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Abstract: In the present study, a ternary magnetic nanocomposite (SiO2/MnFe2O4/ZIF-8) was
synthesized via the embedding of the SiO2/MnFe2O4 nanocomposite within the metal–organic
framework (ZIF-8). The synthesized nanocomposite was characterized using suitable techniques
including FT-IR, XRD, SEM, TEM, VSM, and BET. The nanocomposite showed a high surface area
(SBET = 831 m2·g−1) and superparamagnetic behavior (23.7 emu·g−1). All characterization techniques
confirmed the successful combination of three nanocomposite parts (MnFe2O4, SiO2, and ZIF-8). The
nanocomposite was examined for the adsorption of organic dyes, malachite green (MG) and methyl
red (MR), from aqueous solutions. The adsorption conditions including ionic strength, contact time,
pH, and adsorbent dosage were optimized by studying their change effect. The SiO2/MnFe2O4/ZIF-8
nanocomposite showed high adsorption capacities (1000.03 and 1111.12 mg/g) for the removal of MG
and MR, respectively, from water. The isotherm and kinetics studies indicated that the adsorption of
MG and MR dyes on the surface of the SiO2/MnFe2O4/ZIF-8 nanocomposite followed the Langmuir
isotherm model and pseudo-second-order kinetic model, suggesting the monolayer chemisorption
mechanism. The reusability study of up to five successive cycles indicated the successful reuse
of the SiO2/MnFe2O4/ZIF-8 adsorbent for dye removal from wastewater. The comparison of the
present adsorbent to the previously reported adsorbents indicated that it is a promising adsorbent
for dye adsorption from wastewater and must be investigated in the future for the removal of
additional pollutants.

Keywords: dye adsorption; water treatment; nanomaterials; metal-organic framework

1. Introduction

Nowadays, water pollution represents a major problem in the world [1,2]. Dyes, heavy
metals, and herbicides are the most common biological, inorganic, and organic pollutants in
water and soil [3]. Among all water-existing pollutants, dyes are the most harmful species
to the environment [4]. For example, methyl red (MR) and malachite green (MG) are widely
used in different daily activities such as cosmetics, paper industries, food industries, printing,
and textiles [5,6]. The release of such dyes may lead to serious problems for human health
or the environment due to their high toxicity, mutagenic effect, and carcinogenic effect [7,8].
MR dye has an accumulative tendency due to its low bio-degradability resulting from the
existence of a benzene ring in addition to its mutagenic effect under aerobic environments [9].
In addition, MR can cause digestive tract damage, and skin and eye irritations [10]. MG
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dye has a mutagenic effect and carcinogenic effect, and can cause damage to the human
respiratory system [11]. According to reports from the World Health Organization (WHO),
environmental contaminants found in the soil, air, and water cause 25% of human health
diseases [12]. Subsequently, these dyes must be treated before being released into the en-
vironment. Efforts have been made to develop a rapid, suitable, and effective method for
the removal of dyes from wastewater. The decolorization of dyes has been achieved via
several technologies including ion-exchange [13], reverse osmosis [14], precipitation [15],
degradation [16,17], coagulation [18,19], and adsorption [20–23]. Among all used technologies,
adsorption is the widely used method for dye removal due to the availability of a large number
of adsorbents, its effectiveness, simple operation, low cost, and versatility [24]. Additionally,
the adsorption method is used to separate dyes from waste on an industrial level. However,
classical adsorbents such as zeolite, silica, and carbon have several limitations including the
requirement of a long contact time, low adsorption capacity, difficult regeneration process,
and the resultant secondary pollution [25]. Thus, the magnetic separation methods and large
surface adsorbents have attracted attention to avoid secondary pollution and enhance the
adsorption capacity in addition to the fast processing and ease of reusability and regenera-
tion [26,27]. For example, different adsorbents have been magnetized for the effective removal
of water pollutants such as a magnetic carbonaceous adsorbent for the removal of methy-
lene violet [28], a FeNi3/SiO2/CuS nanocomposite for the removal of Congo red dye [29], a
magnetic-polymer-based nanocomposite for the removal of Congo red dye and hexavalent
chromium Cr(VI) ions [30], and a magnetic-lignin-based adsorbent for the removal of several
azo dyes [31].

Recently, the attractive properties of metal–organic frameworks (MOFs) have attracted
scientists’ attention for application in different fields [32,33]. MOFs are known as porous
coordination polymers with magnificent properties that have allowed their use in different
fields of application including heterogeneous catalysis [34], adsorptive removal of toxic
species [35], membranes [36], magnetism [37], luminescence [38], sensors [39], storage of
gases [40], photocatalysis [41], ion exchange [42], and drug delivery [43].

