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Highlights:

• Critical overview of the “first-principles” DFT-based band models of the optical and magneto-
optical responses.

• Cluster model and charge transfer transitions in ferrites: the theory of the circular MOE and
comparisons with experiments.

• Elucidation of the Bi-substitution-induced effects in ferrites.
• Exchange-relativistic “spin-other-orbit” interaction VSoO as the main, if not the only source of

circular MOE for weak ferromagnets.
• Nonlinear m-dependence of the circular MOE in ferrites as an explicit indication of the VSoO

contribution.

Abstract: The concept of charge transfer (CT) transitions in ferrites is based on the cluster approach
and takes into account the relevant interactions, such as the low-symmetry crystal field, spin–orbital,
Zeeman, exchange and exchange-relativistic interactions. For all its simplicity, this concept yields a
reliable qualitative and quantitative microscopic explanation of spectral, concentration, temperature
and field dependencies of optic and magneto-optic properties ranging from the isotropic absorption
and optical anisotropy to circular magneto-optics. In this review paper, starting with a critical analysis
of the fundamental shortcomings of the “first-principles” density functional theory (DFT-based) band
theory, we present the main ideas and techniques of the cluster theory of the CT transitions to be
main contributors to circular magneto-optics of ferrites. Numerous examples of comparison of cluster
theory with experimental data for orthoferrites, iron garnets and other ferrites are given.
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1. Introduction

Over the past 175 years since Michael Faraday’s discovery of the relation between
light and electromagnetism, magneto-optics has become a broad field of fundamental and
applied research. On the one hand, magneto-optics is aimed at the experimental study of
the electronic and magnetic structure, magnetic anisotropy, magnetic phase transitions,
spin–orbital, exchange and exchange-relativistic effects; and on the other hand, toward
the search for new materials with high magneto-optical characteristics, improvement and
development of new magneto-optical applications. Various ferrites, especially bismuth-
substituted iron garnets, R3Fe5O12 (R = Y, or rare-earth ion), occupy a special place among
magneto-optical (MO) materials. They are the main objects of fundamental research and
basic materials for creating various devices for applied magneto-optics, from magneto-
optical sensors and visualizers, terahertz isolators, circulators, magneto-optical modulators,
optical magnetoelectric sensors and nonreciprocal elements of the integrated optics, to
promising applications in high density MO data-storage and low-power consumption
spintronic nanodevices.
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Rare-earth orthoferrites, RFeO3, which have been studied since the 60s of the last
century, have attracted the attention of researchers for several decades, and continue to
attract it, owing to their weak ferromagnetism, remarkable magneto-optical properties,
different spin-reorientation transitions, high velocity of domain walls and many other phys-
ical properties [1]. Orthoferrites remain a focus of considerable research due to promising
applications in innovative spintronic devices.

The problem of describing the optical and magneto-optical properties of ferrites is
one of the most challenging tasks in the theory of strongly correlated 3d compounds.
Despite many years of experimental and theoretical research, the nature of their optical,
and especially, magneto-optical, response, remains a subject of debate. This concerns both
the identification of electronic transitions responsible for the formation of the main optical
and magneto-optical properties, and the comprehensive calculation of their contributions
to the optical and magneto-optical response functions. The solution of this problem largely
depends on the choice of the optimal strategy for taking into account the effects of charge
transfer and strong local correlations, which can be formulated as the compromise between
the one-electron band and atomic–molecular descriptions of electronic states.

In this review paper, we present a critical analysis of band approaches to describing
the optical and magneto-optical responses of 3d ferrite-type compounds based on the use
of density functional theory (DFT) (see, e.g., [2–4]) and argue that the traditional physically
transparent atomic–molecular cluster approach (see, e.g., [5–8]) based on local symmetry,
strong covalence and charge transfer (CT) effects with strong local correlations, provides
consistent descriptions and explanations of the optical and magneto-optical responses
of various ferrites in a wide spectral range. The review was stimulated by the lack of
detailed and reliable studies of electron–hole excitations and of a proper understanding
of the relative roles of different transitions in the optical and magneto-optical responses
of ferrites.

The rest of the paper is organized as follows. In Section 2, we present a critical
overview of the DFT-based approaches [9,10] for descriptions of the optical and magneto-
optical properties of strongly correlated 3d compounds and point to the cluster model as a
comprehensive, physically clear alternative to the DFT approach. In Section 3, we address
the CT states and CT transitions in octahedral [FeO6]9− and tetrahedral [FeO4]5− clusters
as basic elements of crystalline and electronic structure for most ferrites. Here we also show
that the CT transitions provide adequate descriptions of the optical spectra for a wide range
of ferrites and other 3d oxides. In Section 4, we discuss different interactions for the CT
states, with a specific focus on so-called exchange-relativistic interactions—in particular, the
novel “spin-other-orbit” interaction. In Section 5, we analyze the polarizability tensor for
the octahedral [FeO6]9− cluster and argue that its contribution to the optical and magneto-
optical anisotropy is determined by different interactions in excited states. In Section 6, we
overview different points of the microscopic theory of circular magneto-optics for ferrite-
garnets and weak ferromagnets, including Bi-substituted garnets; the specific role of the
“spin-other-orbit” coupling in weak ferromagnetic ferrites; the temperature dependence
of circular magneto-optics; and the role of the 4f–5d transitions in rare-earth ions. A brief
summary is given in Section 7.

