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Abstract: Gd flake samples were prepared by conventional ball milling technique starting from
rapidly quenched Gd ribbons and followed by vacuum annealing in different conditions. Heat
treatments were conducted in a vacuum at selected temperatures up to 600 K. The structural features,
magnetic and magnetocaloric properties were comparatively analyzed. The change in magnetic
entropy was calculated using an experimental set of magnetic isotherms measured in a wide range of
temperatures. The variations in the refrigeration capacity and the exponent of the magnetic entropy
change in the external magnetic field were carefully calculated and analyzed.
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1. Introduction

The special efforts of many researchers have recently been focused on the development
of functional materials for the application of the magnetocaloric effect (MCE) in the field
of eco-friendly magnetic refrigeration both near room temperature and for cryogenic
applications [1–5]. A condition of the successful operation of a magnetic refrigerator is high
efficiency in heat transfer between the working refrigerating body and the surroundings.
The heat transfer can be facilitated by an increase in the surface-to-volume ratio for the
working body. In addition to a high magnetocaloric effect, high thermal conductivity,
appropriate mechanical properties for optimum design [6,7] and enhanced functionalities
of the magnetocaloric devices are desired. The materials in the form of powder meet this
requirement very well [8–11].

Now, due to a shortage of water and energy resources, physical and chemical tech-
niques requiring a small amount of water and energy per unit of the obtained material are
under special attention [12,13]. Ball milling is a well-known conventional technique for the
fabrication of large, reproducible batches of different materials in a powder state down to
nanosized powders [14–16]. Due to the milling process, in many cases, the reduction of the
crystal size down to nanometric scales and the accumulation of defects in grain boundaries
takes place [14]. For magnetic materials, this causes a decrease in the magnetization value
and a slow change of magnetization near the phase transition temperature. Such changes
lead to a decrease in the MCE effect value [7,8,11].

On the other hand, the magnetocaloric properties of powder samples can be enhanced
through the nanostructuring of the initial material. Nanostructuring causes an increase
in the Curie temperature distribution. In turn, it leads to a broadening of the peak of
the temperature change of the magnetic entropy (∆SM) and an increase in a refrigeration
capacity (RC) value. RC can be defined as the product of the maximum value of the peak of
the magnetic entropy change and the width of ∆SM peak at its half-height [1]. In addition,
nanostructuring can enhance the field dependence of the magnetocaloric effect [11,14,17,18].
Moreover, appropriate annealing of polycrystalline materials can, to some extent, restore
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the perfection of their crystal structure (due to the stress relaxation, movement of the
vacancies, etc.) and magnetization behaviour.

In recent years, special progress has been made in the search for new magnetocaloric mate-
rials [1–3]. Nonetheless, gadolinium remains the most effective functional material for magnetic
refrigerators operating both near room and at cryogenic temperatures [19]. Gadolinium is a
well-studied collinear ferromagnet with a Curie temperature of TC = 294 K [20]. Relatively re-
cently, a formula accurately describing the spontaneous magnetization of Ms at an arbitrary
temperature was proposed [21]. This made it possible to determine, with high accuracy, the
exchange stiffness constant A, which is an important characteristic of ferromagnetic mate-
rial [22]. At the same time, it is well known that severe plastic deformation of Gd reduces
the magnetization to approximately one-half of that of polycrystalline Gd [23]. However,
additional heat treatments of deformed Gd samples can establish an advantageous balance
between the height and width of the magnetic entropy peak, which determines the RC
value [23].

In this work, we presented the results of a detailed study of the influence of the heat
treatment on the structure, magnetic and magnetocaloric properties of gadolinium powder
obtained by the conventional ball milling technique starting from rapidly quenched Gd
ribbons and followed by additional heat treatments.

