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Abstract: Cooperative spin crossover (SCO) materials exhibit first-order phase transitions in the solid
state, between the high-spin (HS) and low-spin (LS) states. Elastic long-range interactions are the
basic mechanism for this particular behavior and are described well by the Ising-like model, which
allows the reproduction of most of the experimental results in the literature. Until now, this model
has been applied with an interaction parameter between the molecules, which is considered to be
independent of the states. In this contribution, we extend the Ising-like model to include interaction
energy that depends on the spin states and apply it to study SCO nanoparticles. Our research shows
that following this new hypothesis, the equilibrium temperature shifts toward higher values.

Keywords: nanoparticles; spin crossover; phase transition; Monte Carlo simulations; Ising model

1. Introduction

Spin crossover (SCO) nanoparticles [1–12] are composed of transition metals with
configurations ranging from 3d4 to 3d8 embedded in an organic matrix. They are charac-
terized by two different electronic spin configurations, resulting in two stable, magnetic
macrostates, termed high spin (HS) and low spin (LS). LS-HS transitions are triggered by
an external constraint. Most of the SCO compounds that have been studied are based on
the Fe (II) 3d6 configuration. For the 3d8 case (Ni2+ SCO) and following the work of O.A.
Qamar et al. [13], the SCO phenomenon is associated with three different lattice distortions,
one of them being from a square planar (LS, S = 0) to a tetrahedral geometry (HS, S = 1).

When a Fe (II) cation coordinates in an octahedral ligand field (Oh) as a metal com-
plex, the degenerated orbitals of the cation split into triply degenerate t2g and doubly
degenerate eg states. The macrostates are related to the micro-configurations permitted by
the distribution of the six electrons in the t2g and eg states, mediated by the competition
between the pairing electron affinity and the strength of the ligand field, which defines
the energy gap between the states. The LS state corresponds to the limiting strong field
ligand case, which favors the pairing of the six electrons in the t2g orbitals (t6

2ge0
g and spin

S = 0), and the HS state corresponds to the limiting weak field ligand case, which allows
the distribution of the electrons on both the t2g and eg states within the frame of Hund’s
rule (t4

2ge2
g and total spin S = 2). The LS state is thus diamagnetic when neglecting the

second-order Zeeman effect, and the SCO appears in a deeply colored state, while the
HS state is a paramagnetic, fainter-colored state. On top of that, the Fe-ligand distance is
greater in the HS state compared to the LS state.

The change in spin state can thus be observed through significant changes, such
as color, volume, magnetic state and electrical conductivity of the compound from a
variety of characterization techniques, including: magnetometry [14,15], Mössbauer spec-
troscopy [16], optical spectroscopy [17], ellipsometry [18], X-ray diffraction [15,19], calorime-
try [20,21], diffuse reflectance [22,23], Raman [15], etc.
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From Mössbauer studies, the Debye temperature is observed to be higher for the LS
phase than for the HS state. Accordingly, this result suggests that the interactions between
the metal complex sites, which are in the LS state, are stronger than those pertaining to
interacting HS state sites. This result is in line with a greater HS state Fe-ligand distance.
Following these experimental results and conclusions, the theoretical work presented in
this contribution is based on an Ising-like model [24–28] that is built on three different
coupling parameters to simulate the thermodynamic properties of a SCO solid. Thus, three
interaction parameters were introduced: JLL when the two interacting sites are in the LS
state, JHH when they are in the HS state and JHL when one site is in the HS state and
the other is in the LS state. In the first step, to reduce the number of parameters, the JHL
was taken as the average value of the JLL and JHH . Then, the effect of the three different
interaction parameters on the equilibrium temperature, as well as on the hysteresis width,
were analyzed.

This generalized Ising-like model is presented in Section 2, and the Monte Carlo
entropic sampling simulations used to calculate the density of the states are developed in
Section 3. The results and analysis are summarized in Section 4.

