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Abstract: In this paper, (Tb0.7Lu0.3)2O3 magneto-optical transparent ceramics with different ZrO2

doping levels (0~5 at%) were prepared by hydrogen sintering and sequential HIP technique using
ZrO2 as a sintering aid. The effect of ZrO2 doping content on the microstructure and optical properties
of (Tb0.7Lu0.3)2O3 ceramics was analyzed. We found that the optimal doping content of ZrO2 was
3 at%. The transmittance of 3 at% ZrO2-doped (Tb0.7Lu0.3)2O3 ceramics at the wavelength of 1064 nm
was 74.84 %, and the Verdet constant was approximately 275.28 rad·T−1·m−1 at the wavelength of
650 nm.

Keywords: magneto-optic ceramics; Tb2O3; Lu2O3; ZrO2; microstructure; sintering properties

1. Introduction

A magneto-optical element (MOE) is one of the crucial components of Faraday rotators
and isolators and can eliminate reflected light to ensure the stability of laser transmission
in the laser system [1–4]. Usually, magneto-optical materials with high Verdet constants are
chose for MOEs because small magneto-optical materials are required if the Verdet constant
high according to the Faraday effect formula of θ = VBL, where V is the Verdet constant, θ
is the rotation angle of the light vector and L is the length of the magneto-optical material.

At present, a TGG (Terbium gallium garnet) single crystal with a Verdet constant of
approximately −134 rad·T−1·m−1 is the most widely used magneto-optical material [5–7].
However, owing to the size limitation of the crystal material and the relatively low Verdet
constant, sesquioxide materials with higher Verdet constants, such as holmium oxide,
terbium oxide, etc. [8–10], have attracted considerable attention. Among the sesquioxides,
Tb2O3 has many excellent properties, such as high angular momentum [11] and only one
absorption peak at 483 nm [12]. However, terbium sesquioxide easily oxidized into Tb4O7
without magneto-optical properties, which considerably affect the performance of this
kind of material [13]. Furthermore, terbium oxide undergoes a reversible phase transition
from the C-type cubic phase to the B-type monoclinic phase when the temperature exceeds
1600 ◦C. [14,15].

In order to prevent oxidation of terbium oxide, commercial Tb2O3 powders were used
as original powder and sintered in an oxygen-free environment [16]. Some researchers
attempted to deoxidize commercial Tb4O7 powder to Tb2O3 powder by hydrogen sinter-
ing [17] to reduce the sintering temperature. In the view of the phase change of terbium
oxide during sintering, researchers have proposed a solution of doping rare earth ele-
ments [18–20]. Moreover, sintering additives including ZrO2, La2O3, MgO, etc., were
added to reduce the sintering temperature [21,22]. All these strategies represent promising
techniques.
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In 2017, Ning et al. [23] used low-level (0.5 wt%) ZrO2-MgO as a double-sintering aid
to prepare highly transparent Yb:Y2O3 ceramics. The addition of 0.5 wt% ZrO2 was found
to effectively increase the density of the ceramics and promote pore elimination. In 2019,
Hu et al. [24] prepared Dy2O3 transparent ceramics by vacuum sintering of nanopowders.
A Dy2O3 phase appeared at 600 ◦C during the decomposition period of the precursor, and
the in-line transmittance values of the optimal ceramic sample with 1.0 mm thickness are
75.3% at 2000 nm and 67.9% at 633 nm. Despite many studies on Yb2O3, Dy2O3 and other
sesquioxide materials, few studies have investigated the effect of sintering additives on the
sintering properties of Tb2O3 ceramics.

In this work, (Tb0.7Lu0.3)2O3 transparent ceramics were prepared by hydrogen pre-
sintering combined with hot isostatic pressing sintering. We added varying amounts of
ZrO2 as sintering aids to promote ceramic densification. The effect of ZrO2 content on the
microstructure and sintering properties of these samples were investigated.

