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Abstract: In this paper, 3 µm length and 200 nm diameter CoPt nanowire arrays (NWs) with different
Co contents were prepared by electrodeposition at a controlled potential from an aqueous hexachloro-
platinate solution. The synthesis occurred at two different solution pH values (2.5 and 5.5) in an
electrochemical bath free of additives, as well as with saccharin as an organic additive. A complete
morphological, compositional, structural and magnetic characterization of the as-prepared nanowires
has been carried out. The results show that, by controlling the electrodeposition conditions, the Co
content of the alloy can be tuned from 16% to 92%. The crystalline structure of the as-deposited
compounds can also be controlled, with the obtained data showing that the face-centered cubic (fcc)
crystalline structure changes into a hexagonal close-packed (hcp) structure when saccharin is used
as an organic additive during the electrodeposition. The changes in the alloy’s composition and
crystalline structure strongly influence the magnetic properties of the NW’s arrays.

Keywords: CoPt nanowires; electrodeposition; magnetic properties

1. Introduction

Nanotechnology and nanomaterials are the key elements for increasing the efficiency
and performances of different devices and for developing new technologies in almost all
domains of our lives, from medicine and healthcare (targeted drug delivery, regenerative
medicine and diagnostics) to industry (information technology, electronics, textiles, cos-
metics, environmental protection) and space exploration. Nanomaterials manifest novel
physical and chemical properties compared with the properties of the same bulk or single-
crystal materials, which are encouraging and promising for potential new applications or
improving the existing technologies. In the last years, the synthesis, characterization and
use of nanowires have been an emergent topic due to their unusual properties and the high
surface-to-volume ratio of these materials [1–7]. The engineering of functionalized nanopar-
ticles created for multimodal imaging or hyperthermia therapy and the optimization of
their biological application are rapidly growing fields in nanomedicine. Despite the fact that
iron oxide is currently one of the most commonly utilized magnetic nanoparticles for MRI
contrast agents and for hyperthermia, CoPt and FePt with better magnetic characteristics
may be new nano-objects with improved theranostic functions. Due to the clear connection
between the atomic arrangement (surface segregation, strain, chemical order, etc.) and
magnetic/catalytic performance, CoPt nanostructures are particularly intriguing systems.

One of the main goals of the research community is to prepare nanomaterials us-
ing easily controllable and less expensive fabrication techniques, such as electrochemical
deposition, that do not require special logistics (including complex equipment such as
high vacuum equipment, etc.). Among the metallic nanomaterials, nanowires based on
noble (Pt) or transition metals (Co) are widely studied due to their potential applications
in catalysis [8–11], biomedicine [12–15], magnetic recording (bit-patterned media) [16–22],
MEMS (micro- and nano-electromechanical systems) [23], and sensors [24–29]. Future en-
ergy conversion and storage technologies, including water splitting [30,31], low-temperature
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proton-exchange membrane fuel cells (PEMFC) [32,33], and metal–air batteries [34,35], will
all rely heavily on electrocatalysis. Metallic nanostructured alloys are used in these applica-
tions because they enable an improvement in the reaction rate per unit of catalyst weight.
However, improving the stability and efficiency of the electrocatalysts remains crucial;
therefore, a fundamental advancement in their design is required. The well-known catalytic
activity of Pt is counterbalanced by its high cost and scarcity; as a consequence, recent
research is focused on reducing Pt usage by replacing it with non-noble and less expensive
metals, such as Co, and improving, at the same time, its performances in applications as
an electrocatalyst. Several preparation methods have been developed by researchers for
the synthesis of CoPt alloys, such as thermal decomposition/reduction of organometallic
precursors with a long-chain aliphatic diol, also known as the polyol process, the micellar
technique, sol–gel methods and electrochemical deposition [36–39].

Using a potentiostatic electrodeposition approach, high-aspect-ratio magnetic nanowires
with superior crystallinity and a faster growth rate could be electrodeposited inside alumina
templates. Recently, in our laboratory, we have demonstrated the electrocatalytic performance
of CoPt nanowires for the methanol oxidation reaction (MOR) [10] (up to 85 mAcm−2),
which has been increased even though the Pt content was lowered. CoPt alloys, manifesting
optimized catalytic properties for the MOR with different compositions (ranging between 10%
Pt and 90% Co), were obtained by controlling the preparation conditions.