2. The Model

In the “classical” Ising-like model [24,25], the spin crossover molecules are described
by the fictitious operator σ, which has two eigenvalues: +1 assigned to the HS state (with
a degeneracy gHS) and −1 to the LS state (with a degeneracy gLS). The Hamiltonian for
N-isolated molecules is written as:

H =
∆
2 ∑N

i=1 σi (1)

where ∆ is the gap between the fundamental energies of the HS and LS states. Considering
the different degeneracies (gHS and gLS) between the respective HS and LS states arising
from their different spin values and phonon spectra, the Hamiltonian is isomorphic to:

H =
∆− kBT ln(g)

2 ∑N
i=1 σi (2)

with g = gHS
gLS

, where T is the temperature and kB is the Boltzmann constant.
To account for the interaction between the molecules, an interaction potential energy,

written under an Ising form, is added to the previous Hamiltonian, such that:

H =
∆− kBT ln(g)

2 ∑N
i=1 σi −∑i,j Jijσiσj (3)

and considering the presence of short (J) and long-range (G) interactions, as proposed by
Linares et al. [26] and demonstrated later in true elastic models by M. Paez-Espejo et al. [29],
the Hamiltonian is finally expressed as

H =
∆− kBT ln(g)

2 ∑N
i=1 σi − ∑〈i,j〉 Jij σiσj −∑N

i=1 σiG〈σ〉 (4)

which re-writes as

H =
∆− kBT ln(g)− G〈σ〉

2 ∑N
i=1 σi − ∑〈i,j〉 Jij σiσj (5)

where the long-range interaction (G) is treated in the mean-field approximation. It is worth
remarking that in this contribution, to reduce the parameters, we do not consider different
long-range interactions for HS and LS species.

We notice in Equation (5) that the interaction term Jij = J for the nearest molecules
(four in the square lattice, six in the cubic lattice) is considered to be independent of the
spin states in the “classical” Ising-like model.
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In this contribution, we generalize the previous Ising-like model and consider that the
short-range interaction term Jij between the sites σi and σj depends on their spin states. So,
three interaction constants are introduced:

JHH if both molecules are HS, σi = σj = +1;
JLL if both molecules are LS, σi = σj = −1;
JHL if one molecule is HS and the other LS, σi = −σj = ±1.
For the sake of simplicity, it is assumed that JHL = JHH+JLL

2 .
Using the following parameters:

m = ∑N
i=1 σi, s = ∑〈i,j〉 σiσj and h = −∆− kBT ln(g)− G〈σ〉

2
(6)

Hamiltonian (5) writes as:

H = −h m − JHH sHH − JHL sHL − JLL sLL (7)

where the two-sites’ correlations sHH , sLL and sLL write:

sHH = N++ = ∑〈i,j〉 σiσj, for σi = σj = +1
sLL = N−− = ∑〈i,j〉 σiσj, for σi = σj = −1

sHL = N+− + N−+ = ∑〈i,j〉 σiσj, for σi = −σj = ±1
(8)

Here, N++, N−− and N+− are the numbers of the HS-HS, LS-LS and HS-LS nearest
neighbor configurations, respectively, which fulfill the relation N++ + N−− + 2N+− = 2N,
where N is the total number of sites in the considered 2D lattice.

The partition function is then given as a function of these macroscopic variables by:

Z = ∑N′

1 d(m, sHH , sHL, sLL) exp(−β (−h m− JHHsHH − JHLsHL − JLLsLL)) (9)

where β = 1
kB T and d(m, sHH , sHL, sLL), obtained by the Monte Carlo entropic sam-

pling method (MCES, see Section 3), is the number of configurations with the same m,
sHH , sHL and sLL values. N′ is the total number of macrostates characterized by these m,
sHH , sHL and sLL values.

