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Abstract: In the inverse problem, the traditional way to obtain a stable solution is based on the
maximum smoothness criteria. However, this approach cannot generate clearer and more focused
images. In this study, we propose an improved inversion method based on the smoothness constraints.
In the algorithm, the model weighting functions are updated by adding a model’s total gradient
module matrix, which can effectively constrain the boundary of the recovery model in the iterative
operation. We invert the 3D magnetization intensity for the three-component magnetic data in
the spatial domain by spherical coordinates. The preconditional conjugate gradient algorithm is
introduced to improve the efficiency of the solutions. We design two sets of synthetic examples
to evaluate the inversion effects, which show that the improved method is more reliable than the
smoothness constraint method. The boundary of the magnetic bodies is more precise, and the
magnetization ranges are more focused. The method does not rely on the initial model and is suitable
for magnetic vector data inversion. We also apply the algorithm to a set of Dabie orogen three-
component magnetic data derived from a geomagnetic field model and verify the effectiveness of the
inversion method.

Keywords: 3D magnetization intensity inversion; spatial domain spherical coordinates; model’s total
gradient module; preconditioned conjugate gradient

1. Introduction

The successive launches of CHAMP, GRACE, GOCE, Swarm, and other potential
field-observing satellites have brought unprecedented opportunities and challenges to the
processing and applications of gravity and magnetic data. Several high-order geomagnetic
field models were developed, such as NGDC-720 and EMM2015, compiled from different
data sources (satellite, oceanic, aeromagnetic, and geomagnetic survey data). The mag-
netic data derived from the models are one of the powerful instruments for the regional
tectono-geophysical investigation of the Earth’s crust and upper mantle [1], and are being
increasingly mapped for large regions geological analysis [2–6].

Another application for magnetic data is 3D physical property (magnetization or
susceptibility) inversion, which visually outlines the spatial shapes and distributed features
of magnetic field sources [7–10]. As one of the main physical property inversion methods,
a considerable amount of in-depth research has been conducted regarding 3D magnetization
intensity inversion techniques. Wang et al. [11] proposed a total magnetization vector
inversion method to invert 2D layered models, and obtained the magnitude and direction
of the magnetization. In another related study, Liu et al. [12] carried out magnetization
vector inversion research on 2D borehole magnetic survey data. Furthermore, various
researchers have determined the three-dimensional distribution features of magnetization
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based on magnetic anomaly amplitude data [13,14]. The magnetization intensity inversion
methods of those spatial domains are generally carried out in Cartesian coordinates. They
are not directly applicable to the inversion of global magnetic data, which are inherently in
the spherical coordinates. The inversion methods extended to the spherical coordinates
provide technical support for regional physical property inversion [8,15–18]. It is necessary
to develop an applicable magnetization intensity inversion method to adapt to the rapidly
increasing satellite-derived magnetic data.

The inverse problem in spherical coordinates is similar to that in Cartesian coordi-
nates. One of the difficulties that the inverse problem faced was the non-uniqueness of
the model. Many methods have been proposed to solve this problem in the Cartesian
coordinates. These methods included smooth and small model inversion [19,20], focusing
inversion [21,22], cokriging [23,24], binary and multinary inversion [25,26], and c-means
clustering [27]. The available methods showed that they could decrease the non-uniqueness
of models. Additionally, one possible solution to solve the problem is to adopt the Occam
inversion method [28], which is developed based on Tikhonov regularization [29]. It is less
dependent on the initial models and is now widely used in gravity and electromagnetic
research [30,31]. This method can determine the smoothest solution for multi-layered
geophysical models. The roughness of a model is minimized under a certain standard of
a misfit. Due to the inherent properties of the method, the border of recovered models is not
clear, and the images are not focused, which may be inapplicable under some geological
issues. We propose an improved inversion method to improve the situation and describe it
in detail later.

