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Abstract: Ceramic–polymer paste-injection molding is demonstrated as a facile fabrication route
for barium hexaferrite magnets. Interestingly, these low-density (1.90–2.35 g/cm3) magnets exhibit
substantial coercivity of 3868–4002 Oe. When ceramic paste without polymeric additives is used,
reduced coercivity and slightly increased magnetizations are obtained from a magnet with the
density of 2.55 g/cm3. Their magnetizations are also higher than those obtained from compactions of
sol–gel-derived powders. For compact magnets (3.46–3.77 g/cm3), the DI water addition results in a
slightly higher magnetization but lower coercivity than dry-pressed magnets. Compactions into disk
and bar magnets give rise to comparable magnetic properties. The morphological characterizations
reveal smaller barium hexaferrite particles leading to larger coercivity, and the density and shape of
magnets have a less pronounced effect.

Keywords: barium hexaferrite; paste-injection molding; sol–gel auto-combustion; compact magnet

1. Introduction

Barium hexaferrites (BaFe12O19) and strontium hexaferrites (SrFe12O19) have a sub-
stantial market share in permanent magnets, high-frequency (30–100 GHz) devices, and
data-storage applications [1,2]. These M-type hexagonal ferrites are also currently inves-
tigated for new other applications including electromagnetic wave absorbers and micro-
magnets [1,3]. Their standout characteristics are large crystalline anisotropy and high
chemical stability. Despite having moderate saturation magnetization, hexagonal ferrites
are low-cost alternatives to rare-earth magnets [2,4].

Nanostructured hexagonal ferrites from chemical co-precipitation, ball-milling, hy-
drothermal, and sol–gel syntheses have been actively investigated [1]. Besides their utility
in the form of nanoparticles, there are interests in producing permanent magnets from
nanostructured hexagonal ferrites. Examples are hard/soft magnetic and ferrite polymer
composites [1,2]. The sol–gel technique can synthesize a large batch of ferrite nanoparticles
for fabricating bulk magnets [5–8].

Sintered and polymer-bonded ferrite magnets are traditionally manufactured using
powder compaction and injection molding. The effects of compaction pressure on the
density and magnetic properties of BaFe12O19 have been investigated [9–11]. However,
the reliance on molds limits a variety of shapes and dimensions of magnets. Recent
developments in stereolithography, laser sintering, binder jetting, fuse-filament fabrication,
and extrusion freeforming enable three-dimensional printing of ceramic magnets with
complex shapes and varying dimensions [12]. Wei et al. demonstrated that extrusion
freeforming could be a prime candidate for large-scale additive manufacturing of BaFe12O19
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and SrFe12O19 [13]. Using the same starting materials as traditional synthesis [14,15], BaCO3
and Fe2O3 were mixed with water, organic binder, plasticizer, and dispersant. A large
volume of ceramic paste could be facilely printed or injected into molds.

This research deploys two routes to produce BaFe12O19 magnets. The first method in
Section 2.1 is the compaction of BaFe12O19 powders derived by the sol–gel auto-combustion
method. The other route is injection molding the aqueous ceramic paste, detailed in
Section 2.2. After sintering the magnets from both methods at the same condition, their
magnetic properties were compared and related to the phase, elemental compositions,
morphology, and density.

2. Materials and Methods
2.1. BaFe12O19 Magnets from Powder Compaction

Following the procedure in [8], iron(III) nitrate nonahydrate (Fe(NO3)3·9H2O) (more
than 98.0% purity, Sigma-Aldrich, Singapore), and barium nitrate (Ba(NO3)2) (more than
99.00% purity, Himedia, Andhra Pradesh, India) powders were used as precursors in
sol–gel auto-combustion synthesis, followed by calcination at 1050 ◦C for 3 h. The obtained
BaFe12O19 powders were thoroughly ground in a mortar and then sieved using a 100-mesh
aperture before weighing. The compaction was split into a dry pressing and a wet pressing,
as depicted in Figure 1. Powders for the dry pressing were heated at 100 ◦C for 30 min
and 2 g of each sample was placed into a stainless mold cell for disk (10 mm in diameter,
6 mm thick) or bar (5 × 5 × 20 mm3) magnets. For the wet pressing, 0.5 mL of deionized
(DI) water was added before being placed into the mold cell. BaFe12O19 magnets were
pressed under the pressure of 70 kg/cm2 for 5 min with an automatic hydraulic machine
and subsequently sintered at 1150 ◦C for 5 h.
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Figure 1. Production steps for BaFe12O19 magnets by powder compaction.