2. Experiment
2.1. Preparation Processes

High-purity Tb2O3 (99.99%), Lu2O3 (99.99%) and ZrO2(99.99%) powders were used
as raw materials. The raw materials were weighted according to the chemical formula
of (Tb0.7Lu0.3)2O3 and 0~5 at% ZrO2 and mixed by ball milling for 24 h at a speed of
200 r/min. After drying by rotary evaporator, the dried powders were sieved through
100 meshes. The green ceramic samples were dry-pressed into a disk with a diameter of
20 mm at 20 MPa and further cold isostatically pressed at 200 MPa for 120s to increase
the density. Before hydrogen sintering, the samples were calcined at 1000 ◦C for 10 h to
remove organic impurities and residual carbon. The green bodies were sintered between
1550 ◦C and 1700 ◦C for 4 h in a hydrogen atmosphere. All the presintered samples were
hot isostatically pressed at 1575 ◦C in an argon atmosphere to eliminate closed pores to
improving performance of the ceramics. Finally, transparent (Tb0.7Lu0.3)2O3 ceramics were
obtained by mirror polishing to 2.0 mm thickness for measurement.

2.2. Characterization

The phase compositions of the ceramics were determined by X-ray diffraction (XRD;
DX-1000CSC, Tongda Co. Ltd., Dandong, Liaoning, China) using Cu Kα radiation with
a scan speed of 10◦/min and a step size of 0.03◦ in the range of 2θ = 10◦–70◦. The linear
shrinkage rate of the ceramics was calculated according to the following formula:

∆L
L0

=
L1 − L0

L0
(1)

where4L is the linear shrinkage of the sample after sintering, L0 is the size of the green
body before sintering and L1 is the size of the samples after sintering. Microstructures of
the fracture surfaces were examined using field emission scanning electron microscopy
(SEM, Inspect F, FEI, Hillsborocity, OR, USA). The in-line transmittance of ceramics was
measured by a UV-VIS-NIR spectrometer (Lambda950, PerkinElmer, Waltham, MA, USA)
over the wavelength region from 200 nm to 1600 nm. Verdet constants were recorded on
a Faraday effect experimental instrument (FD-FZ-C, Shanghai Fudan Tianxin Scientific &
Educational Instruments Co., Ltd., Shanghai, China), with a laser wavelength of 650 nm.

3. Result and Discussion

Figure 1 presents XRD patterns of the (Tb0.7Lu0.3)2O3 ceramic samples with varying
Zr4+ concentrations after hot isostatic pressing sintering. Compared with the standard
XRD spectra of Lu2O3 (PDF#74-1980) and Tb2O3 (PDF#43-1012), there is no other impurity
phase, and all the samples are approximately consistent with the characteristic peak of
Tb2O3. The four diffraction peaks at 29◦, 33.6◦, 48.5◦ and 57.64◦ in the figure correspond to
the crystal face of the cubic phases Tb2O3 (222), (400), (440) and (622), respectively [11]. The
diffraction patterns located between the diffraction patterns of Tb2O3 and Lu2O3 indicate
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that the Lu3+ successfully entered the Tb2O3 lattice and replaced the Tb3+ sites to form a
(Tb0.7Lu0.3)2O3 solid solution.
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Figure 1. XRD patterns of (Tb0.7Lu0.3)2O3 ceramics with 0~5 at% ZrO2 as sintering aids after hot
isostatic pressing sintering.

With the increase in ZrO2 content, the characteristic peak shifts towards higher angles,
which can be explained by the formulae (2) and (3), for which the standard notations of
Kröger and Vink were used [25]. According to previous research [23], when ZrO2 is added
as a sintering aid, Zr4+ replaces the position of Tb3+/Lu3+, and the following reactions
occur to generate cation vacancies, which reduce the cell volume.

3ZrO2
2Tb2O3⇔ 3Zr ·Tb + V′′′Tb + 6Oo, (2)

3ZrO2
2Lu2O3⇔ 3Zr ·Lu + V′′′Lu + 6Oo, (3)

In addition, the radius of Zr4+ (0.072 nm) is smaller than that of Tb3+ (0.0923 nm) and
Lu3+ (0.0861 nm), which may also decrease the lattice cell constant.