The magnetic data derived from geomagnetic field models are the magnetization
responses generated at the lithospheric scale. Little is known about the remnant mag-
netization structures in the Earth’s continents. The induced magnetization and rem-
nant magnetization in the magnetic anomalies of the continental crust cannot be decou-
pled/distinguished effectively [32,33]. Compared with the oceanic crust, the induced
magnetic anomalies in the continental crust usually play major roles, and the remnant
magnetization is usually ignored [34–36]. Moreover, due to many observation grids, field
source space cells, and magnetic parameters, the regional magnetization intensity inversion
in the spherical coordinates will be very time-consuming. Consequently, it can be consid-
ered that the lithospheric magnetic field is mainly dominated by induced magnetization to
simplify the parameter space of the models and actual data.

The remainder of this paper is as follows: we first review the forward modeling and
inversion of the magnetic problem in spherical coordinates and propose an improved
inversion method based on the smoothness constraints. The third section evaluates the
method with two synthetic examples of regional models. We apply the method to the
magnetic vector data of the Dabie orogen to test the actual application effect in the fourth
section. Finally, in the fifth section, we present the conclusions of this study.

2. Methodology
2.1. Forward Modeling in Spherical Coordinates

Different calculation methods can obtain magnetic potential field responses. In space
domain magnetic vector forwarding methods, the magnetic potential and vector fields
were usually directly calculated based on the magnetic dipole effects [37–39]. Blakely [40]
proposes an alternative to link the magnetic potential and vector fields with the gravi-
tational fields, referred to as Poisson’s relation. The two means were determined to be
mathematically equivalent. We adopted the second method to obtain the magnetic vector
field. We have to consider the gravitational potential and related derivatives calculations
for the first step.
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The gravitational potential V(P) of a solid body with volume Ω and density ρ at the
observation point P outside of Ω is given by Newton’s integral [41]

V(P) = Gρ
y

Ω

1
`

dΩ (1)

The numerical evaluations of Equation (1) rely on mass discretization. It is needed to
discretize the model’s underground space into a specific geometric shape and density. Using
prisms is especially beneficial for local applications in Cartesian coordinates. For larger
application areas, the Earth’s curvature has to be taken into account. It has been determined
that a tesseroid model (Figure 1) with a constant height delineated by geographic grid
lines, which are directly linked to the curvature of the Earth, is an ideal volume unit
for forwarding.
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The gravity potential based on tesseroid model has no analytical solution; it must be
calculated approximately by integral method. There are mainly two kinds of algorithms:
Gauss Legendre Quadrature (GLQ) and Taylor series expansion method based on integral
kernel function. Ku [42] determines the distribution of anomalies using the least squares
method based on equivalent point- mass. The interference point- mass in the anomaly
body can be estimated according to the GLQ in the gravity field expression. He proposes
an empirical standard in the method, that is, the distance between the points is not greater
than the distance to the calculated point, and the accuracy of the solution basically remains
unchanged. M. F. Asgharzadeh et al. [43] give an efficient and high-precision calculation
method for gravity potential, gravity field, and gravity tensor of spherical unit body under
the standard of Ku [42]. The minimum number of nodes can be given during calculation,
and the distance to the observation points is greater than the nodes spacing, which reduces
the number of calculation units and improves the efficiency. However, when the calculation
point is close to the tesseroid element, the solutions of GLQ are unstable. Heck and
Seitz [44] compare the gravity field calculation approaches of tesseroid, prism and point-
mass. The third-order Taylor series expansion of the integral kernel function is carried
out to approximate the gravity potential and its radial derivative. The results show that
the zero-order form is equivalent to the formula of the point- mass, and the calculation
efficiency and accuracy of the tesseroid are higher than those of the other two elements. To
some extent, tesseroid has advantages in calculating the gravitational field.