MOFs are formed from inorganic clusters as building blocks and linkers of organic
ligands to produce an organic–inorganic hybrid of porous architectures [44]. This mixing of
inorganic and organic moieties resulted in the synthesis of more than 10,000 MOF construc-
tions [45]. MOFs have a 3-D network with a high pore volume, homogenous micropores,
and a large surface area. The change in inorganic clusters and organic linkers is used to turn
their shape and pore size from a microporous to a mesoporous scale that gives them specific
attention [46]. MOFs showed an improved adsorption capacity and selectivity toward
different pollutants due to the presence of open sites in their structures. These advantages
of MOFs including large surface area, tunable pore size, and composition diversity [47]
allowed their use as adsorbents for the removal of different types of pollutants such as
benzene [48], naphthalene [49], dyes [50], and sulfur compounds [51]. However, MOFs
have the limitation of difficult separation from aqueous solutions that hinder their applica-
tion as adsorbents. This limitation can be overcome through the magnetization of MOFS
allowing their separation by applying an external magnetic field. The magnetization of
MOFS by filling it with magnetic nanomaterials produces a composite with high adsorption
capacity to remove organic dyes from an aqueous solution, and it is also simpler to separate
from an adsorption environment that prevents secondary pollution. Recent works have
reported the magnetization of MOFs for the efficient removal of water pollutants such as
MiL-101(Fe) modified with magnetic Fe3O4 for the removal of malachite green and methyl
red [52], a Fe3O4@MIL-100(Fe) composite for the degradation of methylene blue [53], and
magnetic amino-functionalized La-MOF (MOF/NH2/Fe3O4) for the removal of methyl or-
ange dye [54]. These magnetic MOFs showed many advantages such as retaining excellent
performance up to several consecutive cycles, exhibiting a significant adsorbent potential,
and the ability to be easily removed from liquid media.

In this work, the ZIF-8 MOF as zeolitic imidazolate frameworks was synthesized
and embedded with SiO2/MnFe2O4 nanoparticles to produce a nanocomposite named
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SiO2/MnFe2O4/ZIF-8. The synthesized nanocomposite was characterized using proper
techniques including Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction
(XRD), transmission electron microscopy (TEM), a scanning electron microscope (SEM),
BET, and a vibrating sample magnetometer (VSM). Then, the efficiency of the synthesized
adsorbent for the adsorption of MG and MR dyes from aqueous solution was evaluated
and optimized by studying the effect of contact time, adsorbent dose, pH, and ionic
strength. Additionally, pseudo-first-order and second-order models were used to study the
adsorption kinetics. Finally, Langmuir and Freundlich isotherm models were used to study
the adsorption mechanism. The reusability of the SiO2/MnFe2O4/ZIF-8 nanocomposite
for the removal of MG and MR dyes was studied by applying an external magnet. The
possibility of using the SiO2/MnFe2O4/ZIF-8 nanocomposite as an adsorbent for dye
removal from an aqueous solution was finally assessed.

2. Materials and Methods
2.1. Chemicals

All reagents were analytical grade and used without any purifications. Tetraethyl
orthosilicate (TEOS), 2-methylimidazole, manganese nitrate, iron nitrate, methyl red (MR),
malachite green (MG), and zinc nitrate were supplied from Sigma-Aldrich, Germany. Ethyl
alcohol, Ethylene Diamine (EDA), aqueous ammonia, hydrochloric acid, and sodium
hydroxide were supplied from Elgomhoria Chemical Co, Cairo, Egypt. All solutions were
prepared using distilled water.

2.2. Synthesis of SiO2/MnFe2O4 Nanocomposite

For the synthesis of the SiO2/MnFe2O4 nanocomposite, MnFe2O4 nanoparticles were
synthesized first using a co-precipitation process as reported in the literature [55]. In a
typical method, a mixed solvent of 3.0 mL of EDA and 70.0 mL of distilled H2O was used
to dissolve 4.20 g of NaOH followed by the addition of 4.9 g of manganese nitrate and
13.4 g of iron nitrate that previously dissolved in 50.0 mL of distilled H2O. To reach the
complete complexation, the previous mixture was heated for 3 h at 100 ◦C. After that, the
synthesized magnetic MnFe2O4 nanoparticles were collected using an external magnet and
washed many times using H2O and ethyl alcohol followed by the dryness of nanoparticles
at room temperature. Secondly, the modified Stöber process was used for the modification
of MnFe2O4 nanoparticles using SiO2 as reported in the literature [56]. Typically, a mixed
solution of aqueous ammonia (1.2 mL, 25%), 20 mL of deionized H2O, and ethyl alcohol
(40 mL, 99.9%) was used to disperse MnFe2O4 nanoparticles (0.15 g) under ultrasonication
for 60 min followed by the stepwise addition of TEOS (0.6 mL). The reaction was kept for up
to 6 h at 30 ◦C followed by the separation of the synthesized SiO2/MnFe2O4 nanocomposite
using an external magnet. The collected nanocomposite was washed several times using
ethyl alcohol and finally dried at 60 ◦C in a vacuum.