2. Density Functional Theory or Cluster Model?
2.1. So-Called “Ab Initio” DFT Based Approaches

The electronic states in strongly correlated 3d oxides manifest both significant localiza-
tion and dispersional features. One strategy to deal with this dilemma is to restrict oneself
to proper, small, many-electron clusters embedded to a whole crystal, then creating model
effective lattice hamiltonians whose spectra may reasonably well represent the energy
and dispersion of the important excitations of the full problem [7,8,11]. Despite some
shortcomings, the method did provide a clear physical picture of the complex electronic
structure and the energy spectrum, along with the possibility of a quantitative modeling.
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However, the last few decades, the condensed matter community faced an expanding
avalanche of the DFT-based papers with the so-called ab initio calculations of electronic
structure and physical properties for strongly correlated systems, such as 3d compounds.
Only in recent years has a series of papers been published on ab initio calculations of the
electronic structure, and optical and magneto-optical spectra of iron garnets (see, e.g., [3,4]).

However, DFT [9,10] still remains, in some sense, ill-defined: many DFT statements
were ill-posed or not rigorously proved [8,11]. All efforts to account for the correlations
beyond LDA (local density approximation) encounter an insoluble problem of double
counting of interaction/correlation terms, which were just included into Kohn–Sham
single-particle potential [9,10].

Most widely used DFT computational schemes start with “metallic-like” approaches
making use of approximate energy functionals: firstly, the LDA scheme, which is con-
structed as an expansion around the homogeneous electron gas limit and fails quite
dramatically to capture the properties of strongly correlated systems. The LDA+U and
LDA+DMFT (DMFT, dynamical mean-field theory) [12] methods are believed to correct
the inaccuracies of approximate DFT exchange correlation functionals. The main idea of
these computational approaches consists of selective descriptions of the strongly correlated
electronic states, typically, d or f orbitals, using the Hubbard model, while all the other
states continue to be treated at the level of standard DFT functionals. Despite the fact that
the LDA+U and LDA+DMFT methods are now considered as the most powerful methods
for studying strongly correlated systems, they retain many of the shortcomings of the
DFT+LDA approach.

The values of effective on-site Coulomb parameters Ue f f = U − J, where U represents
the Hubbard on-site Coulomb repulsion parameter and J the intra-atomic Hund’s exchange
integral, are ordinarily determined by seeking good agreement of the calculated properties,
such as band gaps, with the experimental results. The values of Ue f f strongly affect the
calculated material properties. Recent studies have attempted to calculate these parameters
directly based on first principles approaches. Nevertheless, the calculated values differ
widely, even for the same ionic state in a given material, due to a number of factors, such as
the choice of the DFT scheme or the underlying basis set. Although it has become a common
practice that a certain Ue f f value is chosen a priori during the setup of a first principles-based
calculation, it is also well known that a certain Ue f f value may not work definitively for all
calculation methods and DFT schemes. By independently constraining the field on the Fe
atoms at the octahedral and tetrahedral sites in YIG (yttrium iron garnet), the authors [4]
obtained two different values of Ue f f , i.e., 9.8 eV for octa-Fe and 9.1 eV for tetra-Fe. These
values are considerably different from those used for iron garnets in previous works; e.g.,
U = 3.5 eV and J = 0.8 eV [13] using the orthonormalized linear combination of atomic
orbitals basis set within constrained LDA approach, and Ue f f = 5.7 eV [14], U = 4 eV [3,15].
The Hubbard and Hund U and J parameters were chosen as Ue f f = 2.7 eV for YIG, 4.7 eV
for LuIG and 5 eV for Bi-substituted garnet BixLu3−xFe5O12 [16].

Despite many examples of seemingly good agreement with experimental data claimed
by the DFT community, both the questionable starting points and many unsolved and
even unsoluble problems give rise to serious doubts in quantitative and even qualitative
predictions made with the DFT-based techniques [8,11].

Strictly speaking, the DFT is designed for description of ground rather than excited
states, and there is no good scheme for excitations. As an excited-state density does not
uniquely determine the potential, there is no general analog of the Hohenberg–Kohn func-
tional [9,10] for excited states. The standard functionals are inaccurate both for on-site
crystal field and for charge transfer excitations [17]. The DFT-based approaches cannot
provide the correct atomic limit and the term and multiplet structure [18,19], which is
crucial for descriptions of the optical responses for 3d compounds. Although there are
efforts to obtain correct results for spectroscopic properties depending on spin and orbital
density, this problem remains an open one in DFT research. Clearly, all these difficulties
stem from unsolved foundational problems in DFT. Given these background problems,
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the DFT-based models should be addressed as semi-empirical approximate ones rather
than ab initio theories. M. Levy introduced in 2010 the term DFA to define density func-
tional approximation instead of DFT, which is believed to quite appropriately describe
contemporary DFT [20].