A tesseroid is composed of radial, latitude, and longitude (r, φ, λ), which was used to
calculate the potential field and gradient tensors in the spherical coordinates. The gravita-
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tional potential, gravitational acceleration, and Marussi tensor, respectively, generated by
the homogeneous body at the observation point P were described by

V(P)
gα(P)
gαβ(P)

 = Gρ
∫ λ2

λ1

∫ φ2

φ1

∫ r2

r1

1
`3


`2

∆α

3∆α∆β`
−2 − δαβ

κdr′dφ′dλ′ (2)

where
∆x = r′(cos φ sin φ′ − sin φ cos φ′ cos(λ′ − λ))
∆y = r′ cos φ′ sin(λ′ − λ)
∆z = r′ cos ψ− r
α, β ∈ {x, y, z}, in which x, y, z-, respectively, represent the north- east- up direction of the

local north-oriented frame (LNOF), ` =
√

r′2 + r2 − 2r′r cos ψ, κ = r′2 cos φ′, and δαβ are
Kronecker’s Delta, and cos ψ = sin φ sin φ′ + cos φ cos φ′ cos(λ′ − λ).

We adopted the Gauss- Legendre quadrature (GLQ) integral to calculate the gravity
field and gradient tensors [44,45] and truncated the order of each component of the GLQ to
2 to improve the calculating efficiency.

According to Poisson’s relation [40], an object with uniform magnetization and uniform
density has the following relation between the magnetic vector B and Marussi tensor T

B = −CmT ·M (3)

where

T =

 gxx(rP, φP, λP) gxy(rP, φP, λP) gxz(rP, φP, λP)
gyx(rP, φP, λP) gyy(rP, φP, λP) gyz(rP, φP, λP)
gzx(rP, φP, λP) gzy(rP, φP, λP) gzz(rP, φP, λP)


the constant Cm = µ0/(4πGρ), in which G = 6.674× 10−11m3 · kg−1s−2 is the gravita-
tional constant and µ0 = 4π × 10−7H ·m−1 is the magnetic permeability of the free space,
M =

[
Mx My Mz

]T refers to a matrix or vector composed of three orthogonal compo-
nents of total magnetization intensity M.

The relations among each component of the M, magnetic inclination I, and magnetic
declination A were as follows 

Mx = M cos I cos A
My = M cos I sin A
Mz = M sin I

(4)

Here, when only considering the induced magnetization of the magnetic body, I
indicates the local geomagnetic inclination, and A is the angle between the direction of the
magnetization direction and the magnetic north.

Based on the principle of superposition, the effect of the whole magnetization distri-
bution can be approximated by the sum of the impact over all individual magnetic bodies.
The parameterized forward modeling problem is expressed as

d = Gm (5)

where, d is the n dimensional data vector of observed magnetic anomaly, m is the m dimen-
sional magnetization vector, and G refers to the nonlinear function that maps parameters
m to magnetic field data d, which is expressed as the forwarding kernel matrix of the
n×m size.

2.2. Occam Inversion Method

The general form of constructing the objective function and minimizing it can be
described as

min : Γ(m) = φd(m) + λφm(m) (6)
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where the Lagrange multiplier λ is the regularization factor of the preconditioned conjugate
gradient (PCG) algorithm to balance the data misfit function φd(m) and the model objective
function φm(m).

We introduced a weighting function, and the re-weighted data misfit function was
expressed as the `2 norm of the observed and predicted data

φd(m) = (∆d−G∆m)TWT
d Wd(∆d−G∆m) (7)

where ∆d is the corresponding modification of the observed data column vector,
∆m = m−mre f represents the modification of the model parameter vector m to the ini-
tial reference model mre f , and Wd = diag{1/σ1, 1/σ2, · · · , 1/σm} refers to the data space
weighted matrix, which is a normalized diagonal matrix representing the standard devia-
tion of the i− th observation data.

