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Abstract: FeCoB (25 nm)/Hf(tHf)/FeCoB (25 nm) sandwich films with different hafnium thicknesses
tHf were fabricated using a modified compositional gradient sputtering method to obtain self-biased
high-frequency performances. The effects of tHf on the interlayer coupling and FMR frequency
were investigated. It is revealed that interlayer coupling enhanced the resonance frequency by 48%,
and a ferromagnetic coupling between the FeCoB films occurred for the trilayers with tHf < 3.0 nm,
likely due to the interface roughness and pinhole effect. In this case, only acoustic mode resonance
was observed with the same high-frequency performance as the corresponding FeCoB single layer.
In contrast, a tHf-dependent antiferromagnetic interlayer coupling appeared at tHf > 3.0 nm. The
coupling coefficient J1 was antiferromagnetic, and a biquadratic coupling J2 appeared at tHf > 3.5 nm.
The coupling mechanism was simulated and verified by Layadi’s rigid model, and the simulation
was consistent with the experimental results.

Keywords: ferromagnetic resonance; magnetic anisotropy; interlayer exchange coupling; acoustic
resonance; optical mode resonance

1. Introduction

A soft magnetic film (SMF) is one of the most useful materials in integrated circuits
devices [1–6]. For the SMF, permeability µ and ferromagnetic resonance (FMR) frequency
fr are the most important parameters since the electromagnetic components, such as
high-frequency sensors, micro-inductors, magnetic recording heads, microwave noise
filters, micro-transformers, and many other devices, need increasingly higher operation
speed [7–11]. Kittel’s equation adequately describes the fr in a self-biased field [4].

fr =
γ

2π

√
HK·(HK + 4πMS), (1)

where HK, 4πMS, and γ/2π are the internal uniaxial anisotropy field, the saturation mag-
netization, and the gyromagnetic ratio of the SMF, respectively. Many studies focused on
the enhancement of HK because it is not only easier to control by various means, but also
has a larger amplitude of change than 4πMS. Many useful methods, such as using oblique
sputtering [12–14], doping element composition gradient sputtering (CGS) [7,15,16], post-
annealing in magnetic field [17], and magnetoelectric coupling effect [18–20], have been
proposed. After several decades of efforts, the self-biased fr of SFMs was improved from
radiofrequencies up to microwave frequencies [9,21–26].

In recent years, optical mode (OM) resonance based on interlayer exchange coupling
(IEC) has received substantial attention [27,28]. The very high effective field (HIEC) of IEC
shows good potential to drive the OM FMR up to several tens of GHz [29–36]. For exchange-
coupled sandwich films, the total free energy includes an exchange energy term [37].
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, (2)

where
→
MA (

→
MB) are the magnetization vectors of layer A (B). J1 and J2 refer to the bilinear

and biquadratic coupling coefficient, respectively. If J1 > 0, ferromagnetic (FM) coupling
occurs, whereas, if J1 < 0 (when J2 < 0), antiferromagnetic (AFM) coupling dominates [38].
In general, two resonance modes, the acoustic and optical modes, appear in FM/NM/FM
systems [39]. The coupling strength and type are sensitive to the material type and film
thickness of the FM and NM layers [40]. Parkin et al. extensively studied the effects of
nonmagnetic spacer elements on strength and oscillation of the RKKY coupling [41]. Very
recently, an ultrahigh OM resonance frequency over 22 GHz was obtained in exchange-
coupled FeCoB/Ru/FeCoB sandwich structures with magnetic uniaxial anisotropy in our
laboratory [42]. In order to further explore the effect of non-magnetic spacers (such as Ta,
Hf, W, Cr, Si, etc.) on the IEC, in this study, the effects of the hafnium thickness on the IEC
and high-frequency FMR performances are reported.

