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Abstract: Tunable and ultrasensitive surface plasmon resonance (SPR) sensors are highly desirable
for monitoring stress hormones such as cortisol, a steroid hormone formed in the human body’s
adrenal glands. This paper describes the detection of cortisol using a bimetallic SPR sensor based
on a highly anisotropic two-dimensional material, i.e., phosphorene. Thicknesses of bi-metal layers,
such as copper (Cu) and nickel (Ni), are optimized to achieve strong SPR excitation. The proposed
sensor is rotated in-plane with a rotation angle (ϕ) around the z-axis to obtain the phosphorene
anisotropic behavior. The performance parameters of the sensor are demonstrated in terms of higher
sensitivity (347.78 ◦/RIU), maximum angular figure of merit (FOM* = 1780.3), and finer limit of
detection (0.026 ng/mL). Furthermore, a significant penetration depth (203 nm) is achieved for the
proposed sensor. The obtained results of the above parameters indicate that the proposed sensor
outperforms the previously reported papers in the literature on cortisol detection using the SPR
technique.

Keywords: anisotropy; angular FOM*; the limit of detection; phosphorene; sensitivity; surface
plasmon resonance

1. Introduction

Cortisol is a steroid hormone and is commonly referred to as the stress hormone
because of its connection to the stress response of human beings. The cortisol level in blood
and saliva impacts the cardiovascular processes, blood pressure, and many other metabolic
activities [1]. For example, a rise in cortisol level may cause Cushing syndrome—a fatty
hump between shoulders, a rounded face, and various stretch marks on the skin. In contrast,
cortisol insufficiency can cause Addison disease—an uncommon disorder that occurs when
the body cannot produce enough of certain hormones [1]. Measuring cortisol levels is
necessary for determining its deficiency, saturation levels and identifying various disorders
linked to it. Cortisol levels can be determined using a variety of body fluids, including
blood (invasive) and saliva (non-invasive) [1,2]. Its status in the saliva is straightforward to
measure because these samples keep their original properties for at least a week or more [1].
SPR sensors are more suited than other mentioned sensors due to their quick, real-time, and
label-free sensing capabilities [3]. The SPR sensor is a powerful tool that detects molecular
interactions by changing the probing medium’s refractive index (RI).

To study the level of cortisol in saliva, Steven et al. reported a six-channel portable
SPR biosensor based on competition assays [1]. The cortisol detection limit (0.36 ng/mL)
in laboratory buffers was determined. Furthermore, to detect cortisol levels, researchers
proposed and used gold (Au) nanoparticle-based long-range surface plasmon resonance
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(LRSPR) sensors, grating-based fiber optic sensors, and lossy mode resonance-based SPR
sensors [3–7]. Some of the critical experimental works for cortisol detection reported in the
literature are based on techniques such as electrochemical immuno-sensor, aptamer-based
Au nanoparticles, and SPR immunoassay. However, the limit of detection (LOD) values
using these techniques are still lower (≤1 ng/mL), respectively [6–8]. M. Frasconi et al.
examined an SPR-based sensor for real-time cortisol and cortisone detection in saliva and
urine samples with a detection limit of 10 µg/L [9]. S. Jo et al., demonstrated the use of
an Au nanoparticle-based localized surface plasmon resonance (LSPR) sensor to create
a highly sensitive and selective cortisol sensor experimentally [10]. The suggested LSPR
biosensor with an immobilized aptamer demonstrated a detection limit of 0.1 nm for
cortisol concentrations ranging from 0.1 to 1000 nm. C. Leitao et al., recently suggested
a cortisol immunosensor based on SPR and reached a detection limit of 1 pg/mL using
AuPd plasmonic unclad plastic optical fiber (POF) [11].