In order to ensure that the model is smooth in three spatial directions, it is necessary
to select a suitable model objective function to impose constraints on the inversion model.
Li and Oldenburg [19] and Li [46] designed the model objective functions of the maximum
smoothing method. However, those functions were only applicable to the Cartesian
coordinates. Du et al. [8] and Liang et al. [15] introduced the smoothest model objective
functions into the spherical coordinates. Considering the offset effects of the recovered
models relative to the reference models on the sphere, we introduced a weighting function
to constrain the models smoothly. Constructing the model objective functions as

φm(m) = αs
∫

v[w(r)(∆m)]2dv + αr
∫

v

[
∂w(r)(∆m)

∂r

]2
dv

+ αφ

∫
v

[
∂w(r)(∆m)

r∂φ

]2
dv + αλ

∫
v

[
∂w(r)(∆m)

r cos φ∂λ

]2
dv

(8)

where αs represents the weighting function of the minimum model constraint,
(
αr, αφ, αλ

)
is the relative weighting of the smoothest model objective function along three different
directions on the sphere. In particular, w(r) indicates the radial weighting function.

In the unconstrained inversion of the potential field data, the kernel functions are
attenuated sharply with increased depth. It will cause the recovered model to be concen-
trated near the surface. Li and Oldenburg [19,20] first introduced the depth weighting
function w(z) = (z + z0)

−β/2 into the model constraint terms of 3D gravity and magnetic
inversions to overcome the attenuation effect. They applied it in 3D magnetic susceptibility
imaging. Du et al. [8], Liang et al. [15], and Wang et al. [16], respectively, extended the
depth weighting function to spherical coordinates and proposed different radial weighting
functions. We used the radial weighting function of Wang et al. [16] as follows

w(r) =
1

(H + R− r)−
β
2

·
√

r
R

(9)

where R = 6371.2 km is the average radius of the Earth, H is the average height of the
observation point, and r refers to the radial distance from the center of the model cell to the
center of the Earth.

After that, the finite difference was substituted for the partial differential to discretize
the model objective function, which could be described as a matrix

φm(m) = ∆mT
(

WT
s Ws + WT

r Wr + WT
φWφ + WT

λWλ

)
∆m

= ∆mTWT
mWm∆m

(10)

where Wm = αmRmD represents the weighted matrix after discretization: αm is the weight-
ing coefficient of each item in the model objective function, Rm indicates the differential
operator along each direction of (r, φ, λ), and D refers to the discrete matrix of the radial
weighting function.
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The data misfit and the model objective function were substituted into the objective
function, which was expressed as

Γ(m) = (∆d−G∆m)TWT
d Wd(∆d−G∆m) + λ∆mTWT

mWm∆m (11)

The expression could be written as[
G√

λWm

]
∆m =

[
d
0

]
(12)

Let A =

[
G√

λWm

]
represent the Jacobian Matrix b =

[
d
0

]
, and Equation (12) could be

simplified to
A∆m = b (13)

The inversions of three-component magnetic anomalies come down to solving
Equation (13), whose coefficient matrices are symmetric and positive-definite. The conver-
gence speed of Equation (13) is determined by the condition numbers of the coefficient
matrices. However, the condition numbers of the coefficient matrices are generally huge,
which may seriously affect the computational efficiency of iterative convergence. This
problem can be solved by indirect (iterative) methods such as the conjugate gradient (CG)
method [47]. It has been found that the CG method is very effective in solving large-scale
linear equations and is widely used in geophysical inversion processes [48–50]. The CG
method combines the gradient direction and the conjugate direction. It searches for the
optimal solution along a set of conjugate directions constructed by the gradient of the
initial point.

We adopted the PCG algorithm in the matrix operation, which was developed based on
the CG method. The preconditioned matrix was utilized to improve the condition numbers of
the equations, and both ends of the equation were multiplied by the preconditioned matrix [48].
By implementing the approaches mentioned above, the eigenvalues of Equation (13) were
concentrated along the diagonal, thereby improving the iteration efficiency.