2. Experimental

A Si (100) substrate with a size of 80 × 5 × 0.5 mm3 was pasted on the sample holder
with the sample’s length direction along the arrangement direction of boron pieces (see
Figure 1 inset, the R direction). The substrate was cut into 5 mm × 5 mm pieces along the
R direction for magnetic and microwave measurements, sequentially labeled as sample
positions 1–16 (Figure 1). The FeCoB (25 nm)/Hf (t nm)/FeCoB (25 nm) trilayers (named as
TL) were prepared by RF magnetron sputtering on Si substrates under a vacuum less than
5 × 10−5 Pa. Control samples of a 50 nm FeCoB single layer without Hf spacer were also
deposited (labeled SL). The FeCoB sublayers of the trilayer were deposited by a modified
compositional gradient sputtering (MCGS) method using a boron-pasted FeCo target (as
shown in Figure 1, several boron pieces with dimensions of 5 × 5 × 0.5 mm3 were put on
the surface of the Fe0.7Co0.3 target) under an RF power of 60 W, deposition argon pressure
of 0.5 Pa at an Ar flow rate of 60 sccm, and a holder rotating speed of 10 rpm [16]. In
the conventional CGS method, the substrate is kept stationary without rotation. A boron
gradient distribution along the R direction is formed, which results in uniaxial compressive
stress along the R direction. As a result, a stress-induced uniaxial magnetic anisotropy
field with an easy axis along the T direction is obtained for the FeCoB film with a positive
magnetostriction coefficient [42]. Because the boron concentration and gradient are different
for the different test positions, the magnetic properties of the CGS sample show an evident
position dependence. In this study, the FeCo target center was set to point to the center of
the substrate as in the conventional CGS method, but the substrate was rotated during the
deposition. Using this modified CGS (MCGS) method, magnetic anisotropic films are also
available, but their position dependence is weakened. As a result, a position-insensitive
anisotropy is formed in the FeCoB films with the easy (hard) axis perpendicular (parallel)
to the R direction, respectively, similar to previous studies [15,16]. In this study, some
almost sample-position-independent magnetic resonance spectra were obtained for the SL
along the easy axis (EA). Next, a wedge Hafnium spacer with thickness increasing along R
was deposited by oblique sputtering on the bottom 25 nm FeCoB sublayer at 45 W × 75 s
under an Ar pressure of 0.6 Pa. In the oblique sputtering method, the hafnium target
maintains a certain oblique angle with respect to the Si substrate plane, i.e., the hafnium
target center was set to point to the position #16 end of the substrate, and the turntable was
kept stationary (no rotation) during the deposition of hafnium. As a result, we obtained a
wedge hafnium spacer with an almost linear increment of hafnium thickness from position
#1 to #16 along the R direction (Figure 2). The hafnium thickness distribution along the
R direction was calibrated with a thicker hafnium film by atomic force microscopy (AFM,
Parkin EX7). Thus, the thickness of the actual Hafnium spacer at each position can be
calculated from the calibrated deposition rate and the actual deposition time. The static
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magnetic properties of the films were carried out by an alternating gradient magnetometer
(AGM, MicroMagTM 2900, Princeton Measurements Corporation, Princeton, NJ, USA).
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Figure 2. Sample position n dependence of the calculated Hafnium thickness tHf.

The dynamic high-frequency performance of the films was characterized by a vector
network analyzer (VNA, N5224A, Agilent Technologies Co., Ltd., Santa Clara, CA, USA)
with a coplanar waveguide fixture. Both the transverse and the longitudinal FMR mea-
surement modes were adopted to distinguish the mode type [43]. The transverse pumping
FMR (T-FMR) is sensitive to the AM resonance (Figure 1b), while the longitudinal pumping
FMR (L-FMR) is very sensitive to the OM resonance (Figure 1c) [39,43–45]. The resonance
mode can be easily identified from the relative intensities of the resonance peaks. The
EA-T-FMR refers to the transverse FMR mode with wave vector (transmission line) along
the EA direction, while EA-L-FMR refers to the longitudinal FMR mode with wave vector
along the EA direction (Figure 1b,c). The FMR response was carried out by frequency
scanning in the 1–15 GHz range at a certain field H, before increasing H and repeating the
measurement process. The variation range of the field was 0–1000 Oe with an increasing
step of 5 Oe. The two-dimensional contour projection diagram (2D color S21–H diagram)
could be carried out for T- or L-mode measurements along the easy or hard axis of the
sample, revealing the relationship between acoustic mode (AM) and OM resonance with
the applied field, which also helped us to judge the assignment of AM or OM resonance
to each S21–f curve. In addition, it is possible that the coplanar waveguide fixture may
generate a strong magnetic field at higher microwave power, thus interfering with the
measurement results. To avoid this, a very weak microwave power of −30 dB was adopted,
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which generated a magnetic field less than several mOe around the transmission line of
the fixture.