Recently researchers demonstrated the improved performance of the SPR sensor
by utilizing the two-dimensional (2-D) materials such as graphene, transition metal di-
chalcogenides (TMDs), few layers of phosphorene—a monolayer of black phosphorus (BP),
antimonene, and Ti3C2Tx-Mxene over a metal layer due to their high charge carrier mobility,
large work function, high adsorption energy, large surface area, stronger interaction with
biomolecules, and high chemical stability [12–16]. Therefore, 2-D materials have a high
potential for sensing, photonic, and optoelectronic applications; however, use in SPR
sensors for cortisol detection remains elusive. However, the zero bandgaps of graphene,
low carrier mobility, and hydrophobicity of TMDs, as well as the narrow energy bandgap
of MXene became their fatal disadvantages [17]. Alternatively, phosphorene is a stable
2-D layered material possessing excellent hole mobility (10,000 cm2·V−1·s−1), tunable
bandgap (0.3–2 eV), attention-grabbing puckered surface morphology, strong binding
energy, hydrophilic nature, 40 times higher molar response factor (even more significant
than graphene and TMDs), and parts per billion (ppb) sensing ability and have shown
great potential for gas, humidity, and biosensing [18–22]. Thus, phosphorene’s sensitivity, S,
and selectivity for water vapors and gas can be tuned to advantage when used for sensing
cortisol concentration in saliva. However, long-time direct exposure of phosphorene to
the ambient environment may lead to its oxidation [16]. So, care must be taken during the
experimental process using a high-quality and stable phosphorene sheet to obtain accurate
results.

The most exceptional property of phosphorene is its in-plane anisotropy arising from
its sp3 hybridized puckered lattice structure [23]. Utilizing the in-plane anisotropy feature
of phosphorene to produce a tunable sensor device, this work aims to enhance the sensor
performance in terms of sensitivity and LOD for detecting cortisol concentration at an
operating wavelength, λ = 830 nm [3]. However, for the tunability aspect, the strongest
excitation of plasmons on the metal–phosphorene interface is considered through the
rotation angle (ϕ) of the integrated device around the z-axis in-plane, resulting in variable
charge transfer between phosphorene and the metal, leading to change in minimum
reflectivity. In a broader sense, the objective of this paper is to demonstrate tunable
sensitivity by simply rotating the integrated device around the z-axis in-plane.

More importantly, the uniqueness of this work is twofold. First, we have proposed a
sensor for cortisol concentration detection with enhanced performance parameters (sensitiv-
ity, LOD, etc.) over the existing state-of-the-art methods. Second, we have introduced and
analyzed the influence of the anisotropic behavior of phosphorene to enhance the charge
transfer between phosphorene and the metal layer, which results in the finest angular figure
of merit (FOM*) over the other existing cortisol concentration sensors.

2. Theoretical Modeling and Performance Parameters

Figure 1 shows the proposed Kretschmann configured SPR sensor for cortisol con-
centration sensing. It consists of BK-7 prism, bi-metal layers (Cu/Ni), phosphorene, and
cortisol saliva solutions. The working principle of the proposed sensor is based on sur-
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face plasmon resonance conditions. Surface plasmons (SPs) are quanta of charge density
oscillations at the metal/dielectric interface that are excited by incident p-polarized light
with coupling through a prism, grating, or waveguide [3,13–15,24]. Prism coupling is a pre-
ferred technique for its realizable and straightforward geometry [3,14], where the resonance
condition can be achieved after matching of wave vector of incident light with the wave
vector of surface plasmon wave (SPW) (kinc = kspw). This matching condition is susceptible
to changes in the refractive index (RI) of the probing media due to adsorption of analyte
on the sensor surface, which may be exploited for imaging and sensing applications [14].
Here, a low RI prism is chosen for enhanced light coupling [25]. The two combinations of
bi-metal layers are used to identify the best metal layers for enhanced sensitivity. Salivary
solutions containing different cortisol concentrations are considered an analyte medium
where the RI values at different cortisol concentrations are taken from R.C. Stevens et al. [1].
The RIs and optimized thicknesses of all constituent layers are presented in Table 1.
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Figure 1. Proposed SPR sensor configuration in attenuated total internal reflection mode.

Table 1. Proposed sensor’s thickness and RIs of constituent layers at the characteristic wavelength at
λ = 830 nm.