The thermal average value of the operator 〈σ, (T)〉, denoted 〈σ〉, is given by the
following relation:

〈σ〉 = ∑N′
1 m d(m, sHH , sHL, sLL) exp(−β (−h m− JHHsHH − JHLsHL − JLLsLL) )

Z
(10)

which is related to the high-spin fraction (Nhs) by the expression:

Nhs =
1 + 〈σ〉

2
(11)

Equation (10) is solved using the bisection technique.

3. Entropic Sampling

The purpose of the Monte Carlo entropic sampling method (MCES) [30–32] is to
obtain the density of the states d(m, sHH , sHL, sLL) in an attempt to scan the entire space of
configurations. To achieve this, the idea is to introduce in the detailed balance equation:

Pi Wi→j = Pj Wj→i (12)

Pi the probability of obtaining the macrostate (m, sHH , sHL, sLL), shown as:
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Pi =
1

d(mi, (sHH)i, (sHL)i, (sLL)i)
(13)

Wi→j is the transition probability from the macrostate (i), characterized by mi, (sHH)i,
(sHL)i, (sLL)i, to the macrostate (j).

Such a choice of Pi favors the macrostates with a small density of states and dampens
those with a high density.

The detailed balance equation is then expressed as:

P(mi , (sHH)i , (sHL)i , (sLL)i)
W(mi , (sHH)i , (sHL)i , (sLL)i)→(mj , (sHH)j , (sHL)j , (sLL)j)

=

P(mj , (sHH)j , (sHL)j , (sLL)j)
W(mj , (sHH)j , (sHL)j , (sLL)j→(mi , (sHH)i , (sHL)i , (sLL)i))

(14)

Using d(mi, (sHH)i, (sHL)i, (sLL)i) as a bias, a “Monte Carlo step” run and a histogram
of the frequency of the macrostates H(mi, (sHH)i, (sHL)i, (sLL)i) are obtained. Then, the
density of states in the next “Monte Carlo step” is improved by the following relation:

d
(
mi+1, (sHH)i+1, (sHL)i+1, (sLL)i+1

)
=

H(mi, (sHH)i, (sHL)i, (sLL)i)× d(mi, (sHH)i, (sHL)i, (sLL)i)
(15)

This technique is used iteratively until an almost constant (flat) H(mi, (sHH)i, (sHL)i,
(sLL)i) histogram is obtained.

The density of states is then used to calculate the thermal average value of the fictitious
spin operator.

4. Numerical Results and Analysis

In the calculations, a set of realistic thermodynamic parameters derived from experi-
mental data on the prototype SCO complex [Fe(btr)2(NCS)2], btr = 4,4′-bis-1,2,4-triazole [16]
is used. From the enthalpy H measurements, we derived the value of the energy gap as
∆/kB = 1300 K. The equilibrium temperature Teq is deduced from the evolution of ∆H and
is fixed at 216.3 K, from which the entropy ∆S = ∆H/Teq is calculated to be ∆S= 50 J/K/mol.
Recall that according to the previous model, the expression of Teq is given by Teq = ∆

kB ln(g) .
To study the behavior of SCO molecules, the following definitions are used such

that Tup is the ascending thermal transition temperature, Tdown is the descending thermal
transition temperature and Teq = T1/2 is the average temperature between Tup and Tdown in
which the HS fraction is equal to 1/2. The hysteresis width is defined as ∆T = Tup − Tdown.

In the first part, we study the effect of the interaction parameters on the occurrence of
thermal hysteresis and the behavior of its width when it exists. It is worth mentioning that
from the experimental point of view, the control of the interactions is usually attempted
through metal dilution by replacing a fraction of Fe (II) active SCO atoms with Co, Ni or
Zn ions [21,33,34]. Unfortunately, it is usually observed that the effect of the dopant not
only breaks down the interactions as expected, but also modulates the ligand field. The
results concerning the size effect are given in the second and last parts.

• Effect of the Interaction Parameters

The effect of the interaction is then simulated by monitoring the value of the effective
interaction parameter J/kB.