Figure 2 shows the changes in lattice constant calculated by the XRD patterns. The cell
size of the undoped (Tb0.7Lu0.3)2O3 ceramic is approximately 10.4 angstrom. When zirconia
is added from 2 at% to 3 at%, the cell size decreases from 10.37 Å to 10.35 Å. However,
the lattice constant does not change linearly with the zirconia content. When the zirconia
content exceeds 4 at%, the change in lattice constant is not obviously (approximately 0.01 Å),
which could be ascribed to the zirconia solid solubility limit. The excess zirconia cannot
enter the lattice, with an insignificant effect on the lattice constant. When the zirconia
content is 5 at%, the lattice constant is 10.35 Å.

Figure 3 shows the change in linear shrinkage of (Tb0.7Lu0.3)2O3 ceramics with varying
ZrO2 contents after hydrogen sintering from 1550 ◦C to 1700 ◦C. As shown in the figure,
linear shrinkage increases with increased temperature. The shrinkage of the samples
increases with increased zirconia content at the same sintering temperature. The linear
shrinkage rate of the sample with no additional sintering additives increased linearly in the
range of 1550 ◦C to 1700 ◦C. However, when ZrO2 was added, a plateau gradually appeared
around the temperature of 1600 ◦C~1650 ◦C, and the curve of those samples with zirconia
as a sintering aid could be divided into two sections. Before 1600 ◦C, the sample shrank
rapidly, and the curve slope was relatively high. When the temperature exceeded 1600 ◦C,
the slope was reduced with increased Zr4+ doping, proving that ZrO2 can improve the
densification rate and that ceramics can be rapidly densified below 1600 ◦C with sufficient
zirconia content. The shrinkage curves were nearly identical when the doping content of
Zr4+ exceeded 3 at%.
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Figure 3. Linear shrinkage rate with varying ZrO2 contents after hydrogen sintering from 1550 ◦C to
1700 ◦C.

According to the results presented above, we presintered the ceramics in a hydrogen
atmosphere at 1550 ◦C, combined with hot isostatic pressing sintering at 1575 ◦C to make
the samples fully dense. Tb2O3 undergoes severe phase transformation at 1600 ◦C [12,13],
so a relatively low sintering temperature was chosen to avoid this transformation.

The microstructure of (Tb0.7Lu0.3)2O3 ceramics after hydrogen sintering at 1550 ◦C
with varying ZrO2 contents is shown in Figure 4. With an increase in Zr4+ content from
0 to 3 at%, the pores become smaller, suggesting that the addition of ZrO2 can effectively
reduce the sintering barrier of (Tb0.7Lu0.3)2O3 ceramics and promote pore elimination
during presintering. Subsequently, the phenomenon of pore shrinkage became indistinct
when the addition amount increased to 4 at%. As shown in Figure 4e, the porosity and
pore size increased considerably, suggesting that excessive zirconia is unfavorable for pore
elimination during the presintering process.
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Figure 4. SEM photomicrographs of the fractured surfaces of the (Tb0.7Lu0.3)2O3 ceramics after
1500 ◦C hydrogen sintering with varying ZrO2 contents: (a) 0 at%, (b) 2 at%, (c) 3 at%, (d) 4 at%,
(e) 5 at%.

Figure 5 shows SEM image of the ceramics with varying ZrO2 contents after hot
isostatic pressing sintering. The samples showed mainly transcrystalline fractures, and all
samples presented with high density. As shown in Figure 5a, a large number of intragranu-
lar pores were observed, with a relatively large grain size.
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hot isostatic pressing sintering with varying ZrO2 contents (The pores were marked in red circles):
(a) 0 at%, (b) 2 at%, (c) 3 at%, (d) 4 at%, (e) 5 at%.

On the contrary, no obvious pores can be observed in Figure 5b,c. When Zr content
exceeds 3 at%, some intragranular pores can be observed in Figure 5d,e. The grain size
decreases from 2.23 µm to 1.92 µm with increased ZrO2 content, which could be attributed
to the doping effect of ZrO2, which has been reported in many other sesquioxide ceramic
sintering processes [26–29]. During the high-temperature sintering process of sesquioxide
ceramics, the sintering aid, ZrO2, can enter the lattice of sesquioxide as Zr4+, as shown in
Formulae (2) and (3). It can inhibit the rapid growth of ceramic grains, avoid the formation
of intracrystalline pores and contribute to the full densification of ceramics. As shown in the
figure, this effect is closely related to the concentration of zirconia. When the concentration
is 3 at% or less, the densification of zirconia is considerable, but a further increase in the
content can result in densifying hazards.

