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Abstract: The kinetic equation of the accumulation of magnetic particles from axial flow on a
magnetized ferromagnetic wire in an external homogeneous magnetic field has been developed
in this study. A new differential equation of the evolution of the accumulation radius over time,
which considers both the capture and the detachment of the particles in the accumulation profile
on the wire, has been formulated. The evolution of the radius of the accumulation profile over
time was obtained from both the differential kinetic equation based on population theory and from
the stochastic Fokker–Planck equation. In the limit approach ( t→ ∞ ), it was observed that the
expressions of the saturation radius of the accumulation radius on the magnetized wire of the
particles obtained from both models were the same. It is emphasized that the obtained results are
valid for both the initial and steady-state build-up of the particle capture process. These results were
compared with the experimental results from the literature, and it was observed that the theoretical
and experimental results were in good agreement. The effects of both capture and detachment events
on the accumulation of particles on the magnetized wire were evaluated.

Keywords: magnetic particles; particle building; capturing and detachment; Fokker–Planck equation;
saturation radius; modeling

1. Introduction

Despite a half-century of progress, improvements on the high-gradient magnetic
separators (HGMSs) still continue and they are successfully applied in new industrial
areas [1–15]. This physical method is based on the principle of depositing the submicron-
sized particles of liquids and gases by capturing them in a high-gradient magnetic field.
This separation method does not change the chemical properties of the working media
and exhibits a remarkably high separation performance. HGMS structures that are made
of ferromagnetic matrix elements (wire, rod, sphere, etc.) which are placed in an external
homogeneous magnetic field have the most convenient features in terms of energy saving as
well as simplicity. When media carrying submicron-sized magnetic particles pass through
the HGMS matrix, these particles can be easily captured and deposited in a high-gradient
magnetic field. HGMSs, which were initially developed to be used in the enrichment
processes of minerals [1–15], were rapidly and effectively adapted in all fields, including
environment, heavy industry, chemistry, food industry, and especially in medicine and
biology [16–25]. With the new application areas, the theory and practice of HGMSs has
significantly advanced [26] in the matrices used in HGMS systems and especially the
ones composed of ferromagnetic wires [1,4,6,10]. In such matrices, although the external
homogeneous magnetic field is perpendicular to the ferromagnetic wire, the direction of
suspension flow carrying the magnetic particles is in the transversal, longitudinal, or axial
direction compared to this wire. Axial magnetic separators are the most convenient type
of HGMS, both economically and structurally. Therefore, the most comprehensive HGMS
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theory has been developed for axial-type magnetic separators [27–45]. The basis of this
theory is a system of differential equations expressing the mutual effects of magnetic (FM)
and hydrodynamic (FD) forces acting on the magnetic particle moving in the gradient
magnetic field, formed around the infinite ferromagnetic wire magnetized by an external
homogeneous magnetic field. In HGMS theory, this model is defined as the “trajectory
model” [1,4,6,29]. The most studied approach in the literature based on the “trajectory
model” in axial-type HGMSs is the capture of magnetic particles on a single magnetized
wire [27–32,46]. In some studies, magnetic particle capture problems in magnetized wires
with ordered or random matrix elements have also been investigated [28,30–32,42,47–50].
In many studies, magnetic particle capture problems on a single magnetized wire have
been investigated using different flow cell models in both potential and laminar flows of
suspensions [27–29,47,49,51–53]. In some studies, the effect of the non-Newtonian flow
properties of the suspension carrying magnetic particles on the capture of particles accord-
ing to the “trajectory model” was also evaluated [47,52,54]. It has been emphasized that
such approaches are important in vivo experiments in magnetic drug targeting processes
in medicine and biological environments [55].

The problems of keeping magnetic particles in axial magnetic separation with a
bounded flow field based on the “trajectory model” were also sufficiently studied in the lit-
erature for the first time [41,56]. In the literature, the capture of thin sized (<1 µm) magnetic
particles using the “trajectory model” has also been investigated using diffusion equa-
tions [49,57–60]. By developing the “trajectory model”, the problems of build-up capturing
magnetic particles on the magnetized wire in the axial potential flow of the suspension
were investigated [30]. The kinetic equation of the particle capture phenomenon in parallel-
type HGMSs was formed and analytical solutions were obtained [30–32]. The differential
equation of the build-up of magnetic particles by capturing them in axial flow-type HGMSs
has also been established [32–38]. Thus, the theory that considers both the travelling and
accumulation time of these particles on the magnetized wire has been developed [38]. In
many studies, theoretical and experimental investigations of the capture of magnetic parti-
cles on the magnetized wires or rods with different geometries (ellipse, square, rectangle,
etc.) have been carried out [39,42,43,61].