Constituent Layers Thickness (nm) Refractive Index (RI)

BK-7 Prism - 1.5102 [15]
Copper layer 15 0.10807 + i × 5.3990 [25]
Nickel layer 80 2.2777 + i × 5.0030 [25]

Phosphorene (BP) 6 × 0.53
Optimized by tuning with the rotation

angle (ϕ) of the sensor around the
z-axis [23]

The RIs of all isotropic layers are fixed except for phosphorene, whose RI is directional-
dependent due to its anisotropic nature. Phosphorene—a monolayer of black phosphorus
(BP)—is an orthorhombic layered crystal with two optical axes: C1 and C2, whose biaxial
dielectric coordinate system does not lie parallel to the crystal coordinate subsystem [23].
In order to obtain the strongest SPR excitation, a well-matched condition between two
optical axes of phosphorene and SPR wave is needed. One way to achieve this is by
tuning the rotation angle, ϕ, of the SPR device around the z-axis in the plane. Once
the angle ϕ is fixed, incident angle θ is varied from 1 to 90

◦
, and RI of phosphorene is

calculated using transfer matrix method (TMM) modeling proposed in Ref. [23]. The TMM
is an accurate and popular method used to calculate the reflected intensity of p-polarized
incident light [12,13]. The TMM for the reflectance calculation of the proposed sensor
has been discussed in the supplementary material (SM1). In the present case, we have
used MATLAB software to simulate the results (i.e., to obtain reflectance curves) and
analyze the sensor performance analytically in terms of sensitivity (S = ∆θSPR

∆na
[o/RIU]),

minimum reflectance (Rmin), full width at half maximum (FWHM), detection accuracy
(DA = 1/FWHM), the limit of detection (LOD = ∆CConc

∆θSPR
× 0.001◦ [ng/mL]), figure of merit
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(FOM = S × DA [RIU−1]), and angular figure of merit (FOM* = | dR(θ))(dna)
R(θ) | [23,24], here,

* indicates the angular word, and the angular detection limit of 0.001◦ is taken for the
angular interrogated SPR sensor [24]. Note that FWHM measures the angular width of the
SPR curve at 50% reflection intensity, i.e., Rmin = 0.5 a.u.

3. Results and Discussion
3.1. Metal Thickness Optimization and Reflectance Curves

Several previous studies reveal that the metal layer plays a significant role in the
generation of surface plasmons (SPs) and the attachment of analytes during SPR sensing
applications [23,24]. However, the use of single metal shows less sensitivity due to poor
attachment of analyte on it, which can be further enhanced by using bi-metal layers.
According to the literature, using a bi-metal layer combination in the SPR sensor results
in higher sensitivity and accuracy [25]. Moreover, optimizing metal layer thicknesses is
essential to achieve the nearly minimum reflectance (Rmin) value at the resonance angle for
attaining high DA and angular FOM*. Therefore, we have verified the sensor performance
in maximal sensitivity and Rmin for a few Cu/Ni metal layer thickness combinations.
For example, the metal thickness combination of Cu/Ni is 40/35 nm, meaning that the
thickness of Cu and Ni is 40 nm and 35 nm, respectively.

Figure 2 illustrates how to optimize the Cu/Ni thickness at monolayer anisotropic
phosphorene in terms of sensitivity and Rmin by balancing photon absorption energy and
electron energy loss [23]. As illustrated in Figure 2, the addition of Ni to the Cu layer
increases sensitivity, which is not achievable with a single metal layer. Propagation of
SPR waves in phosphorene, unlike isotropic 2D nanomaterial (e.g., graphene, TMDs), is
significantly different [20]. Hence, the strongest SPR excitation can be achieved only after
perfect matching optical axes of phosphorene crystal with p-polarized incident light by
tuning the rotation angle (ϕ) [23]. In this regard, the ϕ is optimized for each thickness
combination of Cu/Ni by rotating the proposed sensor around the z-axis. Figure 2 plotted
at the optimized value of ϕ, i.e., 72◦, depicts the highest sensitivity of 229.18 ◦/RIU at
smaller Rmin = 0.0612 for the thickness of Cu (15 nm), Ni (80 nm), and monolayer BP.
Further, the influence of ϕ on performance for the proposed sensor has been discussed in
the supplementary material (SM2: Figures S1–S11).