The present study is intended to be a contribution to a better understanding of the
magnetic properties of electrodeposited CoPt magnetic nanostructured alloys. Because they
provide the possibility of fine-tuning the magnetic moments and the magnetic anisotropy
energy by altering the composition and chemical order [40–42], CoPt nanostructures are
one of the most interesting systems among nano-alloys due to their interesting magnetic
properties, which are required for different applications, as was highlighted before. Mag-
netometry (using a superconducting quantum interference device (SQUID) or vibrating
sample magnetometer (VSM), or based on magneto-optical Kerr effect (MOKE)) has been
widely used to characterize Co–Pt nanostructures [43–45], being powerful techniques to
study the magnetic properties (magnetic moment, anisotropy energy, etc.) of nano-alloys.
The short- and long-range order of the alloys affects their various qualities. These ordering
effects for the nanostructured alloys under consideration in this work have a direct impact
on the magnetic properties of the alloy by changing its structural characteristics and chemi-
cal order (due to the direct link between atom arrangement and magnetic behavior). In this
work, we performed global magnetometry using vibrating sample magnetometer (VSM)
measurements to follow the magnetic behavior at room temperature and to study the
magnetic properties of CoPt nanowires prepared under different conditions as a function
of the Co content and the electrodeposition parameters.

The aim of this paper is to analyze the influence of the electrodeposition parameters
during the preparation of CoPt nanowires on their magnetic properties. A special emphasis
is given to the morphological, structural and compositional characterization. We also
present an experimental analysis of the macroscopic magnetic properties.

2. Materials and Methods

The magnetic CoPt NWs were prepared by electrodeposition from a stable hexachloro-
platinate CoPt aqueous solution containing 0.4 M H3BO3, 0.3 M NH4Cl, 0.1 M CoSO4·7H2O,
0.00386 M H2PtCl6, [46]. For the NW electrodeposition, two different solution pH values
(2.5 and 5.5) were used. Additionally, during this work, hexachloroplatinate CoPt aqueous
solution with and without saccharin as Na-salts as additives were used.

The electrodeposition was carried out into the nanopores of the anodic alumina tem-
plate (AAO) provided by Whatman International Ltd., having a 25 mm diameter, a thickness
of 40 µm and a nominal pore diameter of 200 nm. Prior to the electrodeposition, one side of
the AAO template was covered with a thin layer of Ti (10 nm) and Cu (300 nm) (deposited
by sputtering) in order to serve as the working electrode during the electrodeposition.
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The electrochemical deposition of the CoPt alloys inside the alumina nanopores was
performed by controlling the applied potential value. The electrochemical cell (having a
volume of 100 mL) consists of a platinum wire as the counter electrode, an AAO template
as the working electrode and a saturated calomel electrode (SCE) as the reference. The
applied potential was controlled with a Heka potentiostat.

The electrodeposition was performed using different potential values ranging from
−0.7 V/SCE to −1.0 V/SCE during an on-time of 2.5 s and a “rest” potential of −0.1 V/SCE
during an off-time of 1 s. The off-time is necessary for a good “recovery” of the diffusion
layer after the on-time when the electrodeposition occurs. Four sets of samples were
prepared, as follows: two at solution pH value 2.5 (one in the absence of saccharin and
the second in the presence of saccharin) and two at solution pH value 5.5 (also one in the
absence of saccharin and the second in the presence of saccharin). Each sample set contains
four different nanowire arrays obtained at −1 V, −0.9 V, −0.8 V, and −0.7 V, respectively.

Due to the fact that the nanowire growth rate is a function of the electrodeposition
parameters, the electrodeposition rate was determined for each applied potential. It is
well known that the magnetic properties of NWs are a function of their aspect ratio (ratio
of length to width). Therefore, to compare the magnetic properties of NWs fabricated
under different conditions, it is necessary to prepare samples with the same aspect ratio. In
this work, we analyzed the magnetic properties of 3 µm long CoPt NWs, so the synthesis
time was calculated for each applied potential before electrodeposition. It was found that
the magnetic properties of NWs are greatly influenced by two parameters: the chemical
composition of the alloy and the crystalline structure of the sample.