This “average” interaction parameter is defined here as the usual J parameter of the
“classical” Ising-like model, and so it relates to JHH , JHL and JLL by the following relation:

− J s = − JHH sHH − JHL sHL − JLL sLL (16)

where s = sHH + sLL − 2sHL.
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o The Case x = JHH/JLL = 1.0

Since JHL = JHH+JLL
2 , the case x = 1 corresponds to JHH = JLL = JHL, which will be

denoted for simplicity by J. The evolution of the HS fraction, noted as Nhs, is simulated as
a function of the temperature corresponding to different values of the average short-range
parameter J. Figure 1 illustrates the thermal behavior of the HS fraction for various J/kB
values ranging from 12 to 25 K.

Figure 1. Thermal evolution of the HS fraction in a SCO system with a size of 6 × 6 for different
values of the average interaction parameter J/kB: J/kB = 12 K (red square), J/kB = 14 K (blue
square), J/kB = 16 K (orange square), J/kB = 22 K (green square) and J/kB = 25 K (black square). The
computational parameters are: ∆/kB = 1300 K, G/kB = 172.2 K, x = JHH/JLL = 1.0 and ln(g) = 6.01.

The curves obtained for the 6 × 6 square system show that the nature of the transition
(hysteretic, abrupt or gradual) is closely correlated to the intensity of the short-range
interactions.

When the average short-range interaction J/kB is decreased, the thermal hysteresis
width reduces from ∆T = 5.41 K (J/kB = 25 K) to ∆T = 0.41 K (J/kB = 16 K) and
vanishes below the critical value J/kB ' 15K. Below this value, the interactions are not
strong enough to produce the collective first-order transition accompanied by the hysteretic
behavior, and the system’s feature changes into a gradual one, in fair agreement with
experimental findings [21,33,34] and previous simulations [26].

Moreover, it can be seen in Figure 1 that when all the interaction parameters JHH/kB,
JLL/kB and JHL/kB are equal, the transition temperature Teq is independent of the J/kB
values and remains equal to Teq = ∆/(kB ln(g)) = 216.3 K.

The previous results are summarized in Figure 2, where we report the phase diagram
of the system in the space coordinates T versus J/kB. The presented phase diagram clearly
highlights the existence of two regions of thermal behavior: a region corresponding to
J/kB ≥ 15 K in which the system presents a single first-order phase transition, while a
gradual transition is observed when J/kB < 15 K.
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Figure 2. Phase diagram T = f (J/kB) for a 6 × 6 square lattice. The red and blue squares correspond,
respectively, to the upper and lower transitions for the heating (Tup) and cooling (Tdown) temperatures
of the thermal HS fraction. The black squares correspond to the equilibrium temperatures (Teq). The
computational parameters are: ∆/kB = 1300 K, G/kB = 172.2 K, x = JHH/JLL = 1.0 and ln(g) = 6.01.

o The Case of x = JHH/JLL = 0.4

The ratio x = JHH/JLL has been set to the value of 0.4, and therefore, the short-range
interaction parameters (JHH , JHL, JLL) are different. In order to simulate the dilution
effect, the intensity of the average short-range interaction J/kB is gradually reduced from
J/kB = 19 K to J/kB = 11 K.

The obtained curves are plotted in Figure 3 in the case of a 6 × 6 nanoparticle configu-
ration. The values of the thermal hysteresis widths, as well as the equilibrium temperature
Teq, are summarized in Table 1 as a function of the J/kB parameter. The inspection of the
thermal behavior of the HS fraction in Figure 3 clearly shows a significant difference com-
pared to Figure 1, which remained symmetric around the invariant value of the transition
temperature. Here, the change of the interaction parameter results in a large deformation
and shift of Nhs(T), which means that the interaction J affects both the cooperativity and
the ligand field energy.