2.3. Improved Inversion Method

In the regularization method, the general scheme to obtain the solution under certain
conditions is to constrain the regularization terms. Many model constraint methods are pro-
posed to obtain a suitable solution. These methods include minimum norm constraint [29],
compact constraint [51], minimum moment of inertia constraint [52], minimum gradient
constraint [21], and convexity constraint [53]. In this study, we need to obtain a stable
solution and expect to effectively describe the boundary of the geological body.

In the minimum moment of the inertia constraint method, the weighting matrix Wm is
made of a reference model that model parameters are headed toward it during the iterative
inversion process. Inspired by this method, we consider constraining and processing the
weighting matrix of Occam’s model objective function. However, this process is not carried
out directly on the weighting matrix. The first step is to calculate the total gradient module
of the reference model

m̂ =

√(
∂m
∂r

)2
+

(
∂m
r∂φ

)2
+

(
∂m

r cos φ∂λ

)2
(14)

The updated weighting matrix is expressed as the inner product of two matrices

Ŵm = WmKm (15)

where Km = diag
{

m̂1, m̂2, · · · , m̂m}−γ is a diagonal matrix.
Finally, Equation (15) was substituted into Equation (11) for iterative calculation.
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3. Synthesis Model Analysis
3.1. Models’ Geometry and Magnetic Parameters

Two sets of synthesis models were utilized to test the effectiveness of the inversion
method. The first set included two hexahedron models with the same magnetic parameters
(Models A and B). The second set included four hexahedron models with different mag-
netic and geometric parameters (Models C, D, E, and F). The model’s parameters and 3D
visualization are shown in Table 1 and Figure 2. The height of forwarding calculations was
set as 4 km, and the observational grid size measured 0.1◦ × 0.1◦. During the inversion
process, the field source spaces were subdivided into tesseroid models, and the sizes of the
subdivided cells were 0.1◦ × 0.1◦ × 5 km. The total magnetization intensity is 10A ·m−1.

Table 1. Synthesis models’ geometry and magnetic parameters.

Model Id Longitude Latitude Depth Inclination Declination

A 114.0–115.0 30.1–30.9 30–100 45 45
B 116.0–117.0 30.1–30.9 30–100 45 45
C 114.2–114.8 31.2–31.8 30–70 45 45
D 116.0–117.0 31.3–31.7 40–100 60 45
E 114.1–114.9 29.5–30.3 40–90 45 60
F 116.3–116.7 29.3–30.3 30–70 90 30

Note: In the table, the units of longitude, latitude, inclination, and declination are shown in degrees; the units of
depth are in km.
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3.2. Analysis of Inversion Results
3.2.1. Synthesis Model of the Same Magnetic Parameters

Figure 3 describes the three-component magnetic anomalies of the first set of models.
Figures 4 and 5 detail the magnetization imaging results of the Occam method and the
improved method, respectively. The inversion results of the Occam method indicate that
the magnetization boundary is fuzzy, and the field source range is difficult to define. The
imaging results of the improved method can fit the actual model better. The magnetization
ranges are relatively focused, and the field source’s boundaries are clear.

The two methods are both robust in the presence of noise. Some tiny false magnetic
sources appeared near the surface of ∆Bx− component and ∆By− component imaging results.

It should be noted that the values obtained by both inversion methods deviate several
times from the design models. The main reason is affected by the volume effect. Other
reasons are that the recovered magnetic sources are still not focused enough (especially in
the depth direction), and the model space is not finely divided. In comparison, the imaging
results of the improved method are closer to the actual values.
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3.2.2. Synthesis Model of Different Magnetic Parameters