2.3. Synthesis of SiO2/MnFe2O4/ZIF-8 Nanocomposite

The synthesis of the SiO2/MnFe2O4/ZIF-8 nanocomposite was achieved as detailed
in this section. First, the methanol solvent (65 mL) was used to disperse the SiO2/MnFe2O4
nanocomposite (0.2 g) and zinc nitrate hexahydrate (2 mmol) under ultrasonication. Af-
ter that, methanol (30 mL) was used to dissolve 2-methylimidazole (10 mmol) that was
stepwise-added to the previous suspension at ambient temperature in a rotatory evaporator
under strong stirring. Then, this produced mixture was kept for 1 day at room temperature
to give grey powder of SiO2/MnFe2O4/ZIF-8 that was collected using an external magnet.
Finally, the synthesized nanocomposite was washed several times with ethyl alcohol and
deionized H2O and dried at 60 ◦C in a vacuum. Figure 1 illustrates the synthesis procedures
of the SiO2/MnFe2O4/ZIF-8 nanocomposite.
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Figure 1. The synthesis scheme of SiO2/MnFe2O4/ZIF-8 nanocomposite. (TEOS: Tetraethyl orthosilicate).

2.4. Adsorption Experiments

The synthesized SiO2/MnFe2O4/ZIF-8 nanocomposite was evaluated for the adsorp-
tion of MG and MR dyes from an aqueous solution. First, deionized H2O was used for the
preparation of the required concentrations of the dyes. The batch adsorption experiments
were performed by shaking 50.0 mL of dye solution (50.0 to 500.0 mg/L) with 0.01 g of the
adsorbent using a water bath shaker at 250 rpm at 25 ◦C and the required pH value. The
shaking process was continued until reaching equilibrium, which was 60 min for MG and
30 min for MR. The best conditions of the adsorption process were performed by studying
the effect of pH, contact time, adsorbent dose, and ionic strength. The effect of pH was in-
vestigated in the range of 3–12. The pH values were adjusted using the buffer solution and
the measurements were carried out using a digital pH meter. To study the effect of contact
time, the adsorption experiments were performed at different time intervals ranging from
0 to 240 min. To study the ionic strength effect, different concentrations of NaCl salt were
added to the water samples in the range of 0–0.5 M. To study the effect of adsorbent dose,
the adsorption experiments were performed using different masses of adsorbent in the
range of 0.15–1 g/L. After each adsorption experiment, the adsorbent was collected using
an external magnet and the supernatant was examined for the existence of the MG and
MR dyes using a UV-Vis spectrophotometer at λ = 620 nm and 526 nm, respectively. The
adsorption capacity at equilibrium (qe, mg/g) of the SiO2/MnFe2O4/ZIF-8 nanocomposite
was calculated according to Equation (1).

qe = (Co − Ce)V/m (1)

where m, V , Ce, and Co are the mass of the adsorbent in g, the volume of the solution in L,
the equilibrium concentration of the dye (mg/L), and the initial concentration of the dye
(mg/L), respectively.

Moreover, the reusability of the SiO2/MnFe2O4/ZIF-8 nanocomposite as an adsorbent
for the removal of MG and MR dyes was investigated for up to five cycles. Each cycle con-
sists of an adsorption process followed by the collection of adsorbent using a magnet for the
desorption process to be used in the next cycle. The desorption process examined a mixed
solvent of ethyl alcohol and H2O with a ratio of 8:2, respectively. During each desorption
process, the eluent was mixed with the eluent for half an hour with sonication followed by
magnetic separation and dryness at 70 ◦C. After each cycle, the adsorbent was collected
and the solution was examined for the presence of dyes. Finally, the regeneration and
reusability of the SiO2/MnFe2O4/ZIF-8 nanocomposite for dye removal were evaluated.
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3. Results and Discussion
3.1. Characterization of Synthesized Nanomaterials