2. Experiment

Bulk Gd has very good plasticity, and it is hard enough to be processed by mechanical
crushing. Therefore, the well-known and highly productive conventional ball milling
technique was used to obtain gadolinium powder for this study. Rapidly quenched gadolin-
ium ribbons (3 mm wide and 70 µm thick [24]) were mechanically cut into small pieces
a few mm long. These pieces of Gd ribbons were used as the primary material for the
conventional ball milling fabrication of the flake powder samples.

The ball milling process was implemented using a mixer and mill device. It consisted
of hardened steel vials, and the balls had a ball-to-powder weight ratio of 66:1. The milling
process was performed in acetone for 12 h. As Gd has a high plasticity, the pieces of the
ribbons for the treatments under consideration experienced only a plastic deformation
during the first few hours. As the overall area of the cuttings increased, their thickness
decreased. The change in the processing features took place after six hours of milling. The
grinding process was accompanied by a decrease in the geometric dimensions of the pieces
of ribbons. Special purposeful calibrations indicated that a milling time of about 10 h was
sufficient for ensuring a steady-state Gd flake microstructure. Figure 1 shows the general
view of the powder particles. It can be seen that they are flakes with an irregular shape, the
size of which reach approximately 200 µm. Then the Gd powder samples were dried and
annealed in glass, evacuated sealed tubes at temperatures of 350, 450, 500, 550 and 600 K
for 30 min for each of the temperatures.

The structural investigation of the samples was performed by X-ray diffraction tech-
nique (XRD) using a Bruker D8 Advance diffractometer operating with Cu-Kα radiation
(wavelength λ = 1.5406 Å). The powder samples for the structural studies at room tempera-
ture were uniformly placed onto a zero-background silicon plate embedded in a generic
sample holder.

A Quantum Design SQUID magnetometer (MPMS XL7) was used for the measure-
ments of the magnetic properties of the samples. The magnetic entropy change ∆SM(H,T)
around the Curie temperature (TC) was calculated on the basis of the Maxwell relation
following the standard procedure described in ref [1].
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Figure 1. General view of the flake samples of Gd after 10 h of the milling process (optical micros-
copy). 
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(without heat treatments) was Gd with a hexagonal structure (Figure 2). In addition, the 
GdH2 phase was present. It is known that for the formation of gadolinium hydride, ex-
treme conditions are not required [25,26]. Here, the powders were ground in acetone, and 
the kinetic energy of the balls was sufficient to noticeably increase the local temperature 
on the surface of the particles. Therefore, the possibility of the formation of gadolinium 
hydride on the surface of Gd powder particles during grinding seems quite logical. 
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and GdH2 phases are shown by different symbols, as indicated in the legend. 

Figure 1. General view of the flake samples of Gd after 10 h of the milling process (optical microscopy).

3. Results and Discussion

According to X-ray studies, the main phase of the powder sample in the initial state
(without heat treatments) was Gd with a hexagonal structure (Figure 2). In addition, the
GdH2 phase was present. It is known that for the formation of gadolinium hydride, extreme
conditions are not required [25,26]. Here, the powders were ground in acetone, and the
kinetic energy of the balls was sufficient to noticeably increase the local temperature on the
surface of the particles. Therefore, the possibility of the formation of gadolinium hydride
on the surface of Gd powder particles during grinding seems quite logical.
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Its presence might play a positive protective role in preventing flakes from additional
deep oxidation during heat treatments. Heat treatments help relieve stresses, reduce
the number of vacancies and increase the average size of the grains. The grain size was
calculated using the Scherer formula for Gd hcp (002) reflection (2θ ≈ 31.1◦). For the Gd
powder in the initial state, the average grain size was close to 30 ± 5 nm. An increase in the
annealing temperature Tann was accompanied by an increase in the grain size, especially at
Tann > 450 K (Figure 3). After annealing at 600 K, the average grain size was increased up
to 150 ± 10 nm.
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Figure 3. The average grain size depended on the annealing temperature. Data obtained from the
XRD analysis.