The polar diagrams of S21 (S21–θ curve) and frequency (f r–θ curve) were measured by
rotating the film around its normal axis. The value of S21 is proportional to the total magne-
tization in the measurement direction. Thus, the S21–θ curve can reveal the distribution of
magnetic moments in the film. In this study, θ refers to the angle between the measurement
direction and the easy axis, i.e., θ = 0◦ along the EA.

3. Results and Discussion

As illustrated in Figure 2, the hafnium thickness increased monotonically as the
test position approached the deposition center of the hafnium target. This indicates that
hafnium thickness can be used as a variable to study its influence on IEC. The hafnium
thicknesses of the last few points varied slowly, because they were close to the central region
of the hafnium sputtering, where the deposition was relatively uniform. Figure 3 compares
the magnetic spectra between FeCoB SL and FeCoB/Hf/FeCoB TL, where S21 refers to the
scattering parameter of microwaves from port 1 to port 2 through the sample. As expected,
the spectra of all SL segments were almost identical (Figure 3a). In contrast, the TL magnetic
spectra showed a strong position (hafnium thickness) dependence (Figure 3b). For the
segments with n < 8 or n > 14, only one resonance peak was observed at zero external
field along EA, while two peaks were present for the segments with n between 8 and 13.
These facts imply that certain hafnium thickness-dependent interlayer coupling occurs.
Comparing the FMR frequency between SL and TL, the TL showed improved frequencies.
For example, the upper FMR frequency of the n = 9 trilayer was 4.87 GHz, while that of
the SL was around 3.3 GHz. An enhancement of 1.57 GHz with an increment ratio of 48%
was achieved.
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The angle-dependent polar diagrams of FMR frequency and S21 amplitude at
zero magnetic field, shown in Figure 4, revealed three types of in-plane anisotropy distri-
butions. For the thinner hafnium spacer sample (n = 7), only one set of FMR peaks was
observed with a frequency distribution similar to a pair of parentheses (Figure 4a), and an
“8”-shaped S21–θ curve was obtained (Figure 4b). These facts indicate an obvious uniaxial
magnetic anisotropy with the easy axis along 0◦ in the film (transverse to the R direction in
the deposition). For the sample with medium hafnium thickness (n = 10), two set of FMR
peaks appeared, forming a double-8 shape (Figure 4c,d), indicating that two resonance
modes were present, but bilinear interlayer coupling was still dominant with the easy axis
along 0◦. In contrast, for the thicker hafnium spacer sample (n = 16), a nearly circular
frequency polar diagram (f r–θ curve) was observed (Figure 4e), and the S21 intensity (or
magnetic moments) was distributed along two orthogonal axes, suggesting an important
contribution of biquadratic coupling (Figure 4f).
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Figure 5 shows the S21–H curves for typical samples along the EA direction. From
Figure 5a,b, it can be seen that, for the sample n = 6 with a thinner hafnium spacer,
two f –H lines were parallel and nearly overlapped in the EA-T-FMR mode, and only
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one very weak AM trace vanishing at 40 Oe was observed in the EA-L-FMR mode. For
the sample n = 8 with a medium hafnium thickness, two separated f –H lines existed
in EA-T-FMR, while AM and OM resonance modes were both present in EA-L-FMR
up to 112 Oe for OM. In contrast, for the sample n = 16 with a thicker hafnium spacer,
two obviously separated f –H lines were observed in the EA-T-FMR mode, with the lower
branch showing a “

√
”-shape, and only an OM line was present in the EA-L-FMR mode up

to 178 Oe. The lower resonance frequency of AM than OM demonstrates that they were
AFM coupled [46–48].
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In order to clarify the mechanism of interlayer coupling, static and dynamic magnetic
performance was studied. Figure 6 shows the hysteresis loops of representative samples.
As illustrated, the hysteresis loops of the samples with n ≤ 8 showed an obvious EA and
HA, and the remanence ratio mr of the EA loop was close to 1 (Figure 6a,b). The loops
looked like one ferromagnetic phase, suggesting that bilinear interlayer coupling existed
in the sample. However, for the samples with n ≥ 10, the mr of the EA loops decreased,
while that of the HA loops increased. Furthermore, mr of EA and HA in the n = 16 sample
had almost the same values, and the HA loop was more easily saturated than the EA loop
(Figure 6c–e). This fact indicates that its coupling type was evidently different from the
thinner hafnium samples, and a strong biquadratic coupling was present in this sample.
The anisotropy fields HK were extracted from the hysteresis loops, as summarized in
Figure 6f, and they clearly demonstrate the variation of interlayer coupling strength with
the hafnium thickness.