Figure 3. Thermal evolution of the HS fraction in a SCO system with a size of 6 × 6 for different
values of the average interaction parameter J/kB:J/kB = 19 K (magenta square), J/kB = 18 K (dark
yellow square), J/kB = 17 K (red square), J/kB = 16 K (purple square), J/kB = 15 K (black square),
J/kB = 13 K (green square), J/kB = 12 K (orange square) and J/kB = 11 K (blue square). The
computational parameters are: ∆/kB = 1300 K, G/kB = 172.2 K, x = JHH/JLL = 0.4 and ln(g) = 6.01.
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Table 1. Values of the thermal hysteresis width ∆Thyst = Tup− Tdown and the equilibrium temperature
Teq as a function of J/kB, JHH/kB and JLL/kB in a SCO system with a size of 6× 6. The computational
parameters are: ∆/kB = 1300 K, G/kB = 172.2 K, x = JHH/JLL = 0.4 and ln(g) = 6.01.

J/kB [K] JHH/kB [K] JLL/kB [K] (JLL−JHH)/kB [K] ∆Thyst [K] Teq [K]

19 10.86 27.14 16.28 1.03 220.86

18 10.28 25.71 15.43 0.62 220.60

17 9.72 24.29 14.57 0.33 220.37

16 9.14 22.86 13.72 0.10 220.13

15 8.57 21.43 12.86 0 219.90

13 7.43 18.58 11.15 0 219.43

12 6.85 17.14 10.29 0 219.18

11 6.28 15.71 9.42 0 218.93

As can be seen in Table 1, when the interaction parameter J decreases, the values of
JHH/kB and JLL/kB also decrease; the gap (JLL − JHH)/kB decreases as well. An important
result is that, at the same time, the thermal hysteresis width decreases, and the equilibrium
temperature of the system is shifted to lower temperatures.

In Figure 4, we plot the variations of Tup, Tdown and Teq versus J/kB, which leads to the
system’s phase diagram in the (T, J/kB) variables’ space, highlighting the existence of two
regions of thermal behavior. The thermal hysteresis loop (~1.03 K wide for J/kB = 19 K),
associated with a single first-order phase transition, rapidly narrows when decreasing
J/kB and collapses at the threshold value (J/kB)c ≈ 16 K. These results agree qualitatively
with Mössbauer spectroscopy and magnetic measurements realized on iron (II)-based SCO
materials diluted with high-spin cobalt (II) ions [33,34]. There, the Co has a double role: it
breaks down the interactions between the Fe (II) SCO species and also affects the ligand
field energy through steric effects.

Figure 4. Temperature T versus J/kB for a 6 × 6 square lattice. The red (Tup) and blue (Tdown)
squares correspond, respectively, to the transition temperatures of the upper and lower branches
of thermal hysteresis. The black squares correspond to the equilibrium temperatures (Teq) of the
gradual transition region. The computational parameters are: ∆/kB = 1300 K, G/kB = 172.2 K,
x = (JHH/kB)/(JLL/kB) = 0.4 and ln(g) = 6.01.

Linear regression in the Teq(J/kB) variation gives: T(J/kB) = 0.24072× J/kB + 216.30.
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Figure 5 shows the thermal evolution of the HS fraction in the case of a 10 × 10 square
lattice. The results are also reported in Table 2. The comparaison of the simulation for 6 × 6
and 10 × 10 square lattices are given in Table 3.

Figure 5. Thermal evolution of the HS fraction in a SCO system with a size of 10 × 10 for different
values of the average interaction parameter J/kB:J/kB = 19 K (magenta square), J/kB = 18 K
(dark yellow square), J/kB = 17 K (red square), J/kB = 16 K (purple square), J/kB = 15 K (black
square), J/kB = 13 K (green square), J/kB = 12 K (orange square), J/kB = 11 K (blue square). The
computational parameters are: ∆/kB = 1300 K, G/kB = 172.2 K, x = JHH/JLL = 0.4 and ln(g) = 6.01.