The as-prepared NW length and microstructure were observed by high-resolution—
scanning electron microscopy (HR-SEM) using a CrossBeam System Carl Zeiss NEON40EsB.
The elemental composition was determined by EDS measurements using the EDS facility of
the same HR-SEM system. The magnetic properties were investigated by a vibrating sample
magnetometer (VSM) using a Lake Shore VSM 7410 Vibrating Sample Magnetometer, while
the crystalline structure of the electrodeposited NWs was studied by X-ray diffraction
(XRD) by means of a Bruker AXS D8-Advance X-Ray Diffractometer with parallel optical
geometry using Cu-Kα radiation (λ = 1.5406 Å).

3. Results and Discussion
3.1. Morphological and Compositional Characterization

The morphology, aspect ratio and composition of NWs are important parameters that
need to be analyzed as their physical (e.g., magnetic) properties are strongly influenced by
them. In order to prepare NWs with homogeneous and reproducible properties, an impor-
tant request is to have very good control of the electrodeposition parameters. Additionally,
the synthesis of NW arrays with a specified length involves the knowledge of the NW’s
growth speed. In this regard, prior to the synthesis of targeted 3 µm length NWs, the growth
speed was determined in different experiments. After performing the electrodeposition
inside the AAO nanopores, the cross-section of all the samples was analyzed by HR-SEM,
with the results presented in Figure 1. The HR-SEM analysis of the electrodeposited NW
arrays shows that the CoPt alloy is uniformly electrodeposited inside the nanoporous
template for all the samples. Additionally, it was confirmed that the microstructure of the
nanowires is a function only of the alumina nanochannel diameter and shape and does not
vary with the electrodeposition parameters or electrodeposition bath composition. Figure 1
shows typical HR-SEM images of the AAO template cross-section filled with CoPt NWs
electrodeposited at different potential values from the solution with saccharin at pH 5.5. As
was mentioned previously, since the magnetic properties of the nanowires are a function of
their aspect ratio, in this work, we calculated the electrodeposition time in order to prepare
nanowires of the same length (the diameter of the nanowires depends on the template
nanopores’ diameter and not on the electrodeposition conditions). The measured diameter
of the nanowire is 210 mn, while the measured sample lengths are 3 ± 0.4 µm.
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Figure 1. Cross-section HR-SEM image of CoPt nanowire arrays of 3.0 µm length prepared at different
applied potentials: −0.7 V (a), −0.8 V (b), −0.9 V (c), −1.0 V (d).

The compositional analysis of the CoPt NWs performed by EDS establishes the pres-
ence of template elements (aluminum and oxygen) and the elements of the electrodeposited
alloy (cobalt and platinum), showing the successful electrodeposition of the CoPt alloys
inside the alumina template. However, the obtained compositional data (presented in
Table 1) demonstrate that the alloy’s content is substantially influenced by the applied
potential and solution pH value.

Table 1. CoPt alloy composition determined by EDS measurements.

Applied
Potential (V)

pH 2.5 pH 5.5

Without Sacch. With Sacch. Without Sacch. With Sacch.

Co% Pt% Co% Pt% Co% Pt% Co% Pt%

−0.7 16 84 37 63 35 65 40 60
−0.8 34 66 53 47 42 58 46 54
−0.9 44 56 73 27 66 34 77 23
−1.0 92 8 85 15 88 12 91 9

As can be observed from the table below, the chemical composition of the alloy can
be tuned as a function of the electrodeposition parameters. Thus, CoPt alloys can be
prepared with a Co content that varies from 16% to 92% by switching the potential value
between −0.7 V/SCE and −1.0 V/SCE. Concerning the presence of additives during the
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electrodeposition, the addition of saccharin leads to the preparation of magnetic NWs with
a higher Co content for both pH values. A detailed description of the influence of the pH
value and saccharin addiction on the alloy composition has been presented in our previous
work [10].