Layadi’s rigid model was adopted to further understand the theoretical origin of both
resonance modes [49]. This model assumes that the magnetizations of the two ferromagnetic
layers can be represented as single magnetization vectors MA and MB, which are lying in
the film plane. Layadi’s model is not applicable to general polycrystalline trilayers due to
the multidomain structure with random orientation of magnetization. However, in this
study, the FeCoB/Hf/FeCoB trilayer exhibited an IEC and a uniaxial magnetic anisotropy,
and the magnetizations in magnetic layers were along the EA direction. Therefore, the
magnetization of the whole trilayer can be considered as an orientating along the same
axis, conforming to the requirement of Layadi’s model. It was assumed that the x–y plane
was the film plane, while the normal direction of the film plane was along the z-axis (see
Figure 1b). The EA and applied field H directions were set are along the x-axis (φH = 0◦),
and the microwave field h̃ was set along the y-axis. The total free energy included the
Zeeman energy, the in-plane uniaxial anisotropy energy (with constant Ki, i = A or B),
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the shape anisotropy, any out-of-plane uniaxial magnetocrystalline anisotropy energy
(Kue f f = Ku − 2πM2, where Ku is the anisotropy constant), and interlayer coupling energy.
The total free energy per unit area can be described as follows [50]:

E = tA

{
−MAH sin θA cos φA + Kue f f A sin2 θA − KA sin2 θA cos2 φA

}
+tB

{
−MBH sin θB cos φB + Kue f f B sin2 θB − KB sin2 θB cos2 φB

}
−J1 {sin θA sin θB cos(φA − φB) + cos θA cos θB}

−J2 {sin θA sin θB cos(φA − φB) + cos θA cos θB}2

(3)

where tA and tB refer to the thicknesses of ferromagnetic layers A and B, respectively. θA
(θB) and φA (φB) are the polar and azimuthal angles of MA (MB), respectively. The resonance
frequency can be obtained as follows [49,50]:

[ ab
γAγB

]2ω4−[a2b2
(

HA
1 HA

2
γ2

B
+

HB
1 HB

2
γ2

A

)
+ abc1

(
aHB

2
γ2

A
+

bHA
2

γ2
B

)
+abc2

(
aHB

1
γ2

A
+

bHA
1

γ2
B

)
+ c1c2

(
a2

γ2
A
+ b2

γ2
B

)
+ 2c0c2ab

γAγB
]ω2

+[abHA
2 HB

2 + c2
(
aHA

2 + bHB
2
)
]× [abHA

1 HB
1 +

c1
(
aHA

1 + bHB
1
)
+
(
c2

1 − c2
0
)
] = 0,

(4)

where a = tA MA, b = tB MB, and γA/2π = γB/2π = 2.8 GHz/kOe. According to the
rigid model, the angle φA of the rigid layer is fixed at a certain value, and the parameters cj

and Hi
j are expressed as follows:

c0 = J1 + 2J2 cos(φA − φB)

c1 = J1 cos(φA − φB) + 2J2 cos2(φA − φB)

c2 = J1 cos(φA − φB) + 2J2 cos 2(φA − φB)

HA
1 = H cos φA − HKe f f A + HKA cos2 φA

HA
2 = H cos φA + HKA cos 2φA

HB
1 = H cos φB − HKe f f B + HKB cos2 φB,

HB
2 = H cos φB + HKB cos 2φB

where HKe f f A = 2Kue f f A/MA,HKe f f B = 2Kue f f B/MB,HKA = 2KA/MA,andHKB = 2KB/MB
are the planar anisotropy and the effective uniaxial fields for layers A and B, respectively.