In addition to the theoretical studies, experimental investigations of the capture of
magnetic particles in axial flow on the magnetized wire have also been carried out in
the literature [30–32,34–37,62,63]. In these experiments, videos and photographs of both
capture of the particles and formation of the build-up or accumulation profile on the
wire were obtained. Based on these results, an empirical model of the evolution of the
initial build-up profile over time was established [30–32,38]. Analysis of these studies
indicates that some unsolved problems exist in magnetic particles captured and built-up
on a magnetized wire in the theoretical and practical investigation.

In general, the analytical solution of the particle motion equation around the magne-
tized wire in a non-steady-state case is not possible. Therefore, an approximation solution
of this equation can be obtained. In this case, two theoretical approaches are used to
investigate the phenomenon of particle capture and accumulation processes:

(1) Determination of the effective length that this particle can capture on the magnetized
wire, based on the motion equation of the particle around the wire.

(2) Establishment and solution of the kinetic equation of the build-up profile, which
determines the evolution of the particles captured and accumulated on the wire.

In HGMS theory, the first approach is frequently used. However, for determining
the performance, the effective working time, other output parameters, and for realizing
optimum design and control of HGMSs, it is more important to examine the kinetic
equation of the build-up profile. According to the analysis of the results presented in
the literature, it showed that examination of this approach in HGMS theory and practice
is insufficient [32,38]. One of the most important reasons for this insufficiency is that the
kinetic equation of the build-up profile is quite approximate. Therefore, it does not fully
explain the physical properties of the particle capture–detachment mechanism on the wire.
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Thus, the kinetic equations presented in the literature describe the evolution of the particles
deposited on the magnetized wire only at the initial moment [32,34,35,38]. In this case, it
is impossible to obtain the evolution of the accumulation radius of the build-up profile at
t→ ∞ . This is because, in the approach, it is assumed that the particles accumulate by
capturing on the wire from the initial moment, and that they do not break off and maintain
their position until the end. In reality, the particles accumulated on the wire may break off
under suitable conditions and be caught again on the wire or pass without being caught
at all. In other words, the detachment process of captured particles is ignored in these
approaches. Moreover, this event may be repeated once or several times. This phenomenon,
which is dependent on the influence of the geometric, magnetic, hydrodynamic, rheological,
and other parameters of the HGMS system, should be considered in the kinetic equation.
Hence, it should also be considered that both the capture and detachment of particles are
random stochastic events in the kinetic equation of the build-up profile. In this case, the
build-up profile obtained from both the “trajectory model” and the stochastic model should
be evaluated by comparing the saturation radius.

In this article, the kinetic equation of the deposition of magnetic particles by keeping
them in axial flow is obtained by considering both the capture and detachment of the
particles. From the analytical solution of this equation, the radius of the build-up profile
of the particles on the wire and the evolution of the build-up saturation radius, which is
the limit value of this radius, are obtained. The saturation radius of the build-up profile
is modeled by using two methods. The first one is used to determine the evolution of
the build-up radius of the particles on the wire over time based on the population theory.
The second one is used to obtain the stochastic variation function of the evolution of the
deposition radius along the wire as a special solution of the Fokker–Planck equation.

2. Formulation of the Problem

In general, the principal schema of capturing and accumulating magnetic particles on
a magnetized ferromagnetic wire in an external magnetic field in axial HGMSs is illustrated
in Figure 1.
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Figure 1. Principal schema of axial particle-capturing and build-up systems: (a) particle capture,
(b) particle build-up at high Reynolds number, (c) particle build-up at low Reynolds number.

The ferromagnetic wire with radius, a, length, L (L >> a), and saturation magnetiza-
tion value, Ms, lies on the Oz axis, and the external homogeneous magnetic field, H0, acts
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orthogonal to this wire in the Ox direction. The magnetic particle in spherical form with
radius, b, magnetic susceptibility, kp, and density, ρp, contained in the carrier suspension
medium with density, ρ, and magnetic susceptibility, k f , makes potential flow in the Oz
direction in parallel with the ferromagnetic wire with v0 velocity. The external magnetic
field, H0, allows the ferromagnetic wire to be sufficiently magnetized. Thus, magnetic
particles are captured and accumulated on this wire with accumulation profile radius R.