The alloys’ properties are strongly connected to their chemical composition, so it is very
important to prepare materials having homogeneous compositions. In our previous work,
we show the existence of a composition gradient in the CoPt thin films electrodeposited
at a constant potential [2,47]. In order to avoid the apparition of a composition gradient
along the nanowire’s length, during this work, we establish (as we mentioned previously)
a rest potential and time off. After setting these parameters, we prepared CoPt NW
arrays having an NW length of 20 µm from the solution with saccharin at different pH
values (2.5 and 5.5) and studied the composition along the nanowire’s length by EDS. The
electrodeposition was carried out by applying −1 V/SCE during the on-time of 2.5 s and
0.1 V/SCE during the off-time of 1 s. The SEM analysis (Figure 2a,c) shows the NWs are
uniformly electrodeposited inside the alumina template, having uniform lengths, while the
composition along the length of 20 µm NWs (presented in Figure 2b,d) was in the range of
±2% of the mean composition of CoPt.
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3.2. Evolution of the Crystalline Structure of the CoPt NW’s Function of the Solution pH and
Organic Additive

The electrodeposition bath pH, as well as the presence of the organic additive, strongly
influence the crystalline structure of the as-deposited CoPt NWs, as was previously demon-
strated by our team [7]; the obtained results are presented in Figure 3.
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The XRD analysis shows that the CoPt NWs prepared from the solution free of ad-
ditives present an fcc structure with a crystallite orientation along (111) and (220) fcc
reflections, while the NWs prepared in the presence of additives exhibit an hcp structure
having the predominant growth axis along the (100) reflection. However, small differences
in crystallite orientation are visible on the diffractograms: the diffraction pattern of the
NWs synthetized at pH 2.5 from solution with saccharin presents a (101) hcp reflection
and, by increasing the solution pH from 2.5 at 5.5, the (101) reflection disappears, and a
new diffraction peak characteristic of the hcp (311) reflection appears. As will be discussed
further, the crystalline structure influences the magnetic properties of the as-prepared
CoPt NWs.

3.3. Influence of the Preparation Conditions on the Magnetic Properties of the CoPt NWs

The magnetic properties of CoPt NWs prepared under different conditions were
studied at room temperature as a function of the Co content and the electrodeposition
parameters. The easy magnetization axis is perpendicular to the NW’s growth axis for
all the analyzed samples. The magnetic anisotropy of nanowire arrays is determined
by four main contributions: the magnetocrystalline anisotropy, the shape anisotropy, the
magnetostatic anisotropy and the magnetoelastic anisotropy. In Co-based nanowires,
magnetoelastic anisotropy can be disregarded. Therefore, there is strong competition
between the magnetocrystalline, magnetostatic and shape anisotropies in the magnetic
nanowires. The first two anisotropies induce an easy magnetization axis perpendicular
to the nanowire axis, depending on the crystalline phase and its growing direction, while
the shape anisotropy determines an easy magnetization axis parallel to the nanowire
length [48,49]. Since the aspect ratio of the nanowires is quite similar for the different
studied compositions, and the nanowires have been deposited into the same type of
templates, the contributions of shape anisotropy and magnetostatic anisotropy are expected
to be the same for all samples. The variation of coercivity in our samples comes from the
contribution of the magnetocrystalline anisotropy, which depends on the crystalline phase
and its growing direction induced by the electrodeposition parameters.

Figure 4 shows the magnetic hysteresis loops of the CoPt NW arrays synthetized at
−0.9 V from the electrochemical bath with and without saccharin as an organic additive at
pH values of 2.5 and 5.5.

The values of the magnetic coercivities (Hc) for the magnetic field applied parallel
and perpendicular to the NW’s axis of the CoPt NWs prepared at pH 2.5 (solution with
and without saccharin) and pH 5.5 (also with and without saccharin) as a function of
the applied potential are presented in Table 2, while Figure 5 shows the variation in the
magnetic coercivity values (Hc) depending on the alloys’ Co content for the magnetic field
applied parallel and perpendicular to the NW axis of the CoPt NWs prepared in a pH 2.5
solution without (Figure 5a) and with saccharin (Figure 5c) and a pH 5.5 solution without
saccharin (Figure 5b) and with saccharin (Figure 5d).

Table 2. Magnetic properties of CoPt NWs.

Applied
Potential

(V)

pH 2.5 pH 5.5

Paral. Coercivity
(Oe)

Perp. Coercivity
(Oe)

Paral. Coercivity
(Oe)

Perp. Coercivity
(Oe)

With
Sacch.

Without
Sacch.

With
Sacch.

Without
Sacch.

With
Sacch.

Without
Sacch.

With
Sacch.

Without
Sacch.