Figure 4 shows the temperature dependence of magnetization M(T) for Gd flake
powder samples after the heat treatments at different temperatures. M(T) curves were
measured under the application of the magnetic field of 0.1 T in the field cooling regime.
The position of the minimum of the dM/dT versus the temperature plot indicated that the
Curie temperature TC of the samples did not significantly change as a result of the heat
treatments. The observed value of the Curie temperature was very close to the TC value for
polycrystalline bulk Gd, which is well-known from previous studies [1,20].

The so-called Arrott plots (M2 versus H/M plots) derived from magnetization isotherms
are useful for magnetocaloric properties analysis. Therefore, they were also obtained for all
samples. As a typical example, Figure 5 shows M2 vs H/M plots for Gd powders after heat
treatments at 350, 500 and 600 K. For all mentioned samples, the Arrott plots exhibited a
positive slope for the curves at all temperatures, indicating that a second-order magnetic
transition from ferromagnetism to paramagnetism occurred around Tc, as prescribed by
the Banerjee criterion [27]. From the Arrott plots, the Curie temperature was obtained
in agreement with the value worked out with the minimum of the dM/dT versus the
temperature plot method.

In addition, the shape of the experimental curves confirmed the assumption about a
decrease in the defectiveness of the powders under the effect of annealing, made above,
based on the analysis of the M(T) dependences. It is known that the M2 versus H/M plots
are linear for homogeneous ferromagnetic materials [28]. The deviation from linearity
suggests the presence of an inhomogeneous structure [29]. It can be seen that for the
samples under consideration, the M2 versus H/M plots linearity in the high field region
improved for the powder annealed at 500 K (Figure 5).
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Figure 5. Arrott plots obtained for the Gd powder samples after heat treatments at 350 K (a), 500 K
(b) and 600 K (c).
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Figure 6 shows some of the measured experimental M–H curves analyzed for the
magnetic entropy change calculations. The magnetization value of the flake powders was
significantly smaller than the magnetization value of bulk gadolinium at low temperatures.
It is worth mentioning that the magnetization of the gadolinium powder did not reach
magnetic saturation even in the high external magnetic field of the order of 7 T.
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Figure 6. Magnetic field dependence of the magnetization M of the Gd flake powder samples
measured at the temperatures of 10 and 330 K after previous heat treatments at different temperatures
(as indicated in the legend) (a). The same behavior shown for the low field interval (b).

The observed behavior of the magnetization can be understood taking into account
the results of the structural change, i.e., nanostructuring of Gd powder and the consequent
change in the grain size. We considered that the ball milling process during a sufficiently
long time could increase the dispersion of crystallite sizes, the relative volume fraction of
the grain boundaries, the level of the stresses and the number of vacancies. Such changes
can lead to a spin disorder in nanocrystalline gadolinium samples and, consequently, to a
wide distribution of the Curie temperatures [30].

Figure 4 shows that after annealing at temperatures from 500 K to 550 K, the initial
slope of the magnetization was steeper near the Curie temperature. This meant that the
magnetic phase transition from the paramagnetic to ferromagnetic state in these kinds of
samples occurred in a narrower temperature range. This may be due to the relaxation of
lattice imperfections and the increase in the average grain size of the flakes.

Annealing at the temperature T = 600 K led to the degradation of the magnetic proper-
ties of the powder sample (Figure 4). Perhaps this was a consequence of the intensification
of the Gd oxidation process by residual gases at such an elevated temperature. However, at
10 K, there was a region of the external magnetic fields (up to 0.5 T) for which the M value
for the samples annealed at 500 K and showed the highest value.

In order to quantitatively describe the magnetic entropy change, the isothermal mag-
netization measurements were conducted in the external magnetic field up to its maximum
value of 7 T in temperature from 10 to 330 K. Near the Curie temperature, the small step of
5 K was used. The standard Maxwell relation [1] was employed for the magnetic entropy
∆SM change calculation through magnetic isotherms using the following equation:

∆SM =
∫ H

0

(
∂M
∂T

)
H

dH, (1)

where H is the external magnetic field, M is magnetization and T is the temperature.
Figure 7 shows the magnetic entropy changes ∆SM(T) for different values of ∆µ0H.