The carrier medium is an ideal suspension when compared to the magnetized ferro-
magnetic wire and is a viscous suspension according to the particles it contains. The move-
ment of particles around the magnetized wire and their accumulation on this wire by
capturing are generally studied according to the “trajectory model” [1,4,30,41]. Based on
this approach, the motion equation is studied as a differential equation formed from the
balance of all forces acting on the particle. As in these studies, particle sizes are traditionally
assumed to be less than 1–2 µm [1–6]. In this case, it is assumed that the main forces acting
on the particle are magnetic (FM) and hydrodynamic (FD) forces, and the effects of other
forces can be ignored. Under these conditions, the motion equation of the particle in the
magnetic field can be simplified as follows:

FM + FD = 0 (1)

If we consider the obvious expressions of these forces, the accumulation of particles in
the magnetic field according to the “trajectory model” in HGMS theory can be examined
with two approaches:

i. Determining the HGMS performance by defining the area of the particle’s capture
region (active region) or the capture radius on the magnetized ferromagnetic wire.

ii. Determining the capture saturation radius and HGMS performance from the initial
accumulation profile of the particles deposited on the magnetized wire.

The differential equation of capturing the particle in axial parallel potential flow in a
high-gradient magnetic field is obtained as follows [1,4,29–31]:

dra
dt = − vm

a

(
Kµ

r5
a
+ cos 2∅

r3
a

)
ra

d∅
dt = − vm

a
sin 2∅

r3
a

dza
dt = v0

a

(2)

where vm = 2µ0kH0 Msb2

9ηa is the “magnetic velocity” [1], (r,∅, z) are cylindrical coordinates,
ra =

r
a , za =

z
a , η is dynamic viscosity of the carrying fluid, Ms is saturation magnetization

of the ferromagnetic wire, k = kp − k f is effective magnetic susceptibility, and Kµ is the

coefficient of magnetization, Kµ =

{
Ms

2H0
1

f or
f or

H0 ≥ Ms
2

H0 < Ms
2

.

Analytical and numerical solutions of this equation system for laminar and potential
flows of both Newtonian and non-Newtonian suspensions have been sufficiently studied
in the literature [4,28,30,42,47,52,63–67]. Simple formulas for HGMS performance can
be determined by using the “capture cross-section” [27,29–31] or “capture radius of the
wire” [1] parameters obtained from the solution of Equation (2).

To determine the HGMS performance or other integral characteristics, the build-up
profile of the particles captured on the magnetized wire is required. Examination of the
profile is obtained from the improved solution of Equation (2). This method determines not
only the output characteristics of the HGMS, but also the kinetics of the particle capture
mechanism in the matrix of the magnetic separator. These results allow determination
of the evolution of the performance of HGMSs over time in advance and obtaining the
optimum design and control of the magnetic separator for circulating operation. As
shown in Figure 1a, let us assume that the magnetic particles entering the active region
of the magnetized wire with the ∆S0 field from the initial point (r0,∅0, 0) are deposited
by capturing at the ∆Sz surface area at the (R, Φ, Z) point on the wire. The build-up of
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these magnetic particles in this region is expressed by the following differential equation
system [30–32]:

dRa
dt = cos 2Φ

τR3
a

dΦ
dt = sin 2Φ

τR4
a

dZ′
dt = − 1

τ

with τ =
ερpa
c0vm

, Z′ =
(

Z
a

vm
v0

)
, Ra =

R
a

(3)

where ε is the packing volume fraction of solids in the deposit, c0 is the mass density and
concentration of the solid fraction in the fluid suspension, and ερp is the effective density
of the magnetic particles in the deposit on magnetized wire. The solution of the build-up
differential equations of particles, expressed by Equation (3), allows determining the initial
build-up profile of the accumulation and its profile at different times [30–32]. The resulting
expressions obtained in the more accurate solution of Equation (3) provided the change of
saturation accumulation radius, Rs, according to the Reynolds number of the particle and
the vm/v0 ratio in the accumulation event [38].