We still need to test the anti-noise ability of both inversion algorithms in the second
set of models. The 5% noise signal was added to the magnetic three-component anomalies,
and the noise levels are as shown in Figures 6–8 are the magnetization imaging results
of the Occam method and the improved method, respectively. In both figures, (a) to (f)
are the vertical slices of the latitude directions, and (g) to (l) are the vertical slices of the
longitude directions.
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Figure 7. The inversion results for three-component magnetic anomalies using the Occam method:
(a–f) are the profiles at latitude = 29.8◦, where (a–c) are the inversion results for ∆Bx, ∆By, and ∆Bz
of noise-free, (d–f) are the inversion results for ∆Bx, ∆By, and ∆Bz with 5% noise signal; (g–l) are
the profiles at longitude = 114.5◦, where (g–i) are the inversion results for ∆Bx, ∆By, and ∆Bz of
noise-free, (j–l) are the inversion results for ∆Bx, ∆By, and ∆Bz with 5% noise signal.
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Figure 8. The inversion results for three-component magnetic anomalies using the improved method:
(a–f) are the profiles at latitude = 29.8◦, where (a–c) are the inversion results for ∆Bx, ∆By, and ∆Bz
of noise-free, (d–f) are the inversion results for ∆Bx, ∆By, and ∆Bz with 5% noise signal; (g–l) are
the profiles at longitude = 114.5◦, where (g–i) are the inversion results for ∆Bx, ∆By, and ∆Bz of
noise-free, (j–l) are the inversion results for ∆Bx, ∆By, and ∆Bz with 5% noise signal.

Comparing the imaging effects of the two inversion methods, the inversion results
based on the improved method are in better agreement with the designed actual models.
The ranges of magnetization distribution are small, and the properties boundaries are
clear. The imaging result of the Occam method has a lower resolution, especially in the
depth direction.

Similar to the conclusions of the first set of models, the magnetization intensity values
of the actual model are several times higher than those obtained by the two inversion
methods. The inversion results of the improved method are closer to the actual model.
Noise has little effect on the ∆Bz-component.

Overall, the improved inversion method clarifies the recovered magnetic model bound-
ary and improves the depth resolution. For the three-component magnetic data, the inver-
sion results of the vertical component are relatively stable.

In the model test, we obtained a group of weighted parameters (β takes 3, γ is 0.5) with
good results, and used the same parameter values for the following magnetic data inversion.

4. Magnetic Data Tests

The Dabie orogen is located in the middle section of the Qinling- Dabie- Sulu orogen
in China, which is formed by the subduction of the northern margin of the South China
Craton during the Triassic period and the continental collision with the North China
Craton [54,55]. It is one of the largest high-pressure (HP) and ultrahigh-pressure (UHP)
metamorphic rock belts worldwide. The orogen is composed of a series of metamorphic
units bounded by faults (Figure 9). Tectonically, the NE- SW striking fault zone F6 divides
the orogen into eastern Dabie and western Dabie. Four metamorphic units are further
divided in eastern Dabie: northern Huaiyang (NHY) tectonic belt, northern Dabie complex
unit, UHP metamorphic belt, and HP metamorphic belt. The NHY and HP belts are two
relatively low-grade metamorphic rock units. Within the orogen, the rock types are mainly
lower-degree to higher-degree metamorphic rock.
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Figure 9. Simplified geological map of the Dabie orogen (modified from Zhang et al. [56]). Note: In
the figure, F1 is the Xinyang-Shucheng fault zone; F2 is the Xiangfan-Guangji fault zone; F3 is the
Dawu fault; F4 is the Tancheng-Lujiang fault zone; F5 is the Tongbai-Shangcheng-Mozitan-Xiaotian
fault zone; F6 is the Shangcheng-Macheng-Tuancheng fault zone; F7 is the Wuhe-Shuihou fault zone.