−0.7 222 26 263 26 150 41 166 34
−0.8 409 38.0 479 42.7 172 53 179 64
−0.9 454 176.3 481 221.7 412 320 333 323
−1.0 457 239.0 491 280.1 414 342 361 332
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Figure 4. Hysteresis loops of the CoPt NW arrays electrodeposited by applying −0.9 V from electro-
chemical solution with different characteristics.

The magnetic properties are influenced by both the applied potential and the electro-
chemical bath composition. The shape of the magnetic hysteresis loops and the Hc values
of the CoPt NWs show the competition between the shape anisotropy and crystallographic
anisotropy. Our results show that, for the samples prepared from the electrochemical bath
with the same characteristics (pH, presence/absence of additive), the Hc values increase
with the increasing value of the applied potential. These results are in good accord with
the EDS measurement: Co content in the alloy increases with the applied potential value.
Additionally, the Hc value is higher for the samples prepared at the same pH and potential
but in the presence of saccharin than those obtained from the solution without an additive.
The highest Hc value was obtained for the NWs prepared in the presence of additives
and at pH 2.5. All the samples from this batch manifest higher Hc values compared with
those obtained at pH 5.5. The magnetic behavior of CoPt NWs is the result of two factors:
(1) Co content and (2) the crystalline structure of the alloy. Considering these factors, the
variation in the Hc value can be easily understood: the Hc increases with the increasing
Co content of the sample and with the proportion of the hcp phase (hcp alloys manifest
strong anisotropic behavior compared with fcc alloys). The increase in the coercivity for
the samples obtained in presence of additives is the result of the fact that the Co content
increases when additives are added as well as when the crystalline structure is changed.
Nevertheless, the composition of the NWs prepared in the presence of saccharin slightly
differs from those prepared from the solution without additives, but the Hc values are
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different; specifically, they are higher for the samples prepared at smaller pH values. In this
case, the magnetic properties are strongly influenced by the crystallographic structure of
the CoPt alloy. As we showed previously, the addition of saccharin as an additive into the
electrochemical bath leads to the change of the crystalline structure from cubic to hexagonal,
but with a different crystal orientation function of the pH of the electrochemical bath. For
our samples, despite the fact that the predominant crystalline orientation is the (100) axis,
the small number of crystals oriented along the (311) axis present in the samples prepared
at pH 5.5 in the presence of saccharin lead to the decrease in Hc values compared with the
samples obtained from the solution at pH 2.5 in the same preparation conditions.
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4. Conclusions

CoPt NWs with a 200 nm diameter and 3 µm length were obtained from a stable hex-
achloroplatinate solution by electrodeposition at a controlled potential. The electrochemical
synthesis was carried out by electrodeposition in a sealed three-electrode cell from an elec-
trochemical bath with and without saccharin at pH 2.5 and 5.5. It was demonstrated that
the chemical composition of the as-deposited alloys is a function of the applied potential,



Magnetochemistry 2022, 8, 176 10 of 12

pH of the electrodeposition solution and presence of saccharin as an organic additive in the
plating solution. Thus, the magnetic element concentration in the alloy can be tuned from
16% to 92% by adjusting the electrodeposition potential value and solution characteristics.
The Co content is increased, at the same time, with the increase in the electrodeposition
pH value. The same effect on the electrodeposited alloy composition was observed when
saccharin was added to the electrochemical bath. The NW’s composition remains stable
during the electrodeposition process since no composition gradient was found along the
nanowire’s length in the present working conditions. The addition of saccharin into the
electrochemical bath also has an important influence on the CoPt NW’s crystalline structure
as well as the crystallite orientation and, consequently, on the nanowire’s magnetic behavior.
Concerning the crystalline structure, the presence of saccharin in the plating solution favors
the preparation of the hcp phase having a predominant crystalline orientation along the
(100) axis. However, a small number of crystals are oriented along the (101) or (112) axis as
a function of the electrodeposition bath pH. The change in the alloy structure is reflected in
the magnetic properties: the coercive magnetic field increases when the saccharin is added
to the electrochemical bath. The magnetic behavior of the CoPt NW arrays is discussed as a
function of the plating solution pH, presence of additives and electrodeposition potential.
It was found that the magnetic coercivity values (Hc) of the as-prepared nanowires depend
on the alloy’s Co content regardless of the direction of the applied magnetic field (parallel
and perpendicular to the NW’s axis).
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