In the literature, the equation in which the evolution of the accumulation radius over
time is consistent with the experimental data is provided as follows [35,36]:

Rn
a = At + 1 (4)

here, A and n are empirical values depending on the magnetic, geometric, and hydrody-
namic parameters of the system, and these are essentially variable parameters. For example,
if the Reynolds number of the particle changes in Re < 0.3 and Re > 103, n continuously
changes from n = 4 to n = 2.5 [34,36]. This range of variation may differ if the morphology
and concentration of the magnetic properties of the captured and accumulated particles
change. While n = 3 remains constant in the accumulation of strongly magnetic particles
(Fe3O4) [46], n may vary in the range of (n = 2.9–4.2) or remain as n = 3 in weak magnetic
particles, depending on the suspension concentration [36]. Although Equation (4) changes
slightly with the increase in the viscosity of the medium carrying the magnetic particles,
n = 3 remains.

However, all these solutions represent the initial moment of the accumulation and
aggregation process. In experimental and theoretical studies, the accumulation profiles
of the particles on the magnetized wire may be different depending on the magnetic field
and geometry of the HGMS system, magnetic properties, morphology of the captured
particles, and the flow hydrodynamics (e.g., potential, laminar, and turbulence) of the sus-
pension [68]. In addition, the accumulation saturation profile is dependent on the Reynolds
number. For example, the principle profiles of the accumulation saturation radius at high
and low Reynolds numbers are shown in Figure 1b,c [68]. Unlike the aforementioned
studies [31,32,38], which are based on the balance equation of the forces acting on the parti-
cle in the capture region, the accumulation saturation radius in [68] is determined according
to the balance equation of the moments acting on the particle positioned on the saturation
surface. However, this statement does not express the kinetics of the accumulation process
over the whole study period because the accumulation of captured particles is assumed to
be only a continuously developing event in these studies. In addition, according to the stud-
ies presented in [69], high performance can be obtained even in advanced turbulent flows
in parallel flow HGMSs. Therefore, the accumulation of particles on the magnetized wire is
observed as stochastic capture and detachment events. In this respect, Equations (2) and (3)
consider only capture in these events, and detachment processes of capturing particles
are ignored. However, with the development of Equation (3), a theoretical model can be
formulated that considers both the capture and detachment through the particles on the
magnetized wire. In this model, the following assumptions are made by considering the
results obtained from the theoretical and experimental studies presented in [36]:

(a) The initial accumulation of particles captured on the magnetized wire occurs in
regions of the highest magnetic field gradient (∅→ 0). The accumulation of particles
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in these regions of the magnetized wire is predominantly aggregation during the
initial phase of deposition processes. Deposition of the captured particles on the wire
remains predominant until the saturation radius (Rs) is formed. During this process,
if the particle captured in the active region breaks for any reason (turbulence, drag,
etc.), this particle can be drifting and captured in another position on the wire, or the
breaking events of the captured particles are very weak.

(b) Detachment and divergence events of the particles are more dominant at the level
of the saturation profile of the particles formed on the magnetized wire and in the
region above it (R ≥ Rs). This is a critical point for HGMS performance, after which
the performance becomes minimal or negligible. The time required for this condition
to occur is also expressed as the safe operating time of the separator.

As seen from these approaches, the accumulation profile of particles on the magnetized
wire can be evaluated by the variation of the accumulation radius (R). In general, this
change is a stochastic event that occurs with both capture and detachment events, and the
analysis of events can be obtained by solutions of stochastic integro-differential equations.
However, the capture and breaking off of particles for a certain period can be considered as
the change of the median statistical value of the accumulation radius. In this case, it can be
simplified to examine these events with stochastic equations.

In fact, the effects of a critical Reynolds number and turbulence events on perfor-
mance have not been studied in detail in HGMS theory and practice presented in the
literature [1–5]. In all cases, the flow of the suspension carrying the magnetic particles is
assumed to be potential or laminar, and it is assumed that the performance of the HGMS
will decrease with the formation of a turbulent flow regime. However, due to the nonlinear
variation of the velocity profile in the porous media, turbulent flow in the pores can occur
without the formation of the critical Reynolds number. In this case, the initial or developing
small-scale turbulences do not decrease the HGMS performance—it may even increase it
to a certain limit. Accordingly, unlike the matrices of conventional separators, the effects
of small-sized turbulence events on the performance of magnetized matrices should be
examined more seriously. In this study, the accumulation kinetics of the particles on the
magnetized wire is discussed only by considering the mechanism of capture–detachment
events. In this study, the development of the build-up profile of the particles on the wire
was studied with two approach models, as follows:

(a) The solution model of the differential equation expressing both aggregation and break-
ing away of particles captured in the active region. This model is generally constructed
from nonlinear integro-differential equations based on population balance [70].