Figure 6 shows the in-line transmittance and appearance of (Tb0.7Lu0.3)2O3 transpar-
ent ceramics with varying contents of ZrO2 additive. Figure 6a shows that the samples
sintered with ZrO2 exhibited sufficient optical quality, so the words below the ceramics
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could be clearly seen, and the optical quality was better than that of the ceramic sample
without additive. This result is also confirmed by the transmittance curve of the sample
shown in Figure 6b. The sample without sintering additives has the lowest transmittance,
which could be related to the intracrystalline pores, as shown in Figure 5. With increased
Zr4+ content, the transparency first increased and then decreased, which is also related to
the effect of zirconia. When zirconia content is excessive, it changes the sintering prop-
erties of the material, simultaneously affecting the internal microstructure (as shown in
Figures 4 and 5), ultimately reducing the transparency. The ceramic sample with 3 at%
ZrO2 addition has the best optical quality, with a transparency of 74.96% at 1064 nm and
75.01% at 1550 nm. However, the transparency decreases with a further increase in Zr4+

content to 4 at%, which could be related to the change in the internal microstructure of
the ceramics. All the transmission curves show obvious emission peaks at 483 nm, in
association with the Tb3+ energy transition from 7F6 to 5D4 [11].
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Figure 7a shows the microstructure of 3 at% ZrO2 doped (Tb0.7Lu0.3)2O3 ceramics.
The fracture surface exhibited a pore-free structure, and the grains were tightly bound to
each other. In addition, no secondary phase grain was observed on the grain boundary. As
shown in Figure 5b, the particle size distribution of 3 at% Zr: (Tb0.7Lu0.3)2O3 is mainly in
the range of 1.0–2 µm, and the average grain size is approximately 1.74 µm.
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Figure 8 shows the Verdet constant of (Tb0.7Lu0.3)2O3 ceramics with varying Zr4+

contents at the 650 nm wavelength at room temperature. The Verdet constants for the
ceramic samples were calculated using the following formula:

θ = VHL (4)

where V is the Verdet constant, θ is the rotation angle of the light vector and L is the length
of the magneto-optical material. All samples were polished to 2 mm. As shown in the
figure, the Vedet constant decreases from 339.36 rad·T−1·m−1 to 235.22 rad·T−1·m−1 with
an increase in Zr4+ content from 0 at% to 5 at%. The Verdet constants of (Tb0.7Lu0.3)2O3
ceramics changed depending on the Zr4+ concentration. According to the literature [30,31],
for Tb3+ ions, there are unpaired free electrons on the 4f electron layer, which produce
an uncompensated magnetic moment in the magnetic field, which is the source of the
magnetism. In the external magnetic field, electrons are prone to 4f8−4f7

5d transitions,
which correspond to 7F6–7D5 level transition, demonstrating strong magnetism.
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This phenomenon can be explained as follows. A large number of lattice vacancies and
defects are produced with the addition of ZrO2, which may affect the electron transition
of Tb3+, with an eventual decrease in the Verdet constant. Although the Verdet constant
decreases with increased Zr4+ content, the Verdet constant of (Tb0.7Lu0.3)2O3 ceramics with
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3 at% ZrO2 is 275.28 rad·T−1·m−1, which is still about 2.05 times that of a commercial TGG
single crystal.

4. Conclusions

Highly transparent (Tb0.7Lu0.3)2O3 ceramics were prepared using ZrO2 as a sintering
additive a via hot isostatic pressing sintering process. With increased Zr4+ content, the grain
size decreases; the transparency of the sample increases first and then decreases. The inline
transmittance of 3 at% ZrO2 doped (Tb0.7Lu0.3)2O3 ceramics reached 74.84% at 1064 nm.
The addition of ZrO2 can effectively reduce the sintering barrier of (Tb0.7Lu0.3)2O3 ceramics,
inhibit the abnormal growth of grains and promote the discharge of pores. The average
grain size of the ceramics with 3 at% ZrO2 added is approximately 1.74 µm. The Verdet
constant of 3 at% ZrO2-doped ceramics is 275.28 rad·T−1·m−1, which is still approximately
2.05 times that of a commercial TGG single crystal.
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