The calculated ∆SM magnitudes in the cases under consideration were smaller than the
corresponding values for the bulk gadolinium samples previously reported [1,17].
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Figure 7. Temperature dependence of the magnetic entropy change at the values of the exter-
nal magnetic field of 1 and 7 T for the Gd flake powder samples after the heat treatments at
different temperatures.

The temperature at which the maximum of the ∆SM(T) dependences appeared tended
to increase with an increase in the annealing temperature. This result can be understood
by taking into account the same reasons related to the structural peculiarities that were
mentioned above when discussing the temperature dependence of magnetization. We,
therefore, could explain the decrease in the value of the magnetic entropy changes ∆SM(T)
after annealing at T = 600 K as an expected consequence of a significant decrease in
magnetization (Figure 6).

Although the isothermal magnetic entropy change was very important for the evalua-
tion of the magnetocaloric properties, the refrigeration capacity should also be estimated
and taken into account, as it is a very important technological parameter. The ∆SM(T)
curves for Gd powder samples have wider characteristic peaks, and the width of the ∆SM
peaks at its half-height is higher in comparison with data for the bulk Gd. Therefore, the
value of the refrigerating capacity in the case of a Gd ball milled sample (Figure 8) was
not significantly lower with respect to the refrigerating capacity value typical for the bulk
gadolinium [1,23] or for microparticles of gadolinium of hundreds of microns size [6].

An important way to increase the efficiency of magnetic cooling is to increase the
sensitivity of magnetocaloric materials with respect to the applied magnetic field [1,17]. For
magnetocaloric materials characterized by the second-order phase transition, the power
law can describe the dependence of the change in the magnetic entropy peak with respect
to the applied magnetic field: ∆SM

max ∝ Hn. In the case of a single-phase material, the n
value is expected to be n = 2/3 near TC [1].

Figure 9 shows the change of ∆SM
max with respect to the magnetic field for the Gd

powder samples after different temperatures of the heat treatment. Values of the exponent
n are given in Table 1. It is seen that annealing at the selected conditions for the samples
under consideration did not increase the n value.
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after the heat treatment at different temperatures.

Table 1. Values of the ∆SM
max at H = 1 T and the exponent in the low power: ∆SM

max ∝ Hn for the
Gd powder samples after different temperatures of the heat treatment. Some data from the literature
are also given for comparison.

Sample Exponent n ∆SM
max (Jkg−1K−1)

initial 0.89 0.5
350 K 0.90 0.4
450 K 0.83 0.5
500 K 0.79 0.6
550 K 0.71 0.6
600 K 0.75 0.4

Gd bulk 0.78 [14] 2.8 [1]
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Although used in fabrication conditions, the heat treatment processes do not lead to
an increase in the magnetocaloric effect, as was previously observed in the case of the bulk
Gd samples [17]. Powder materials allow a much better heat transfer between the working
refrigerating body and the surroundings simply due to the higher surface-to-volume ratio.
As the technological steps for the fabrication of real devices may include different heat
treatments, the obtained results could be useful for the estimation of their possible impact.
In addition, the obtained materials should demonstrate high time stability as their surface
is passivated, but the following problem should be additionally investigated.

4. Conclusions

Gd ribbons were obtained by a rapid quenching technique. They were used for the
fabrication of Gd powders by a ball milling method. The structural features, magnetic and
magnetocaloric properties of the produced powder materials were studied in an initial
state and after heat treatments in a vacuum at temperatures of 350, 450, 500, 550 and 600 K
for 40 min. It was shown that there was an annealing temperature range in which the
relaxation of lattice imperfections and an increase in the average grain size occurred. This
caused a narrowing of the temperature range in which the magnetic phase transitions of
“ferro–para type” took place in such nanostructured samples.
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