(b) The solution model with the Fokker–Planck equation as a stochastic event observed
with both capture and detachment processes at the same time in turbulent flow of
particles captured in the active region.

The differential equation, which also expresses the capture and detachment events at
the saturation radius level (Rs), can be formed as follows:

The continuous aggregation of particles captured on the magnetized wire in the
magnetic field is determined by Equation (3) in the ( Φ→ 0) condition. Breaking of the
captured particles develops with the effect of adhesion forces and small-scale turbulent
oscillations, which occur due to the roughness caused by the accumulation of the captured
particles on the wire. This breaking velocity achieves growth with the increase of the
accumulation radius. In other words, it is usually dR

dt ∼ R.
In this case, considering that ( Φ→ 0) based on Equation (3), the change of the ac-

cumulation radius after saturation time can be written considering both the capture and
detachment events of the particles with the following equation:

dRa

dt
=

Ka

R3
a
− KdRa Ra|t=0 = Rsa (5)

here, Ka = 1/τ is the accumulation coefficient, Kd is the detachment coefficient, Rsa = Rs/a,
and Rs is the particle build-up saturation radius. The detachment coefficient is usually
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directly proportional to the particle entrainment velocity, the flow rate of the suspension,
and the size of the deposited particles and depends on the other hydrodynamic and physical
parameters of the system. It can be evaluated experimentally or according to the kinetics of
the particles deposited on the wire or the forces or moments acting on the particles in the
last layer of the accumulation profile [26,38,68].

The solution of Equation (5) is obtained as follows:
R
Rs

= 4
√

K1(1− e−t1) + e−t1 , K1 =
Ka

KdR4
sa

=
K

R4
sa

, t1 = 4Kdt (6)

As seen from Equation (6), when t1 → ∞ , the accumulation radius of particles becomes:

R∞

Rs
= 4

√
Ka

KdR4
sa

(7)

On the other hand, the balance between capture and detachment in the accumulation
event of particles is also obtained when dR

dt = 0. Based on Equation (5), this is achieved

when Ra = Rsa = 4
√

Ka
Kd

= 4
√

K . In this case, since K = 1, this value determines the limit of
the build-up profile.

Figure 2 shows the non-dimensional changes of R
Rs

= f (t1) at different K1 values.
When K1 > 1, the captured particles predominantly accumulated on the wire. Moreover,
when K1 >> 1, the capture and accumulation probability of particles is more advanced.
In Equation (5), in potential and laminar flow situations, the limits of these events can be
approximately determined at a certain flow rate of the suspension. For example, in the first
calculations, it is possible to assume that Rs

a ≈ 10 for the radius particles with δ < 10 µm
in axial flow [34,36]. In small-sized turbulent flow, even in K1 � 1 states, the probability of
coagulation and re-attachment of these particles by colliding in the active region is high
due to the breaking of previously captured particles.
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The saturation radius (Rs) of the accumulation profile is assumed as the initial condi-
tion in Equation (5). Because, after the saturation radius was formed, the capturing and
detachment processes of the particles were more intense. In this case, the full separation
time can be large enough. However, this equation also enables determining the deposition
evolution of particles on the wire from the initial moment R|t=0 = a because the time
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required for the particles to be captured on the wire from the initial time they enter to the
capturing zone (traveling time) is very small compared to the full separation time.

In these cases, the solutions of Equation (5) would be as follows:

Ra =
4
√

K(1− e−t1) + e−t1 t1 = 4Kdt , R|t=0 = a (8)

The capture and build-up of the magnetic particles in the active region of the wire can be
modeled by using the Fokker–Planck equation as stochastic processes [71]. The Fokker–Planck
stochastic equation is used to analyze disperse systems in which the media properties and
dimensions of the disperse mixture are continuously changing [72,73]. In fact, the variation
of the accumulation radius in the case of both capture and detachment of the particles
is in the pulse or step form, and they are not continuous. However, since the radius of
saturation is large enough compared to the dimensions of the particles, we can assume that
this variation occurs with small amplitude fluctuation which is approximately constant.
Therefore, we can use the Fokker–Planck equation to examine this phenomenon, assuming
the variation of the saturation radius as approximately continuous when the particles
are captured and build-up on the magnetized wire. We assume that the variation of the
accumulation radius with time is according to Equation (5). To facilitate future applications,
Equation (5) can be written based on the square of the saturation radius:

dy
dt

=
2Ka

y
− 2Kdy (9)

where y = R2
a.