Table 2. Evolution of the thermal hysteresis width, ∆Thyst = Tup − Tdown, and the equilibrium
temperature, Teq, as a function of J/kB, JHH/kB and JLL/kB in a SCO system with a size of 10 × 10.
The computational parameters are: ∆/kB = 1300 K, G/kB = 172.2 K, x = JHH/JLL and ln(g) = 6.01.

J/kB [K] JHH/kB [K] JLL/kB [K] (JLL/kB−JHH/kB) [K] ∆Thyst [K] 10 × 10 Teq [K] 10 × 10

19 10.837 27.094 16.257 1.57 221.244

18 10.267 25.669 15.402 1.13 220.941

17 9.697 24.244 14.547 0.71 220.709

16 9.125 22.814 13.689 0.38 220.463

15 8.555 21.389 12.834 0.09 220.160

13 7.415 18.539 11.124 0 219.658

12 6.845 17.114 10.269 0 219.409

11 6.274 15.685 9?411 0 219.149

Table 3. Comparison of simulations for the 6 × 6 and 10 × 10 lattices.

J/kB [K] ∆Thyst [K] 6 × 6 Teq [K] 6 × 6 ∆Thyst [K] 10 × 10 Teq [K] 10 × 10

19 1.03 220.86 1.57 221.244

18 0.62 220.60 1.13 220.941

17 0.33 220.37 0.71 220.709

16 0.10 220.13 0.38 220.463

15 0 219.90 0.09 220.160

13 0 219.43 0 219.658

12 0 219.18 0 219.409

11 0 218.93 0 219.149
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The transition temperatures reported in Figure 6, in the heating mode (Tup) and in the
cooling mode (Tdown), clearly show that the width of the hysteresis loop ∆T = Tup − Tdown
increases when the J/kB interaction is stronger. Linear regression leads for the Teq Branch
to: T(J/kB) = 0.26019× J/kB + 216.30.

Figure 6. Phase diagram T = f (J/kB) for a 10 × 10 square lattice. The red and blue squares correspond,
respectively, to the upper and lower transitions for the heating (Tup) and cooling (Tdown) temperatures
of the thermal HS fraction. The black squares correspond to the equilibrium temperatures (Teq). The
computational parameters are: ∆/kB = 1300 K, G/kB = 172.2 K, x = (JHH/JLL) = 0.4 and ln(g) = 6.01.

• Effects of the Variation of x = JHH/JLL

In the following, the value of the ratio x is gradually decreased in the interval [1.0: 0.2].
The value of the J/kB parameter is set to 14.8 K in all simulations. As can be seen in
Table 4, when the ratio x = JHH/JLL decreases, the difference between JHH/kB and JLL/kB
increases, and the JLL/kB value increases while that of JHH/kB decreases.

Table 4. Equilibrium temperatures and hysteresis widths calculated for different values of x = JHH/JLL

parameter in a 6 × 6 square lattice. The computational parameters are: ∆/kB = 1300 K, J/kB = 14.8 K,
G/kB = 172.2 K and ln(g) = 6.01.

J/kB [K] x JLL/kB [K] JHH/kB [K] JHL/kB [K] ∆Thyst [K] Teq [K]

14.8 1.0 14.8 14.8 14.8 0.11 216.30

14.8 0.6 18.5 11.09 14.8 0 218.38

14.8 0.2 24.66 4.93 14.8 0 221.85

The results reported in Figure 7 for a 6 × 6 system show that the decrease in x
progressively shifts the equilibrium temperature Teq toward higher values. The equilibrium
temperature, which is equal to 216.3 K when x = 1, reaches the value of 221.85 K when
x = 0.2. The values of the equilibrium temperatures associated with the different x values
are reported in the last column of Table 4.
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Figure 7. Thermal evolution of the HS fraction in a SCO system with a size of 6 × 6 for different
values of the x parameter: x = 1.0 (green square), x = 0.6 (purple square) and x = 0.2 (red square). The
computational parameters are: ∆/kB = 1300 K, J/kB = 14.8 K, G/kB = 172.2 K and ln(g) = 6.01.