Many deep seismic investigations, electromagnetic explorations, and experimental
gravity studies have been carried out to reveal the deeper physical properties information of
the lithosphere. Seismic refraction profile results [57] show that the crust can be divided into
upper, middle, and lower layers according to the velocity difference, and the thickness of
the crust gradually increases from 35km in the south to 41km in the north. From the results
of gravity spectrum analysis [58], there is obvious lateral heterogeneity in the middle
and upper crust of the orogen. The inversion result of the magnetotelluric profile [59]
shows that there are several isolated high-conductivity anomaly bodies in the middle crust.
To sum up, there are low-density, high-resistivity, and low-velocity anomalies in Dabie
orogen. However, researches regarding the lithospheric magnetic structures is still lacking.
Yang and Li [58] previously used continuous wavelet transform to delineate two magnetic
sources based on the total field magnetic anomalies along the profile line (the white line of
dashes in Figure 10), which provided a basis for the comparative study in the area.
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The lithospheric three-component magnetic anomalies of the Dabie orogen have been
calculated at an aeromagnetic altitude (Figure 10). The magnetic survey datasets came
from EMM2017 (Enhanced Magnetic Model, data can be found online: https://www.
ngdc.noaa.gov/geomag/EMM/index.html, accessed on 1 September 2022). Spherical
harmonic functions of the model are up to the orders of 790; that is, the spatial resolution is
about 0.25 degrees. Moreover, the resolvable spatial wavelength is as fine as 51 km. The
method used to calculate the lithosphere’s magnetic anomalies included stripping the core
magnetic field (orders n ≤ 15) from the total magnetic field [60]. The observational grid
size measured 0.1◦ × 0.1◦ and the size of each model space cell was 0.1◦ × 0.1◦ × 5 km in
the applications of the forward modelling and inversion.

Figures 11 and 12 show the vertical slices of the magnetization inversion results for the
three-component magnetic anomalies of the Dabie orogen using Occam and the improved
method, respectively.

There are three magnetic sources in the profile. However, the Occam method cannot
determine the depth and extension of the magnetic field sources. In particular, the inversion
results for ∆Bx− and ∆By− components data do not focus, even diverge on the boundary.

The improved method obtains a better inversion effect. We can clearly outline the
contours of the three magnetic sources in Figure 12. The two magnetic sources below the
surface near 30◦ N and 31◦ N, respectively, are consistent with the depth and horizontal
extensions of the results of Yang and Li [58]. Comparing the inversion effects of the
three-component magnetic data, it can be seen that the ∆Bz− component is more stable.

The formation of UHP rocks indicates that the crustal rocks were subducted to depths
of more than 100 km and then rapidly exhumed [61,62]. The upper part of the obvious
magnetic source in Figure 12 is the F5 fault. Deep seismic wide-angle reflection/refraction
studies have revealed that the Moho is cut off at 41 km below the F5 fault [63]. It may
indicate the location of the magnetic source intrusions. The mafic-ultramafic intrusions
exposed along the F5 included both alpine-type peridotite and pyroxene-gabbro intru-
sions produced by crust-mantle interactions. These are products of syn-collision intrusion
processes [64], which may be related to the generation period of the magnetic source. At
present, we know little about the information of magnetic structure, and we need to do
further research in the future.

https://www.ngdc.noaa.gov/geomag/EMM/index.html
https://www.ngdc.noaa.gov/geomag/EMM/index.html
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5. Conclusions

We introduced the Occam inversion method into spherical coordinates and inverted
the 3D magnetization intensity for the three-component magnetic anomalies. We designed
two sets of synthetic models to test the inversion effects and noise impact. The results
indicated that the Occam method could reflect the approximate position of the magnetic
sources. At the same time, the boundary could not be delineated, and the resolution in the
depth direction was low. Under the influence of noise, the inversion result of the ∆Bz−
component is relatively stable.

We proposed an improved inversion method and compared the imaging effects of the
improved method and the Occam method on the two sets of synthetic models. The results
showed that the developed method improved the focus and depth resolution.

The magnetization amplitudes of both algorithms deviated from the actual model, mainly
caused by the volume effect of the spherical coordinates. We applied the improved method to
the magnetic data of the Dabie orogen. The consistency of these results with those obtained
from the continuous wavelet transform method verifies the newly developed algorithm.

Furthermore, to improve the computational efficiency, the observed grids or field
source space cells of the forward modeling and inversion subdivision were still not suffi-
ciently fine. It will be necessary to develop a fast algorithm suitable for larger regions or
large-scale inversion in the future.
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