In this case, the simple form of the Fokker–Planck equation would be as follows [72,73]:

∂P(y, t)
∂t

= −2Kd
∂

∂y

[(
K
y
− y
)

P(y, t)
]
+

B
a4

∂2P(y, t)
∂y2 P(y, t)|t=0 = P0(y) (10)

here, P(y, t) is the density of the distribution function of the variation of the accumulation
radius, and B is the stochastic diffusion coefficient.

Some analytical solutions of the Fokker–Planck equation for steady states are presented
in [72]. Analytical solutions for different types of kinetic equations have been studied in
detail in [73]. In this respect, the analytical solution of Equation (10) can be obtained as [73]:

P(y, t) = yθexp
(
− a4Kdy2

B

) ∞

∑
n=0

CnL(α)
n

(
a4Kdy2

B

)
exp(−4Kdnt) (11)

here, θ = 2a4Ka
B , α = θ−1

2 , L(α)
n is the Laguerre polynomials, and the coefficient

Cn =
θ

θ+1
2
∫ ∞

0 P0(y)L(α)
n

(
a4Kdy2

B

)
dy

K
θ+1

2 2
θ−1

2 Г
(

n + θ+1
2

)
n!

. (12)

Equation (11) allows examining the changes of the distribution function continu-
ously with time considering both the capture and detachment events. In this case, since

L(α)
n

(
a4Kdy2

B

)
= 1, the special solution of the distribution function in case t→∞ would be as

follows [73]:

P∞(y, t) = P∞(y) = C0yθexp
(
− a4Kdy2

B

)
, C0 = 2

(
−Kd

B

) θ+1
2B

(13)

An especially important result is obtained from Equation (13). If the magnetized wire
is long enough (theoretically infinite), the distribution function of the accumulation radius
on the wire reaches the limit value, P∞(y, t) = P∞(y). Moreover, this value is independent
of the initial distribution value (P0). Therefore, the limit value of the accumulation radius
(saturation radius, Rs) can be calculated as follows:

y∞ = R2
sa =

∫ ∞

a
yP∞(y, t)dy (14)
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Using Equation (13), we can determine the coordinates of the maximum value (R∞ or
Rs) of the limit approximation which the accumulated particles spread along the wire:

∂P∞(y, t)
∂y

= 0 ymax =

√
Ka

Kd
(15)

Therefore, the accumulation radius of captured particles in the t→ ∞ state is:

Rsa =
4

√
Ka

Kd
(16)

As can be seen, this expression is the same as the result obtained in Equation (7).
According to these results, as the Ka/Kd ratio decreases, in other words, as the accumulation
of particles captured on the magnetized wire weakens, the maximum of the dispersion
function shifts towards the lower values of the accumulation radius. On the contrary, if the
Ka/Kd ratio increases, that is, the probability of capturing and accumulating particles is
more effective, the maximum of the dispersion function shifts towards higher values of the
accumulation radius. In other words, the accumulation saturation radius of the particles
deposited on the magnetized wire will be large in the regions where the capture is dominant
along the wire and less in the regions where the detachment is dominant. On the other hand,
as can be seen from Equation (16), the accumulation saturation radius, Rs, is determined
by the Ka/Kd ratio. Therefore, the relationship between Ka and Kd can also be evaluated
by using Rs values from the experiments. As a result, these parameters express all the
physical parameters (e.g., magnetic, geometric, rheological, and hydrodynamic) that affect
the accumulation of particles. Accordingly, it may not always be possible to analytically
pre-calculate Ka and Kd in all cases. However, the evaluation of these parameters can
easily be performed for special cases. For example, in the case of the accumulation of
magnetic particles captured on magnetized wire in parallel flow HGMSs, the Ka parameter
is specified in Equation (5). Hence, by determining the intermediate statistical value of
the radius, Rs, from experimental studies (e.g., [36]), the detachment coefficient of the
particles under these conditions can be easily evaluated, Kd = Ka

R4
sa

. For example, in practical
applications, if it is assumed that Rs = (10–12)a in axial flow HGMSs (H = 400–600 kA/m),
it can be evaluated as Kd ≈ 10−4 Ka. It is clear that this relationship will also be different
for the results of different experiments performed under different conditions.