For the characterization of the synthesized nanomaterials, MnFe2O4 nanoparticles,
the SiO2/MnFe2O4 nanocomposite, and the SiO2/MnFe2O4/ZIF-8 nanocomposite, the
proper techniques were used, as discussed in this section. TEM and SEM images were
used for the identification of particle size and surface morphology, as shown in Figure 2.
Figure 2a shows the TEM image of MnFe2O4 nanoparticles indicating the nanosize of the
synthesized magnetic particles. Figure 2b shows the TEM image of the SiO2/MnFe2O4
nanocomposite that clearly showed the good addition of SiO2 to the magnetic MnFe2O4
nanoparticles. Figure 2c shows the TEM image of the SiO2/MnFe2O4/ZIF-8 nanocomposite
that showed the good dispersion of the SiO2/MnFe2O4 nanocomposite inside the structure
of ZIF-8 nanostructures. Moreover, the size and morphology of synthesized nanomaterials
were confirmed using SEM images. Figure 2d shows the SEM image of the synthesized
magnetic MnFe2O4 nanoparticles, confirming the nanoscale size of the particles with
agglomeration tendency due to the magnetic behavior. Figure 2e shows the SEM image
of the SiO2/MnFe2O4 nanocomposite with a larger size than MnFe2O4 nanoparticles due
to the addition of the SiO2 layer that confirms the TEM results. Additionally, Figure 2e
indicates that the SiO2/MnFe2O4 nanocomposite was uniform. Figure 2f shows the SEM
image of the SiO2/MnFe2O4/ZIF-8 nanocomposite, indicating the nanosize scale of the
synthesized nanocomposite after the embedding of the SiO2/MnFe2O4 nanocomposite
inside the structure of ZIF-8. The SiO2/MnFe2O4/ZIF-8 nanocomposite showed a wide size
range distribution from 30.0 nm to 200.0 nm with a rhombic dodecahedral structure. The
SEM and TEM images show that the SiO2/MnFe2O4 nanocomposite was well encapsulated
by a shell of ZIF-8.

XRD of the synthesized nanomaterials was performed to characterize the composition
and crystallinity, and the results are shown in Figure 3a. The XRD of magnetic MnFe2O4
nanoparticles indicated the spinel structure of magnetic nanoparticles, as confirmed from
the appearance of characteristic peaks at 2θ = 62.30, 56.80, 53.33, 43.06, 35.37, and 30.02,
which correspond to the planes (440), (511), (422), (400), (311), and (220) [57]. From the XRD
of the SiO2/MnFe2O4 nanocomposite, the amorphous properties of SiO2 did not change the
phase of MnFe2O4 magnetic nanoparticles when added, as inferred from the identical XRD
patterns. From the XRD of the SiO2/MnFe2O4/ZIF-8 nanocomposite, new characteristic
peaks of ZIF-8 appeared at 2θ = 18.20, 16.54, 14.85, 13.00, 10.54, and 7.44, which correspond
to the planes (222), (013), (022), (112), (002), and (011) [58]. In addition, characteristic peaks
of MnFe2O4 appeared in the XRD of the SiO2/MnFe2O4/ZIF-8 nanocomposite. Thus, the
XRD results indicated a good combination between the three parts of the nanocomposite
MnFe2O4, SiO2, and ZIF-8.
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For the identification of functional groups, FT-IR spectra of the synthesized nanomate-
rials were generated in the range of 450–4000 cm−1, as shown in Figure 3b. According to
Figure 3b, the MnFe2O4 nanoparticles showed an absorption band corresponding to the
oxygen-metal bond at 500–600 cm−1 [59]. In addition, stretching vibrations of hydrogen-
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bonded H–O groups showed an appearance of the minor band at 1620 cm−1 and the
broad band at 3400 cm−1 [60]. The SiO2/MnFe2O4 nanocomposite showed an absorp-
tion band corresponding to the OH–Si bond’s bending vibration at 962 cm−1, while the
band corresponding to the Si–O–Si bond’s asymmetric stretching vibration appeared at
1100 cm−1–1080 cm−1 [57]. The spectrum of the SiO2/MnFe2O4/ZIF-8 nanocomposite
showed the appearance of characteristic bands of ZIF-8. The hydroxyl groups of ZIF-8
and H2O molecules showed the appearance of the band at 3430 cm−1. The bands below
800 cm−1 were attributed to the out-of-plane bending of the ZIF-8 aromatic ring, while the
in-plane bending bands were observed at the range of 950–1350 cm−1. The vibration of the
entire ring showed the appearance of bands in the range of 1550–1350 cm−1. In addition,
the stretching vibrations of the aliphatic chain of H-methylimidazole and aromatic ring
C-H bonds showed the appearance of bands in the range of 2930–3135 cm−1 [61–63].

For the determination of magnetic properties, magnetization curves of the synthe-
sized MnFe2O4 nanoparticles, SiO2/MnFe2O4, and SiO2/MnFe2O4/ZIF-8 were generated,
as shown in Figure 4a. According to Figure 4a, all synthesized nanomaterials showed
paramagnetic behavior with saturation values of 40.0, 33.8, and 23.7 emu/g for MnFe2O4
nanoparticles, SiO2/MnFe2O4, and SiO2/MnFe2O4/ZIF-8, respectively. The modification
of magnetic MnFe2O4 nanoparticles with nonmagnetic SiO2 caused a drop in saturation
magnetization. In addition, the embedding of SiO2/MnFe2O4 inside the ZIF-8 caused a
drop in the saturation magnetization. However, the SiO2/MnFe2O4/ZIF-8 nanocompos-
ite still had good magnetic properties, allowing its magnetic separation by applying an
external magnetic field. After the adsorption of dyes, the magnetic adsorbent could be
collected using a magnet from the entire solution (Figure 4a, inset). This magnetic behavior
of the adsorbent eases their reuse for water treatment, which reduces the overall cost of
the treatment.
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Figure 4. The magnetic curves (a) and N2 adsorption–desorption isotherm (b) of the synthesized
MnFe2O4 nanoparticles, SiO2/MnFe2O4, and SiO2/MnFe2O4/ZIF-8 (inset: a photograph for the
magnetic separation of synthesized nanocomposite).