2.2. BaFe12O19 Magnets from Paste-Injection Molding

To prepare ceramic–polymer paste, 7 g of BaCO3 (more than 99.0% purity, HiMedia,
Andhra Pradesh, India) and Fe2O3 (99.0% purity, Sigma-Aldrich, Beijing, China) powders
were mixed in a stoichiometric ratio of 1:6 and ground with a mortar before being sieved
through a 100-mesh. Four samples (2CP1-2CP4) were prepared, firstly by mixing the
BaCO3/Fe2O3 powders with the binder poly(vinyl alcohol) powder (PVA) (~287 mg). The
plasticizer poly(ethylene glycol) (PEG-400) (~150 mg), the dispersing agent EFKA® FA4620
(~20 mg), and DI water (2.3 mL) were then added. For sample 2CP5, the sequence of
chemicals was added differently. The polymeric additives were firstly dissolved in 2.3 mL
DI water. The mixed BaCO3/Fe2O3 powders were added to the aqueous solution afterward.
This order of mixing, as depicted in Figure 2, followed those published in [13]. The last
sample (2C0) was prepared by only mixing the BaCO3/Fe2O3 powder with 1.5 mL DI water
to compare the density and magnetic properties in the absence of polymeric additives. Each
homogeneous aqueous-based paste was injected into the mold using syringes and allowed
to dry for 3 h at room temperature. Dried samples were sintered at 1150 ◦C for 5 h and
BaFe12O19 magnets were obtained according to the following reaction [14,15].

BaCO3 + 6Fe2O3 → BaFe12O19 + CO2 (1)
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2.3. Characterizations of BaFe12O19 Magnets

The crystallographic phase was characterized by an X-ray diffractometer (XRD; Rigaku,
SmartLab, Austin, TX, USA) using CuKα1 radiation of 1.54060 Å, in a 2θ range of 20–80 degrees.
Morphology and elemental compositions were obtained by scanning electron microscopy
(SEM; FEI, Quanta 250, Hillsboro, OR, USA) and energy-dispersive X-ray spectroscopy
(EDS; Oxford, X-max50, Oxford, UK), respectively.

The density of each magnet was calculated from the ratio of mass (in g) to volume
(in cm3). Magnetic properties were obtained by vibrating sample magnetometry (VSM;
in-house developed and calibrated with Lakeshore 730908). VSM hysteresis loops traced
the magnetization (M) as a function of the external magnetic field (H) between −17.5 kOe
and 17.5 kOe. The magnetic field was applied parallel to the horizontal plane of the bar and
disk magnets. The remanent magnetization (Mr) and the coercivity (Hc) were determined
from the y-intercept and the x-intercept, respectively.

3. Results and Discussion

All magnets in this study were sintered at 1150 ◦C for 5 h. This condition follows pre-
vious reports [14,16] that the heat treatments at 1050−1200 ◦C promote the pure BaFe12O19
phase. XRD spectra in Figure 3 confirm the single BaFe12O19 phase in both pressed magnets
and paste-injection magnets. The characteristic peaks of the M-type BaFe12O19 at 30.38◦,
32.12◦, 34.22◦, 37.14◦, 40.44◦, 42.76◦, 55.14◦, 56.66◦, 63.24◦, 67.48◦, and 72.64◦ correspond
to the crystallographic planes of (110), (107), (114), (203), (205), (206), (217), (2011), (220),
(2014), and (1116), respectively (JCPDS: 01-74-1121). The difference from different pro-
cessing routes is the intensity of the major diffraction peak at 42.76◦. The sharp peaks in
the case of compact magnets correspond to a smaller crystallite size obtained from the
sol–gel synthesis.

SEM images in Figure 4 revealed the morphology of dry- and wet-pressed bar magnet
and magnets from paste-injection molding. Particles are predominantly in the forms
of hexagonal plate and short prism. The compact magnets (Figure 4a,b) have a wide
cross-section distribution from 550 nm to 2.5 µm. The ceramic–polymer paste magnets
(Figure 4c,d) generally contain particles of smaller sizes, 350–950 nm, consistent with the
XRD peak broadening in Figure 3. However, some particles tend to agglomerate. Without
polymer additives, particles in the ceramic paste magnet (Figure 4e) are notably larger.
Their size distributions, ranging from 850 nm to 2.2 µm, are somewhat narrower than those
of the compact magnets.
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(b) 1WB; and magnets from paste-injection molding, (c) 2CP4; (d) 2CP5; (e) 2C0.

The EDS spectra, also shown in Figure 4, give the elemental composition mapping on
the surface. The Fe, Ba, and O peaks are consistent with the phase identified by the XRD
spectra. By subtracting the amount of C from the residual peak, the atomic percentages
of Fe, Ba and O, were calculated. The Ba:Fe:O ratio of 1.00:11.42:18.96, closest to the
stoichiometric ratio of BaFe12O19, was obtained in the 2C0 sample (Figure 4e). From the
paste without polymer additives, the 2CP5 sample (Figure 4d) had a higher O composition
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with a Ba:Fe:O ratio of 1.00:11.43:21.29. Such a difference will explain the different magnetic
properties in the following discussion.