Magnetochemistry 2021, 7, x FOR PEER REVIEW 4 of 10 
 

 

incident light [12,13]. The TMM for the reflectance calculation of the proposed sensor has 
been discussed in the supplementary material (SM1). In the present case, we have used 
MATLAB software to simulate the results (i.e., to obtain reflectance curves) and analyze 
the sensor performance analytically in terms of sensitivity (S = ∆∆  [ο/RIU]), minimum 
reflectance (Rmin), full width at half maximum (FWHM), detection accuracy (DA = 
1/FWHM), the limit of detection (LOD = ∆∆  × 0.001° [ng/mL]), figure of merit (FOM = 

S×DA [RIU−1]), and angular figure of merit (FOM* = | ( ))⁄( )( ) | [23,24], here, * indicates 
the angular word, and the angular detection limit of 0.001° is taken for the angular inter-
rogated SPR sensor [24]. Note that FWHM measures the angular width of the SPR curve 
at 50% reflection intensity, i.e., Rmin = 0.5 a.u. 

3. Results and Discussion 
3.1. Metal Thickness Optimization and Reflectance Curves 

Several previous studies reveal that the metal layer plays a significant role in the gen-
eration of surface plasmons (SPs) and the attachment of analytes during SPR sensing ap-
plications [23], [24]. However, the use of single metal shows less sensitivity due to poor 
attachment of analyte on it, which can be further enhanced by using bi-metal layers. Ac-
cording to the literature, using a bi-metal layer combination in the SPR sensor results in 
higher sensitivity and accuracy [25]. Moreover, optimizing metal layer thicknesses is es-
sential to achieve the nearly minimum reflectance (Rmin) value at the resonance angle for 
attaining high DA and angular FOM*. Therefore, we have verified the sensor performance 
in maximal sensitivity and Rmin for a few Cu/Ni metal layer thickness combinations. For 
example, the metal thickness combination of Cu/Ni is 40/35 nm, meaning that the thick-
ness of Cu and Ni is 40 nm and 35 nm, respectively. 

Figure 2 illustrates how to optimize the Cu/Ni thickness at monolayer anisotropic 
phosphorene in terms of sensitivity and Rmin by balancing photon absorption energy and 
electron energy loss [23]. As illustrated in Figure 2, the addition of Ni to the Cu layer 
increases sensitivity, which is not achievable with a single metal layer. Propagation of SPR 
waves in phosphorene, unlike isotropic 2D nanomaterial (e.g., graphene, TMDs), is sig-
nificantly different [20]. Hence, the strongest SPR excitation can be achieved only after 
perfect matching optical axes of phosphorene crystal with p-polarized incident light by 
tuning the rotation angle (φ) [23]. In this regard, the φ is optimized for each thickness 
combination of Cu/Ni by rotating the proposed sensor around the z-axis. Figure 2 plotted 
at the optimized value of φ, i.e., 72°, depicts the highest sensitivity of 229.18 °/RIU at 
smaller Rmin = 0.0612 for the thickness of Cu (15 nm), Ni (80 nm), and monolayer BP. Fur-
ther, the influence of φ on performance for the proposed sensor has been discussed in the 
supplementary material (SM2: Figures S1–S11). 

 
Figure 2. Bi-metal layer thickness optimization curve: sensitivity and Rmin vs. bilayer thickness. 

60
-0
50

-10
45

-20
40

-30
35

-40
30

-50
25

-60
20

-70
15

-80
10

-90
5-1

00 --
0

50

100

150

200

250  Sensitivity
 Rmin.

Cu/Ni Metal Thickness Combinations (nm)

Se
ns

iti
vi

ty
 (°

/R
IU

)

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

 R
m

in  (a.u.)

Figure 2. Bi-metal layer thickness optimization curve: sensitivity and Rmin vs. bilayer thickness.

In contrast, sensitivity lies below this for all other thickness combinations of Cu and
Ni. The optical anisotropy of BP can be effectively tuned by adjusting the number of BP
layers, as the optical conductivity of BP layers changes by varying its thickness [17–19].
After optimizing the thickness combination of bimetal layers of the proposed sensor, we
evaluated the sensor performance parameters such as S, DA, and figure of merit (FOM)
for 0 to 6 layers of BP, as shown in Table 2. It may be seen in Table 2 that all performance
parameters increase with the number of BP layers. For example, the maximum sensitivity
(320.86 ◦/RIU), DA (0.7042 1/◦), and FOM (225.96 RIU−1) are obtained for six layers of BP.
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The improved performance is due to light–matter solid interaction observed at higher BP
layers because of more significant adsorption energy and optical conductivity.