For the determination of specific surface area and porosity of synthesized nanomateri-
als, N2 adsorption–desorption isotherms were measured, as shown in Figure 4b. According
to Figure 4b, the SiO2/MnFe2O4/ZIF-8 nanocomposite and ZIF-8 showed typical type
I isotherms, indicating the microporous structure, while SiO2/MnFe2O4 and MnFe2O4
nanoparticles are well known to have a mesoporous structure as they follow type IV
isotherms with H3 hysteresis loops according to the literature [64]. The aggregation of
magnetic MnFe2O4 nanoparticles made their pore diameter 12.6 nm and the adsorption
to N2 was weak. BET-specific surface areas (SBET) were equal to 94 m2·g−1, 290 m2·g−1,
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and 831 m2·g−1 for MnFe2O4 nanoparticles, the SiO2/MnFe2O4 nanocomposite, and the
SiO2/MnFe2O4/ZIF-8 nanocomposite, respectively, indicating the enhanced surface area of
the nanocomposite after embedding the SiO2/MnFe2O4 nanocomposite inside the frame-
work ZIF-8. This sharp increase in the surface area was attributed to the ideal structure of
ZIF-8, which has a very high SBET that is equal to 1485.5 m2·g−1. The characterization tech-
niques indicated the successful combination between the three components SiO2, MnFe2O4,
and ZIF-8 to produce the SiO2/MnFe2O4/ZIF-8 nanocomposite.

3.2. Optimization of the Adsorption Parameters

To determine the optimum conditions for the removal of MR and MG dyes on the
surface of the SiO2/MnFe2O4/ZIF-8 nanocomposite, the effects of different parameters
including ionic strength, contact time, adsorbent dose, and pH were studied as shown in
Figure 5. The effect of ionic strength on the removal of MR and MG dyes was studied using
different NaCl concentrations ranging from 1 × 10−3 to 0.5 mol/L, as shown in Figure 5a.
With a contact time of 60.0 min for the MG dye and 30.0 min for the MR dye, a stirring
speed of 240 rpm at 25.0 ◦C, an initial dye concentration of 100 ppm, and an adsorbent dose
of 0.2 g/L, the influence of ionic strength on adsorption was investigated. According to
Figure 5a, the adsorption capacity of MR and MG dyes was decreased by increasing the
concentration of sodium chloride. This decrease in adsorption capacity associated with the
increase in ionic strength is attributed to the decrease in electrostatic attraction between
adsorbent and adsorbate. Additionally, the adsorbent molecules were agglomerated by
increasing the ionic strength, causing a decrease in the number of adsorption sites [65]. In
addition to this electrostatic influence, the salt ions could compete with the adsorbate ions
for the adsorption sites, leading to the weakening of dye adsorption. The second studied
parameter that affected the adsorption was the contact time. The adsorption of MR and MG
dyes on the surface of the SiO2/MnFe2O4/ZIF-8 nanocomposite was determined at a time
ranging from 0 to 250 min, as shown in Figure 5b. According to Figure 5b, the adsorption
capacity was increased up to 60 min for MG dye and 30 min for MR dye, and over this
time, the adsorption capacity did not change. This increase in the adsorption capacity in
the first stage was attributed to the availability of adsorption sites, until equilibrium was
reached [66]. After that, there were unavailable adsorption sites to adsorb more ions of the
dye due to the occupation of all adsorption sites causing no increase in the adsorption [67].
Subsequently, the optimum contact time was 60 min for MG dye and 30 min for MR dye,
after which the adsorption became constant, revealing the saturation of active sites on the
adsorbent surface.