According to Table 1, the dry compaction has better control over the magnet density
(3.60–3.63 g/cm3) than the wet-pressed magnets (3.46–3.77 g/cm3). All hysteresis loops in
Figure 5 are smooth, consistent with the single BaFe12O19 phase. A kink may be observed
if other phases such as iron oxides are present [17]. The magnetization (M in the y-axis),
which increased with increasing application of magnetic field (H in the x-axis), was not
saturated under the maximum 17.5 kOe field. The saturation magnetization (Ms in Table 1)
was estimated from the y-intercept of the plot between M and 1/H2 in a regime close to the
maximum applied field using the law of approach to saturation described in [8]. In addition
to obtaining experimental Ms, a higher applied magnetic field may reveal different values of
coercivity by overcoming the remaining domain-wall-pinning mechanism. Hysteresis loops
in Figure 5a,b indicate comparable magnetic parameters of dry-pressed and wet-pressed
magnets for both shapes. The shape of compact magnets shows insignificant influence
on coercivity and magnetizations in Table 1. The magnetizations are comparable but the
coercivity is lower than the values reported in [5–7].

Without high-pressure compaction, magnets from paste-injection molding have much
lower densities. The reproducibility of the process was firstly investigated by comparing
replicate samples (2CP1–2CP4). The density varied in a small range from 1.88–1.92 g/cm3.
Interestingly, the coercivities in Figure 5c are substantially higher than those of compact
magnets. On the other hand, the Mr/Ms ratios in Table 1 are slightly larger in the case
of magnets from paste-injection molding. The values close to 0.5 correspond to isotropic
magnets. The highest coercivity was 4002 Oe in sample 2CP5, which changed the order of
chemical mixing from samples 2CP1–2CP4. The largest remanent and saturation magneti-
zation of 35.81 and 73.38 emu/g were obtained from the ceramic paste without polymeric
additives (sample 2C0). This sample had the highest density of 2.55 g/cm3 and the lowest
coercivity of 3714 Oe among magnets from paste-injection molding.

Magnetizations of BaFe12O19 magnets strongly are increased with the phase purity and
density. The highest density of 3.77 g/cm3 in this study, comparable to those in previous
experiments [1–11], is still much lower than the theoretical value. Such low densities
are consistent with pores among particles, which are not densely packed in Figure 4.
Interestingly, large magnetizations were still obtained, as shown in Table 1, and should be
attributed to the single-phase BaFe12O19. The slight variations in magnetizations in Table 1
can be related to the varied elemental composition exemplified by EDS spectra. The highest
magnetization was obtained in the case of sample 2C0 with a uniform Ba:Fe:O ratio close to
1:12:19. The different fabrication methods had a larger effect on the coercivity. The coercivity
was substantially enhanced by the reduction of particle size from the paste injection, whereas
the larger sol–gel-derived particles give rise to coercivity of less than 2500 Oe. This particle
size effect is more pronounced than those of density and shape of magnets.

Table 1. Density and magnetic properties of the BaFe12O19 magnets from powder compaction and
paste-injection molding.

Samples Fabrication Method
Density
(g/cm3)

Magnetic Properties

Hc
(Oe)

Mr
(emu/g)

Ms
(emu/g) Mr/Ms

1DD Dry-pressed disc 3.63 2454 33.48 69.94 0.48
1DB Dry-pressed bar 3.60 2453 32.63 68.48 0.48

1WD Wet-pressed disc 3.77 2389 33.97 70.01 0.48
1WB Wet-pressed bar 3.46 2450 34.29 70.85 0.48

2CP1-4 Ceramic–polymer paste * 1.90 ± 0.02 3868 ± 42 35.24 ± 0.57 72.55 ± 2.13 0.49
2CP5 Ceramic–polymer paste 2.35 4002 35.80 72.59 0.49
2C0 Ceramic paste 2.55 3714 35.81 73.38 0.49

* Averaged from 4 samples.
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4. Conclusions

The densities and magnetic properties of isotropic BaFe12O19 magnets sintered at
1150 ◦C for 5 h depended on the fabrication methods. However, the dry-pressed magnets
from sol–gel-derived powders were not influenced by their shapes. When adding DI water
in the compaction, the increase in magnetization and decrease in coercivity was modest.
Facile paste-injection molding produced BaFe12O19 magnets with reproducible density
and magnetic properties. The 1.90–2.35 g/cm3 magnets obtained from ceramic–polymer
pastes have larger coercivities than those of the higher-density compact magnets. By using
a ceramic paste without polymer additives, a slightly higher magnetization was obtained
at the expense of enhanced coercivity. The magnetization is related to the phase purity and
uniformity in elemental composition of BaFe12O19. On the other hand, the variation in
coercivity is majorly influenced by the particle size distribution.
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