Since the AM and OM resonances merged together for the samples at n < 6 due to the
strong ferromagnetic interlayer coupling, we focused on the interlayer coupling for samples
at n = 7–16. Figure 7a shows the comparison of f r–H curves between the samples at n = 7–16.
As illustrated, the FMR frequencies of OM were very close to each other (Figure 7a) with a
slight increase-then-decrease trend with hafnium thickness (Figure 7a inset). The AM FMR
frequencies at different positions separated from each other, shifting to a lower frequency
with the increase in hafnium thickness. Figure 7b,c show the experimental and fitted data
using Equation (3) for two representative trilayers. Both MA and MB were deduced from
the hysteresis loops, but the in-plane uniaxial anisotropy fields HK were affected by the
thickness of hafnium spacers (Figure 6f). For the thinner hafnium sample (n = 7), only
bilinear coupling occurred, and the biquadratic coupling coefficient J2 could be neglected.
As shown in Figure 7b, the simulated and experimental results were consistent with each
other, and an AFM coupling with J1 = −1.27 merg/cm2 was obtained. However, for the
thicker hafnium sample (n = 16), the biquadratic coupling increased; thus, J1 and J2 were
considered together. As shown in Figure 7c, J1 and J2 of −0.83 and −0.15 merg/cm3
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were obtained, respectively. The J1, J2, and effective coupling coefficient Jeff (=J1 + 2J2) for
trilayers at n = 7–16 are summarized in Figure 7d. As illustrated, the interlayer coupling was
relatively weak, and J1 varied in a small range of −0.8 to −1.7 merg/m2. For the samples
with n < 10, bilinear coupling dominated, and J1 slightly increased. With the increase in
hafnium thickness, biquadratic coupling appeared and increased, while J1 decreased. The
decrease in AM resonance frequency with hafnium thickness shown in Figure 7a could be
attributed to the contribution of J2 [49,50].
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For the thinner hafnium spacer with tHf < 3 nm, only FM coupling was observed,
potentially due to the interface roughness, pinhole effect, etc., while, for the trilayers
with tHf > 3 nm, AFM coupling appeared. In general, the strength of the Ruderman–
Kittel–Kasuya–Yosida (RKKY) interaction decays beyond a typical thickness of 1 nm. It is
unexpected that interlayer coupling occurs in a trilayer with a nonmagnetic spacer thicker
than 3 nm. However, in 2013, Li et al. found that the interlayer exchange coupling of the
Co (5 Å)/Pt(tPt Å)/Co (5 Å) multilayers oscillated between AFM and FM as a function of
Pt spacer thickness for a Pt spacer thickness of tPt > 3.4 nm. The good fitting of the exper-
imental data and simulated curves showed that the RKKY-type coupling was dominant
in the multilayers [51]. A similar phenomenon was also observed in trilayers with thicker
nonmagnetic spacers, such as FeCoB/Ta/FeCoB with tTa > 3 nm and FeCoB/Ru/FeCoB
with tRu > 2.5 nm (not shown here). These studies indicate that RKKY-type coupling in a
sandwich trilayer may be present in a relatively thicker nonmagnetic spacer. This interest-
ing phenomenon is expected to be further studied theoretically in the future. On the other
hand, good high-frequency performance appeared at a hafnium thickness of 3–4 nm, which
is relatively thicker and easier to fabricate. Compared with the ruthenium spacer, its good
performance exists in the extremely low thickness of ca. 0.3 nm [29], for which sample
preparation is very strict and difficult. Thus, the Hf separated trilayers are beneficial for
practical application.

4. Conclusions

The effect of hafnium spacer thickness on the interlayer coupling and ferromagnetic
resonance was systematically investigated in modified compositional gradient-sputtered
FeCoB (25 nm)/Hf(tHf)/FeCoB (25 nm) trilayers. It was revealed that the interlayer cou-
pling and FMR resonance were sensitive to the hafnium thickness, while the FMR frequency
was enhanced by 48% due to interlayer coupling. Ferromagnetic coupling between the
FeCoB films occurred for the trilayers with tHf < 3.0 nm, which could be attributed to
the interface roughness, pinhole effect, etc. A hafnium thickness-dependent interlayer
coupling appeared in the trilayers at tHf > 3.0 nm, while biquadratic coupling appeared at
tHf > 3.5 nm. This study demonstrates that AFM coupling may exist in the FM/NM/FM tri-
layer with a thicker nonmagnetic spacer, leading to the desired higher-frequency OM FMR.
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