Another significant parameter in the adsorption of dyes is the adsorbent dose. Figure 5c
illustrates the effect of SiO2/MnFe2O4/ZIF-8 dose on the removal of MG and MR dyes
using 240 rpm as a stirring rate and 100 ppm as the initial dye concentration. According
to Figure 5c, the adsorption capacity was sharply increased by increasing the adsorbent
dose from 0.5 g/L to 0.2 g/L, after which the adsorption capacity declined. Subsequently,
the optimum dose of SiO2/MnFe2O4/ZIF-8 as the adsorbent was chosen as 0.2 g/L. This
behavior could be attributed to the aggregation of adsorbent particles and overlapping of
adsorption sites at a high dosage of the adsorbent, causing a decrease in the surface area
and, correspondingly, a decrease in the adsorption capacity [68]. In addition, pH is a vital
parameter affecting the adsorption of organic dyes. This importance arises from its effect
on the ionization of both adsorbent surface and adsorbate molecules [69]. To study the
effect of pH on the adsorption of MG and MR dyes on the surface of SiO2/MnFe2O4/ZIF-8,
experiments were examined in the pH range of 3 to 12, as shown in Figure 5d. The
pH effect was determined at a stirring speed of 240 rpm and initial dye concentration
of 100 ppm. According to Figure 5d, the increasing pH value caused a decrease in the
adsorption capacity of SiO2/MnFe2O4/ZIF-8 toward MG dye. At a high pH value, the
MG dye was deprotonated, while, at a low pH value, the MG dye was protonated. Thus,
at a low pH value (2–5.5), the positively charged MG dye was electrically attracted to the
negatively charged SiO2/MnFe2O4/ZIF-8 (more –ve zeta potential, Figure 5e), while at
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a higher pH value (8–12), the electrostatic repulsion between the negatively charged MG
dye and negatively charged SiO2/MnFe2O4/ZIF-8 surface caused a notable decrease in the
adsorption capacity. For the adsorption of MR dye on the surface of SiO2/MnFe2O4/ZIF-8
at different pH values, the adsorption capacity was constant until the pH of 5 and then
decreased with the pH increase. This low adsorption capacity of MR anionic dye at
pH > 5 was attributed to the repulsive forces between the negatively charged surface of
SiO2/MnFe2O4/ZIF-8 and the anionic dye.
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3.3. Adsorption Isotherm

The mechanism of the adsorption process can be analyzed using isotherm stud-
ies [70,71]. In the current study, the adsorption of MG and MR dyes on the surface of
the SiO2/MnFe2O4/ZIF-8 nanocomposite was evaluated using the two familiar adsorption
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models, Langmuir and Freundlich. The linear equations of Langmuir and Freundlich
models are presented as shown in Equations (2) and (3), respectively.

Ce

qe
=

1
KLqm

+
Ce

qm
(2)

Logqe =
1
n

LogCe + LogKF (3)

where qm, Ce, qe, and KL are the maximum adsorption capacity (mg/g), the concentration
of dye at equilibrium (mg/L), the amount of the dye adsorbed at the equilibrium (mg/g),
and the Langmuir adsorption constant (L/mg), respectively. KF and n are constants of
the Freundlich model that are related to the adsorption intensity and adsorption capacity,
respectively. The linear plot of Ce and Ce/qe according to the Langmuir model can be used
for the determination of KL and qm from the slope and intercept, respectively. The linear plot
of log Ce and log qe according to the Freundlich model can be used for the determination of
KF and n from the intercept and slope, respectively. The fitting of experimental data for the
adsorption of MG and MR dyes on the surface of the SiO2/MnFe2O4/ZIF-8 nanocomposite
using Langmuir and Freundlich models is shown in Figure 6. The calculated parameters of
Langmuir and Freundlich isotherms are listed in Table 1.
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Table 1. The adsorption isotherm and kinetic parameters for the adsorption of MG and MR dyes on
the surface of SiO2/MnFe2O4/ZIF-8 nanocomposite.

Dye Langmuir Freundlich Pseudo-1st-Order Pseudo-2nd-Order

qm (mg/g) KL (L/mg) R2 1/n KF
(mg/g)(L/mg)1/n R2 k1 (min−1) qe R2 k2 (g/mg.h) qe R2

MG 1000.03 0.077 0.990 0.396 8.715 0.963 0.062 445.248 0.991 0.001 555.55 0.999
MR 1111.12 0.040 0.979 0.501 7.338 0.965 0.160 141.70 0.941 0.001 476.20 0.999

The Langmuir isotherm model states that the adsorbent surface is homogenous and
all adsorption sites are energetically equivalent that can adsorb the adsorbate ions as a
monolayer, while the Freundlich isotherm model states that the surface of the adsorbent
is heterogeneous and the adsorption sites can adsorb the adsorbate ions as multilayers.
The correlation coefficient (R2) of the linear fit was used to evaluate the applicability of
the model to describe the adsorption process. From the values of R2 of the linear fit, the
Langmuir isotherm was better at explaining the adsorption of both dyes MG and MR on the
surface of the SiO2/MnFe2O4/ZIF-8 nanocomposite. Moreover, the calculated qm values
were close to the experimental values. This means that the adsorption of MG and MR dyes
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on the surface of the SiO2/MnFe2O4/ZIF-8 nanocomposite was achieved via homogenous
adsorption as a monolayer and confirmed the chemisorption mechanism.

