encap-
sulation in the liposomes improved both the imaging and therapeutic parameters in this
multifunctional molecule.

Although liposomal ICG was studied in several above-mentioned works, we failed to
identify those studies exploring the properties of ICG-incorporating magnetoliposomes.
One study focused on MNPs containing ICG in their layer-by-layer casein coating. However,
in that study, the nanoparticles were administered orally, demonstrating their resistance
to a highly acidic gastric environment with subsequent accumulation in the intestine [54].
The theranostic platform developed in the present study resembles the above benefits
of liposomal ICG but, owing to the presence of MNPs, it has potential additional func-
tional properties, including magnetic field-guided active targeting, visualization with MRI,
and the hyperthermic destruction of pathological cells after heating with an alternating
magnetic field.

One can anticipate that the MLPSICG synthesized in the present study might be
used for theranostic applications, not only in the field of oncology but also in other areas
of biomedicine. For example, targeted delivery of cardioprotective drugs in the area of
myocardial ischemia–reperfusion resulting in greater infarct-size limitation, while reducing
unwanted side effects [62]. It was shown in mice that gadolinium-doped, fluorescent
100-nm liposomes selectively accumulated in the area of myocardial ischemia–reperfusion
24 h after their administration, which was verified using optical imaging and MRI [63].
In another study, paramagnetic liposomes and micelles were found to be accumulated
in the infarcted area of the heart after permanent coronary occlusion; this enabled the
authors to conclude that the use of contrasting liposomes may ensure targeted delivery
of anti-ischemic and antiremodeling drugs directly to the injured myocardium [64]. In
some cardiovascular disorders, therapeutic targeting aims not simply to salvage injured
tissue, but rather to inactivate the cells demonstrating pathological activity. The latter
scenario is observed in the case of targeted ablation of cardiac ganglionated plexi, which
enhanced activity involved in the initiation and maintenance of atrial fibrillation. One study
demonstrated that external magnetic field-guided accumulation of MNPs with a calcium
chloride payload in the ganglionated plexi resulted in the inhibition of pathological neu-
ronal activity secondary to calcium-mediated neurotoxicity [65]. It follows, therefore, that
magnetoliposomes containing ICG and/or other active molecules represent a promising
theranostic nanoplatform for various biomedical applications.

4. Conclusions

Using the thin film hydration method, 170-nm aqueous liposomes containing magnetic
nanoparticles and indocyanine green were synthesized, followed by a detailed characteri-
zation of their physicochemical properties. It was shown that ICG-containing magnetolipo-
somes (MLPSICG) possess the properties of T2 contrast for MRI. In addition, MLPSICG
were clearly visualized using near infrared fluorescent imaging, which was demonstrated
in in vivo experiments showing the accumulation of MLPSICG in the zone of the mag-
netic field distribution produced by a constant magnet previously implanted in the tissue.
Although not directly tested in the present study, potential therapeutic applications of MLP-
SICG include magnetic hyperthermia, as well as the photodynamic, photothermal, and
photoacoustic effects of ICG. Future studies are needed to address such issues as the ability
of MLPSICG to accumulate in the tumor tissue in vivo, and the presence of antitumor
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effects of MLPSICG based on the magnetic hyperthermia and photodynamic/photothermal
effects of ICG. Taking into account the fact that liposomes, iron oxide nanoparticles, and
ICG are all FDA-approved agents, it is highly likely the MLPSICG could be successfully
translated to clinical practice.
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