3. Results and Discussion

The accumulation of submicron-sized magnetic particles on the magnetized wire
in the axial potential flow is generally expressed by the empirical Equation (4) at the
initial moment. However, with the change of the magnetic, geometric, and hydrodynamic
properties of the system, the coefficients (n and A) included in this equation take values
in a wide spectrum. At the same time, Equation (4) does not express the full evolution
of capture of the particle over time. Differential Equation (3), which states the build-up
event of the captured particles in the potential axial flow, expresses the accumulation of the
particles, and neglects the phenomena of detachment and re-attachment of the captured
particles in this process. However, the capture–detachment events of the magnetic particles
accumulated on the magnetized wire in the evolution over time become more dominant
after a certain period. To take this event into account, Equation (3) can be arranged as
in Equation (5). In this case, the full evolution of the build-up of the captured particles
can be obtained as in Equation (8). Equation (8) allows determining the evolution of
the accumulation of magnetic particles both from the initial moment (t = 0) and after
saturation of the build-up profile of the particles. In this approach, the accumulation profile
of the particles can be evaluated by the ratio of the capture–detachment coefficients of the
particles, K. In the literature, similar results for the steady state were considered as the ratio
of magnetic and drag forces [74].

When K < 1, the particles break off from the wire, when K > 1 the particles are
captured, but when K = 1, saturation occurs in the accumulation profile. In this case, the ac-
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cumulation profile of the particles reaches the saturation radius, Rs, on the magnetized wire.
According to the results presented in [38], the accumulation of submicron-sized magnetic
particles on the magnetized wire in the axial potential flow may be around Rsa = (8–10).
These values depend on the magnetic properties, morphology, concentration of the parti-
cles, and physicochemical properties of the carrier medium, hydrodynamics, rheology, etc.
In general, the effect of all these parameters on the evolution of the accumulation profile
of the particles can be evaluated by the capture (Ka) and detachment (Kd) coefficients in
Equation (8) or by the appropriate selection of the K coefficient. This approach is valid
for cases where the carrier medium contains not only submicron magnetic particles but
also other mixtures. In addition, it is also possible to evaluate the effects of the external
magnetic field and the flow velocity of the suspension on the accumulation radius (Ra) of
particles by using the Ka and Kd coefficients. Here, it is possible to say that Equation (8) is
generally applicable to both magnetic and conventional filters and separators. However,
Ka and Kd coefficients are comparable to each other in conventional separators, and it is
clearly seen that Ka � Kd in magnetic separators. At the initial moment of the filtering,
the effect of the Kd coefficient is negligible. In this case, the accumulation of particles is
determined by Equation (3).

In general, the results of the theoretical and experimental investigations about the
accumulation of submicron-sized magnetic particles on the magnetized wire in the axial
potential flow have been sufficiently presented in the literature [1,2,4–6,65,66,75]. Unlike
these approaches, it is useful to compare these results with Equation (8), which considers
the kinetics of both capture and detachment of these particles.

Evaluation of the accumulation radius over time is shown in Figure 3, where t∗ is “trav-
elling time” [38]. The theoretical curve represents the graph calculated from Equation (8)
as K = 800. Experimental results from the literature [32,76,77] are shown in the same
figure. As can be seen from Figure 3, the theoretical results obtained from Equation (8)
are compatible with these experimental results. In addition, Equation (8) provides more
straight variation of the accumulation radius reaching the saturation radius over time in
case t→ ∞ .
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The flow of suspension is assumed only ideal or potential in some studies. In this case,
the effect of viscosity on the accumulation of particles is essentially not considered. How-
ever, in several experimental studies [32], it has been proven that the effect of viscosity
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on the accumulation profile of particles is effective from the beginning of the capture
process. In addition, the evolution of the accumulation profile over time also showed many
differences [74,78–80] In Figure 4, the changes with time in the accumulation profiles at
various K values calculated by Equation (8) for different viscosities are shown. The results
from Figure 4 are generally in agreement with the experimental results of the accumulation
profiles of Mn2P2O7 particles (H = 5kOe, Ci = 0.4 g/L) from glycerol solutions with
different concentrations presented in [32]. Here, the K coefficient also changes with the
change of viscosity. Some results of these changes of the K coefficient are shown in Figure 4.
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Figure 4. The effect of the viscosity of the medium carrying the magnetic particles on the change of
the accumulation radius, t1 = 0.5·10−2t∗.