The maximum adsorption capacities (qm) for MR dye and MG dye are 1111.12 mg/g
and 1000.03 mg/g, respectively. The Langmuir constant (KL) indicates the degree of
interactions between adsorbate ions and the adsorbent surface. In addition, the values of
the Freundlich constant (1/n) indicate if the adsorption process is favored or not favored.
For both dyes, 1/n values are less than 1, indicating the favorable adsorption of MG and
MR dyes on the surface of the SiO2/MnFe2O4/ZIF-8 nanocomposite. The results indicate
the efficiency of the SiO2/MnFe2O4/ZIF-8 nanocomposite as an adsorbent for wastewater
treatment, especially after providing excellent results with two structurally different dyes
with different electronic characteristics.

3.4. Adsorption Kinetics

For understanding the rate of dye removal from aqueous solution on the surface of
the synthesized SiO2/MnFe2O4/ZIF-8 nanocomposite, kinetic models were used to fit
the experimental data of adsorption. In the present study, two kinetic models, pseudo-
first-order and pseudo-second-order, were used to fit the experimental data of the MG
and MR dyes adsorption on the surface of the SiO2/MnFe2O4/ZIF-8 nanocomposite, as
shown in Figure 7. The pseudo-first-order and pseudo-second-order kinetic models can be
represented according to Equations (4) and (5), respectively.

Log(qe − qt) = Logqe −
k1

2.303
t (4)

t
qt

=
1

k2q2
e
+

t
qe

(5)

where qt, qe, k1, and k2 denote the adsorption amount at time t, the adsorption amount
at equilibrium, the pseudo-first-order rate constant, and the pseudo-second-order rate
constant, respectively.
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The rate constants and coefficients of the pseudo-first-order model and pseudo-second-
order model can be calculated from the plot of log (qe − qt) against t and t/qt against
t, respectively, as introduced in Figure 7a,b. The rate constants and coefficients of the
pseudo-first-order model and pseudo-second-order model are listed in Table 1.

By comparing the correlation coefficient (R2) values of the two kinetic models, the
pseudo-second-order model had a higher R2 value than the pseudo-first-order, indicating
the greater suitability of the pseudo-second-order kinetic model to describe the adsorption
of MG and MR dyes on the surface of the SiO2/MnFe2O4/ZIF-8 nanocomposite. The
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best fitting of experimental data to the pseudo-second-order kinetic models indicates
the chemical interactions between dyes and the adsorbent surface during the adsorption
process. Additionally, the calculated value of qe from the pseudo-second-order model was
found to be very close to the experimental value, confirming the greater suitability of the
pseudo-second-order model for describing the adsorption of MG and MR dyes than the
pseudo-first-order model. This means that the adsorption of MG and MR dyes on the
surface of the SiO2/MnFe2O4/ZIF-8 nanocomposite occurred via complicated chemical
adsorption that may include many different interactions between the MG and MR dye
molecules and the functional groups on the surface of SiO2/MnFe2O4/ZIF-8.

3.5. Regeneration and Reusability Study

For the application of any adsorbent at an industrial scale, it is important to show
good reusability results as the reusability of the adsorbent decreases the overall cost of the
treatment. After the dye adsorption, the dye is required to be desorbed from the surface
for the reactivation of adsorption sites for the next adsorption cycle. After each adsorption
process, the adsorbent was collected using a magnet and the solution was examined for
the presence of dyes. Then, the adsorbent was washed by the eluent to desorb the dyes
for use in the next cycle. In the current study, the used eluent was a mixed solvent of ethyl
alcohol and H2O with a ratio of 8:2, respectively. This mixed solvent helps the desorption
of MG and MR dyes from the surface of the SiO2/MnFe2O4/ZIF-8 nanocomposite. Ethyl
alcohol has a carbon chain that competes with the MG and MR dyes for the surface of the
SiO2/MnFe2O4/ZIF-8 nanocomposite and eases the desorption of dyes from the surface of
the adsorbent. Ethyl alcohol also reduces the interaction between the dyes and the surface
of the SiO2/MnFe2O4/ZIF-8 nanocomposite. Additionally, H2O helps the solubility of
dyes and eases their desorption from the surface of the adsorbent. In the present study, the
SiO2/MnFe2O4/ZIF-8 nanocomposite was reused for the adsorption of MG and MR dyes
for five successive cycles, as shown in Figure 8.
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MR dyes up to five cycles.