Table 2. Sensor parameters evaluated for 0–6 layers of BP.

BP
Layers θres. at ns = 1.33 (◦) θres. at ns = 1.3305 (◦) Rmin (a.u.) S (◦/RIU) FWHM (◦) DA (1/◦) FOM

(RIU−1)

1 76.7935 76.6789 0.0612 229.18 1.89 0.5291 121.26
2 77.0972 76.9826 0.0580 240.56 1.87 0.5348 128.64
3 77.4353 77.3092 0.0506 252.10 1.80 0.5556 140.06

4 77.8134 77.6816 0.0417 263.56 1.78 0.5618 148.07
5 78.2374 78.0942 0.0037 286.48 1.69 0.5917 169.51
6 78.7157 78.5553 0.0252 320.86 1.42 0.7042 225.96

Further, the increment of BP layers shows higher Rmin for the proposed sensor. So, the
parameters are evaluated only for 0–6 layers of BP. Therefore, all subsequent simulations
for cortisol sensing are performed at optimized thicknesses of Cu (15 nm), Ni (80 nm), and
six layers of BP.

The reflectance curve is simulated for different cortisol concentrations, i.e., 0.36, 0.72,
1.80, 3.60, and 4.50 ng/mL at optimized Cu (15 nm) and Ni (80 nm) thicknesses, and
six layers of anisotropic phosphorene.

Figure 3 shows the reflectance curve at various cortisol concentrations (0.36 to 4.6 ng/mL).
As shown, the resonance angle shifts to a higher value and Rmin also obtains more significant
for higher cortisol concentrations. The improvement is due to higher binding energy and
larger surface area offered due to puckered surface morphology of phosphorene for efficient
adsorption of cortisol present in saliva [19,23]. The variation in RI of the analyte medium
with adsorption of cortisol modifies the matching condition of wave vector of evanescent
field and SPW at some other higher incident angle.
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between the incident angle 78 and 79.5◦.

Figure 4 illustrates the variation of SPR angle, Rmin, and FWHM estimated from the
reflectance curves in Figure 3. The increase in SPR angle and larger values of Rmin for
higher cortisol concentrations indicate the sensitive detection of cortisol concentration in
saliva [26]. The smaller FWHM is observed at higher cortisol concentrations due to the
minimum damping of SPs [23]. Likewise, as shown in Figure 5, cortisol concentrations
versus sensitivity and FOM are also evaluated using reflectance curves in Figure 3. The
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cortisol concentration of 0.36 ng/mL is used as a reference sample for sensitivity and FOM
calculations. The rising trend in sensitivity and FOM is related to the sensitive and accurate
detection of cortisol concentrations in saliva. A precise observation from Figure 5 indicates
that the maximum sensitivity of 343.78 ◦/RIU and FOM of 1780.3 RIU−1 are observed at
4.5 ng/mL of cortisol concentration.
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3.2. Analysis of FOM* and LOD

LOD and FOM* are two critical parameters to indicate the most exemplary perfor-
mance of a proposed sensor for cortisol concentration sensing. First, the FOM* curve slope
tells the maximum value of FOM* [24]. Second, LOD signifies the lowest possible cortisol
concentration that can be detected. In summary, the maximum FOM* and the smallest
possible LOD value are desired to enhance cortisol concentration sensing [24].