The evolution of the accumulation profile in axial flow over time is assumed to be
either at the initial moment or in the steady state, in the form of increasing layers or
approximately constant (Figure 2). In reality, this event is stochastic, shaped as rise and fall
profiles along the wire. The stochastic evolution of the accumulation profile over time can
be approximated using a simplified version of the Fokker–Planck equation. The distribution
functions obtained from the solutions of Equation (11) or Equation (13) are obtained in
the form of curves with a certain peak value [73]. Although the peaks of the distribution
function are small at the beginning, these peaks become larger later in the separation.
In addition, the increase and decrease curves of these graphs are in repeated form. These
results show that in the evolution of the accumulation profile over time, the capture and
detachment events of the particles are more dominant, and this event slows down and
becomes stable over time. At the same time, in this process, the phenomenon of capture
and detachment of the particles on the magnetized wire is repeated several times. Since
the magnetic force is more effective in magnetic separation processes, the distribution
function of the evolution of the accumulation profile over time can be expressed with
curves that have a single peak value. In this case, the solutions of the Fokker–Planck
equation and the population approach yield the same results (Equations (7) and (16)).
Therefore, the obtained Equation (8) overlaps in principle with the fundamental studies
in the literature [30–32,34,38,74] explaining the evolution of the accumulation of magnetic
particles. Unlike these studies, Equation (8) allows evaluating the capture–detachment
events of the particles in the evolution of the accumulation profile and the stochastic
character of this event in the whole evolution process.
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4. Conclusions

In this study, the differential equation of the time-dependent evolution of the accumu-
lation of submicron-sized magnetic particles on a magnetized ferromagnetic wire in axial
flow was developed. The kinetic equation of the development of the accumulation profile
was studied by using two approaches based on the genetic population and Fokker–Planck
stochastic equation. In these approaches, the formation of the accumulation profile can
be evaluated by considering the possibilities of both capture and detachment of the parti-
cles. Unlike the conventional approaches presented in the literature for the deposition of
particles in axial flow on the magnetized wire, in these approaches, the time-dependent
evolution of the deposition profile of the particles can be examined not only for the initial
moment but for all stages of the process. Since the distribution of the accumulation pro-
file on the wire is generally a stochastic phenomenon, this change can also be examined
according to the solution of the Fokker–Planck equation. Based on this solution, the devel-
opment of the accumulation profile on the wire was observed with continuously repeated
capture–detachment events. Although these events were more active in the beginning
compared to the geometry of the magnetized wire, the stabilization of the accumulation
profile became more noticeable in the later regions. The evolution of the accumulation
profile over time in both approaches was evaluated using the kinetic coefficient, K. The K
coefficient, which depends on the magnetic, geometric, hydrodynamic, rheological, and
other physical properties of the system in magnetic separation processes, is defined as
the ratio of the coefficients determining the capture (Ka) and detachment (Kd) of the par-
ticles, K = Ka/Kd. Approximate analytical methods or empirical formulas can be used
to determine the K coefficient, which is the key parameter in both approaches presented
in this study. On the other hand, after the particle capture coefficient, Ka, is calculated
according to Equation (3), presented in [31], the detachment coefficient, Kd, can be easily
evaluated based on the experimental statistical result of the saturation value of the build-up
radius. The Kd coefficient can be theoretically determined by using the balance of “adhesion
force” [38] or from the balance of torque affecting particles in the steady-state structure of
the accumulation profile [26].

In the separation processes, with K > 1, it can be said that while the accumulation of
particles by capturing is dominant at large values of K, not only the capture but also the
detachment event is effective at low values of K. Moreover, in this process, the capture and
detachment events of the particles can be repeated several times, or the breaking particles
from the wire can be in motion without being caught again. K = 1 is the critical limit level
of the separation process, and when K < 1, the separation process does not take place in
the system or the particles that have been previously captured on the wire break away
from the wire. When t→ ∞ , the results of the build-up radius from both approaches are
the same and the saturation value of the build-up radius in the accumulation profile is
reached. This result is in good agreement with the theoretical and experimental results of
the saturation value of the build-up radius presented in the literature. Unlike other studies,
these approaches allow examining the build-up event of captured particles on the wire in
the entire process.
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