According to Figure 8, the highest removal efficiency (%) for both dyes on the surface
of the SiO2/MnFe2O4/ZIF-8 nanocomposite was achieved in the 1st cycle. This may be
attributed to the availability of a large number of fresh active sites on the surface of the
adsorbent to uptake large amounts of MG and MR dyes. The results showed the reduction
in removal efficiencies to 93.5% and 865% for the removal of MG and MR dyes, respectively,
after the 5th cycle. This decrease in the removal efficiency may be attributed to the damage
of some adsorption sites and the blockage of the others due to the failure to desorb the
dyes as a result of the strong interaction between MR and MG dyes and the surface of
the SiO2/MnFe2O4/ZIF-8 nanocomposite. The reusability results show that the prepared
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SiO2/MnFe2O4/ZIF-8 nanocomposite can be used many successive times for the removal
of organic dyes from wastewater.

3.6. Comparative Study

To evaluate the efficiency of the synthesized SiO2/MnFe2O4/ZIF-8 nanocomposite in
the adsorption of MG and MR dyes, a comparative study of qmax of previously synthesized
adsorbents used to remove MG and MR dyes is shown in Table 2.

Table 2. Comparison of SiO2/MnFe2O4/ZIF-8 nanocomposite with previously reported adsorbents
for the adsorption of MR and MG dyes.

Adsorbent Pollutant Removal Capacity
(mg/g) Ref.

SiO2/MnFe2O4/ZIF-8 MR 1111.12 This study
MIL-53 (Fe) DSAC MR 384.62 [9]

K2CO3@activated carbon MR 226.90 [72]
H3PO4@activated carbon MR 435.25 [72]
101(Fe)@PDopa@Fe3O4 MR 625.0 [73]

Woody biochar MR 156.25 [74]
SiO2/MnFe2O4/ZIF-8 MG 1000.03 This study

Cu-MOFs/Fe3O4 MG 125.15 [75]
MIL-101-SO3H MG 113.67 [76]

101(Fe)@Pdopa@Fe3O4 MG 676 [77]
TU-poly(AN-co-AA) MG 269.54 [78]

AC@Fe2O3 MG 311.40 [79]

According to Table 2, the classical adsorbents showed relatively low adsorption
capacities toward MR and MG dyes, for example, carbon-based adsorbents such as
K2CO3@activated carbon and woody biochar. However, carbon-based adsorbents were
superior to other techniques for the removal of dyes from aqueous solution; the adsorption
capacities ranged from 100 mg/g to 500 mg/g. Even after the magnetization of these
carbon-based adsorbents, the adsorption capacity was improved but still low. For example,
the magnetized activation carbon (AC@Fe2O3) gave an adsorption capacity of 311.40 mg/g.
Previously, these adsorption capacities were considered to be high. The advancement
of adsorbent synthesis using nanotechnology made these values low. Thus, the fabrica-
tion of advanced adsorbents such as magnetic MOFs (101(Fe)@PDopa@Fe3O4) provided
an improved adsorption capacity exceeding 500 mg/g. These improved capacities were
attributed to the large surface area, tunable pore size, composition diversity, and high
selectivity. Compared to previously reported adsorbents, even the adsorbents of similar
composition, the SiO2/MnFe2O4/ZIF-8 nanocomposite showed good adsorption capacities
toward the removal of MG and MR dyes, making it an effective promising adsorbent to
remove organic dyes from wastewater.

4. Conclusions

In the present study, a good ternary adsorbent based on MOFS named SiO2/MnFe2O4/
ZIF-8 was synthesized with a very large surface area (831 m2·g−1) and paramagnetic
properties (23.7 emu·g−1). The synthesized SiO2/MnFe2O4/ZIF-8 nanocomposite was
investigated for the adsorption of MG and MR dyes from an aqueous solution. The
adsorption effective conditions were determined, including the effect of ionic strength,
contact time, adsorbent dose, and pH. The fitting of adsorption data to isotherm models
showed an agreement with the Langmuir model for the removal of both dyes, indicat-
ing that the dyes were adsorbed on the homogeneous surface of SiO2/MnFe2O4/ZIF-
8 as a monolayer. According to the Langmuir model, the adsorption capacities were
1111.12 mg/g and 1000.03 mg/g, for MR and MG, respectively. Additionally, the adsorp-
tion rate was investigated using the pseudo-first-order and pseudo-second-order models
with an agreement to pseudo-first-order model indicating that the adsorption of both dyes
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on the surface of the synthesized adsorbent was reached via chemisorption. In addition,
the SiO2/MnFe2O4/ZIF-8 nanocomposite can be used many successive times to remove
organic dyes with high efficiency, helping decrease the treatment cost. The adsorption
capacities of the SiO2/MnFe2O4/ZIF-8 nanocomposite toward the removal of MG and
MR dyes were compared to the other reported adsorbents showing higher values. Sub-
sequently, the synthesized SiO2/MnFe2O4/ZIF-8 nanocomposite is a promising material
for the removal of coloring dyes from aqueous solutions and must be investigated for the
removal of additional pollutants in the future.
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