FOM* curve at various cortisol concentrations is depicted in Figure 6. As shown in it,
the maximum FOM* values obtained for cortisol concentrations of 0.36, 0.72, 1.80, 3.60, and
4.50 ng/mL are 777.8, 916.9, 1115.3, 1313.4, and 1780.3, respectively; highest sensitivity for a
cortisol concentration of 4.50 ng/mL. A much higher maximum FOM* value indicates high
accuracy ultrasensitive cortisol concentration detection. In addition to maximum FOM*,
the calculated LOD for different cortisol concentrations of 0.72, 1.80, 3.60, and 4.50 ng/mL
are 0.0038, 0.0067, 0.0554, and 0.0262, respectively, and plotted in Figure 7.
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Table 3 depicts all the performance parameters evaluated at considered cortisol
concentrations in Figures 3–7. The best performance parameters obtained are sensi-
tivity (343.78 ◦/RIU), FOM (243.82 RIU−1), maximum FOM* (1780.30), and finest LOD
(0.026 ng/mL) for the proposed sensor.

Table 3. Performance parameters at different cortisol concentrations.

Cortisol
Conc.

(ng/mL)
θSPR (◦) FWHM(◦) S(◦/RIU) FOM

(1/RIU)
LOD

(ng/mL)
Maximum

FOM*

0.36 78.46 1.44 - - -
0.72 78.56 1.44 314.67 218.52 0.0038 916.9
1.80 78.72 1.42 320.86 225.96 0.0067 1115.3

3.60 78.75 1.41 324.86 230.40 0.0554 1313.4
4.50 78.78 1.41 343.78 243.82 0.0262 1780.3

Furthermore, we also evaluated the normalized electric field component for the pro-
posed SPR sensor using COMSOL simulation software. Figure 8 illustrates the distribution
of the normalized electric field (Ez) component of the evanescent field for the proposed
sensor. According to Figure 8a, the maximum excitation of SPs occurs at the anisotropic
BP/sensing layer interface and decays exponentially away from the interface [27]. Figure 8b
represents the zoomed-in portion of the rectangular window marked in Figure 8a to demon-
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strate the explicit representation of constituent layers of the proposed sensor. The normal-
ized electric field component (Ey) normal to the interface for the proposed SPR sensor is
also plotted in Figure 9. It signifies the field distribution at each of the constituent layers’
interfaces. The inset diagram within Figure 9 demonstrates the peak normalized field
intensity at the anisotropic BP/sensing layer interface, which decays exponentially away
from the sensing interface. The penetration depth (PD) measures how deeply the field
penetrates the sensing region and is defined as the distance covered by the electric field
from its peak value to 1/e or 0.37% of its peaks value along normal to the interface [25].
The PD evaluated for the proposed sensor is 203 nm and is sufficient to detect the small
size cortisol molecule [1].

Magnetochemistry 2021, 7, x FOR PEER REVIEW 8 of 10 
 

 

sensor is also plotted in Figure 9. It signifies the field distribution at each of the constituent 
layers’ interfaces. The inset diagram within Figure 9 demonstrates the peak normalized 
field intensity at the anisotropic BP/sensing layer interface, which decays exponentially 
away from the sensing interface. The penetration depth (PD) measures how deeply the 
field penetrates the sensing region and is defined as the distance covered by the electric 
field from its peak value to 1/e or 0.37% of its peaks value along normal to the interface 
[25]. The PD evaluated for the proposed sensor is 203 nm and is sufficient to detect the 
small size cortisol molecule [1]. 

Table 3. Performance parameters at different cortisol concentrations. 

Cortisol Conc. 
(ng/mL) 

𝜽𝑺𝑷𝑹 (°) FWHM(°) S(°/RIU) FOM (1/RIU) LOD (ng/mL) Maximum FOM* 

0.36 78.46 1.44 - - -  
0.72 78.56 1.44 314.67 218.52 0.0038 916.9 
1.80 78.72 1.42 320.86 225.96 0.0067 1115.3 
3.60 78.75 1.41 324.86 230.40 0.0554 1313.4 
4.50 78.78 1.41 343.78 243.82 0.0262 1780.3 

 

0 200 400 600 800 1000 1200
1000

800

600

400

200

0

Z 
(n

m
)

X (nm)

-

-

-

-

-

--

-
-
-

-
- 3
 2.5

 2

 1.5

 1

 0

 0.5

(a)
− − − 

 
400 420 440 460 480 500 520 540 560 580

220

200

180

160

140

120

100

 3

 2.5

 2

 1.5

 1

0

 0.5

Z 
(n

m
)

X (nm)

Prism-
-

-
-
-

-
-

-
-
-
-
-
-

Ni Layer

Cu Layer
BK 7 Prism

BP Layer

Sensing Medium
In

se
t P

lo
t

(b)

 
(a) (b) 

Figure 8. Proposed sensor: (a) SPs field distribution; (b) inset plot (an enlarged view). 