In this section, the size effect is analyzed, and calculations are performed in the case
of a 10 × 10 square lattice. In the same way, for the 6 × 6 lattice, the value of the ratio x is
gradually decreased from the value of 1.0 to the value of 0.2. The results are summarized
in Table 5 and in Figure 8 for parameter J/kB set to 14.8 K.

Figure 8. Thermal evolution of the HS fraction in a SCO system with a size of 10 × 10 for different
values of the x parameter: x = 0.2 (red square), x = 0.6 (purple square) and x = 1.0 (green square). The
computational parameters are: ∆/kB = 1300 K, J/kB = 14.8 K, G/kB = 172.2 K and ln(g) = 6.01.
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Table 5. Equilibrium temperatures and hysteresis widths calculated for different values of the
x = (JHH/kB)/(JLL/kB) parameter in a 10 × 10 square lattice. The computational parameters are:
∆/kB = 1300 K, J/kB = 14.8 K, G/kB = 172.2 K and ln(g) = 6.01.

J/kB [K] x JLL/kB [K] JHH/kB [K] JHL/kB [K] ∆Thyst [K] Teq [K]

14.8 1.0 14.8 14.8 14.8 6.10 216.30

14.8 0.6 18.48 11.087 14.78 5.16 219.88

14.8 0.2 24.59 4.92 14.75 0 222.29

The results of the 10 × 10 lattice are qualitatively similar to those obtained for the
6 × 6 nanoparticle configuration. When the value of the x ratio decreases, the difference
between JHH/kB and JLL/kB increases; the interactions between molecules in the LS states
(JLL/kB) are much stronger than those in the HS state (JHH/kB), and the system remains
in an LS configuration for a longer temperature interval. The equilibrium temperature
Teq gradually moves toward the order-disorder temperature TO.D.. The hysteresis width
decreases and vanishes for weaker J/kB values when Teq becomes greater than TO.D..

5. Conclusions

In this study, the behavior of 2D-SCO nanostructures is analyzed with particular
attention to the effect of the short-range interactions involved in the model. Indeed, three
coupling terms were considered (i) JHH/kB between two HS molecules, (ii) JLL/kB between
two LS molecules and (iii) JHL/kB = J/kB between a molecule in the HS state and another
one in the LS state with J/kB = (JHH/kB + JLL/kB)/2.

The JHH/JLL ratio effect is parametrized by x. When x = 1, which corresponds to the
case where the three short-range interactions are equal, the equilibrium temperature of the
system Teq remains constant. The nature of the transition from LS to HS configuration is
governed by the intensity of the interactions and, therefore, the value of the J/kB and G/kB
parameters. Increasing the short-range interaction parameter J/kB leads to a hysteretic
transition. This behavior is explained by the fact that the Curie (or the order-disorder)
temperature designed by TO.D. increases. When x is set to a value other than 1, a “pseudo-
dilution” effect is simulated by gradually reducing J/kB. Figures 4 and 6 highlight that the
equilibrium temperature shows a linear decrease towards ∆/(kB ln(g)) = 216.3 K. Moreover,
the hysteretic behavior vanishes at a threshold value of Jc/kB ≈ 16K and Jc/kB ≈ 15K for
6 × 6 and 10 × 10 systems, respectively. This feature is connected to the relative positions
of Teq and TO.D. and can be explained by the fact that the order-disorder transition TO.D.
decreases faster for small lattices. The condition Teq > TO.D. leads to a gradual transition. In
the present study, we mainly focused on the effect of varying x when J/kB is constant. An
important result is that when the difference between JHH/kB and JLL/kB is increased, the
LS state is stabilized and Teq is shifted toward higher temperatures. This behavior is more
significant for larger lattices. The effects of the interactions between surface molecules and
their environment will also be explored in future work.
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