 
Figure 9. A normalized electric field (Ey) is normal to the interface for the proposed sensor. The inset 
shows the enlarged view. 

Figure 8. Proposed sensor: (a) SPs field distribution; (b) inset plot (an enlarged view).

Magnetochemistry 2021, 7, x FOR PEER REVIEW 8 of 10 
 

 

sensor is also plotted in Figure 9. It signifies the field distribution at each of the constituent 
layers’ interfaces. The inset diagram within Figure 9 demonstrates the peak normalized 
field intensity at the anisotropic BP/sensing layer interface, which decays exponentially 
away from the sensing interface. The penetration depth (PD) measures how deeply the 
field penetrates the sensing region and is defined as the distance covered by the electric 
field from its peak value to 1/e or 0.37% of its peaks value along normal to the interface 
[25]. The PD evaluated for the proposed sensor is 203 nm and is sufficient to detect the 
small size cortisol molecule [1]. 

Table 3. Performance parameters at different cortisol concentrations. 

Cortisol Conc. 
(ng/mL) 

𝜽𝑺𝑷𝑹 (°) FWHM(°) S(°/RIU) FOM (1/RIU) LOD (ng/mL) Maximum FOM* 

0.36 78.46 1.44 - - -  
0.72 78.56 1.44 314.67 218.52 0.0038 916.9 
1.80 78.72 1.42 320.86 225.96 0.0067 1115.3 
3.60 78.75 1.41 324.86 230.40 0.0554 1313.4 
4.50 78.78 1.41 343.78 243.82 0.0262 1780.3 

 

0 200 400 600 800 1000 1200
1000

800

600

400

200

0

Z 
(n

m
)

X (nm)

-

-

-

-

-

--

-
-
-

-
- 3
 2.5

 2

 1.5

 1

 0

 0.5

(a)
− − − 

 
400 420 440 460 480 500 520 540 560 580

220

200

180

160

140

120

100

 3

 2.5

 2

 1.5

 1

0

 0.5
Z 

(n
m

)

X (nm)

Prism-
-

-
-
-

-
-

-
-
-
-
-
-

Ni Layer

Cu Layer
BK 7 Prism

BP Layer

Sensing Medium

In
se

t P
lo

t

(b)

 
(a) (b) 

Figure 8. Proposed sensor: (a) SPs field distribution; (b) inset plot (an enlarged view). 

 
Figure 9. A normalized electric field (Ey) is normal to the interface for the proposed sensor. The inset 
shows the enlarged view. 

Figure 9. A normalized electric field (Ey) is normal to the interface for the proposed sensor. The inset
shows the enlarged view.

4. Conclusions

Relying on high adsorption energy, unique sensing ability, and the selectivity of
phosphorene for cortisol concentration and benefitting from tunable performance arising
from the anisotropy of phosphorene, we reported tunable and sensitive cortisol detection
using a surface plasmon resonance sensor configuration. A bimetallic combination of Cu
(35 nm) and Ni (20 nm) is used to obtain a strong electromagnetic field in the analyte
medium. The sensor performance is evaluated in terms of sensitivity, the figure of merit
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(FOM), the limit of detection (LOD), and a new parameter called FOM* and penetration
depth (PD). Our proposed sensor has a very high sensitivity of 343.78 ◦/RIU, FOM of
243.82 RIU−1, maximum FOM* of 1780.3, sharper LOD of 0.026 ng/mL, and a good PD
of 203 nm. All of these performance parameters significantly increase the efficiency of
cortisol sensing. With developments in fabrication processes, we hope that the proposed
research will pave the way for the creation of non-invasive, adjustable detection of cortisol
concentrations in saliva in the near future.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/magnetochemistry8030031/s1, SM1—Details about reflectance calculation for p-polarized light,
SM2—Optimization of rotation angle (ϕ) for different Cu/Ni metal layer thickness combinations,
Figures S1–S11.
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