A basic drawback of the spin-polarized approaches to descriptions of electronic struc-
tures for spin-magnetic systems, especially in a simple LSDA scheme [2], is that these start
with a local density functional in the form

v(r) = v0[n(r)] + ∆v[n(r), m(r)](σ̂ · m(r)
|m(r)| ) ,

where n(r) and m(r) are the electron and spin magnetic density, respectively; σ̂ is the Pauli
matrix. That is, these imply the presence of a large fictious local one-electron spin-magnetic
field ∝ (v↑ − v↓), where v↑,↓ are the on-site LSDA spin-up and spin-down potentials. The
magnitude of the field is considered to be governed by the intra-atomic Hund exchange,
and its orientation by the effective molecular or inter-atomic exchange fields. Despite the
supposedly spin nature of the field, it produces an unphysically giant spin-dependent
rearrangement of the charge density that cannot be reproduced within any conventional
technique operating with spin Hamiltonians [11]. Furthermore, a direct link with the
orientation of the field makes the effect of the spin configuration on the charge distribution
unphysically large. However, in reality, long-range spin-magnetic coupling has no signifi-
cant influence on the redistribution of the charge density. In such a case, the straightforward
application of the LSDA scheme can lead to an unphysical overestimation of the effects, or
even to qualitatively incorrect results due to an unphysical effect of a breaking of spatial
symmetry induced by a spin configuration. The DFT-LSDA community needed many years
to understand such a physically clear point.

Overall, the LSDA approach seems to be more or less justified for a semi-quantitative
description of exchange coupling effects for materials of classical Néel-like collinear mag-
netic order. However, it can lead to erroneous results for systems and high-order pertur-
bation effects where the symmetry breaking and quantum fluctuations are of a principal
importance, such as: (i) noncollinear spin configurations, particularly in quantum s = 1/2
magnets; (ii) relativistic effects, such as the symmetric spin anisotropy and antisymmetric
DM coupling [21]; (iii) spin-dependent electric polarization [22,23]; and (iv) linear and
circular magneto-optical effects. There are some intractable problems with match-making
between the conventional formalism of a spin Hamiltonian and LSDA approach to the
exchange and exchange-relativistic effects. Visibly plausible numerical results for different
exchange and exchange-relativistic parameters reported in many LSDA investigations (see,
e.g., [24]) evidence only a potential capacity of the LSDA-based models for semiquantitative
estimations, rather than for reliable quantitative data [21–23].

It is rather surprising how little attention has been paid to the systematic DFT-based
calculations of the optical response for the transition metal oxides (TMO). The available
examples, upon closer examination, only once again indicate the fundamental problems
that the DFT approach encounters when trying to describe the optical responses of strongly
correlated systems in a wide spectral range. Let us turn to a recent paper by Roedl and
Bechstedt [25] on NiO and other TMOs, whose approach is typical for the DFT community.
The authors calculated the dielectric function ε(ω) for NiO with the DFT-GGA+U+∆
technique and claimed: “The experimental data agree very well with the calculated curves.”
However, this agreement is a result of a simple fitting when the two model parameters U
and ∆ are determined (U = 3.0, ∆ = 2.0 eV) such that the best possible agreement concerning
the positions and intensities of the characteristic peaks in the experimental spectra is
obtained. In addition, the authors arrived at an absolutely unphysical conclusion: “The
optical absorption of NiO is dominated by intra-atomic t2g → eg transitions."

There are still many people who think the DFT+LDA has provided a very successful ab
initio framework to successfully tackle the problem of the electronic structures of materials.
However, both the starting point and realizations of the DFT approach have raised serious
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unresolved questions [8]. The HK “theorem” of the existence of a mythical universal density
functional that can resolve everything looks like a way into Neverland; the DFT heaven
is probably unattainable. Various DFAs, local or nonlocal, will never be exact. Users are
willing to pay this price for simplicity, efficacy and speed, combined with useful (but not yet
chemical or physical) accuracy [17,26]. The most popular DFA fail for the most interesting
systems, such as strongly correlated oxides—in particular, ferrites. The standard DFT
approximations over-delocalize the 3d electrons, leading to highly incorrect descriptions.
Some practical schemes, in particular, DMFT, can correct some of these difficulties, but
none has yet become a universal tool with known performances for such systems [17].

2.2. Cluster Model Approach

At variance with the DFT theory, the cluster model approach does generalize and
advance crystal-field and ligand-field theory. The method provides a clear physical picture
of the complex electronic structure and the energy spectrum, and the possibility of a quan-
titative modeling. The cluster calculations might provide a better description of the overall
electronic structure of insulating 3d oxides than the band structure calculations [27,28],
mainly due to a better account of correlation effects; electron-lattice coupling; and rel-
atively weak interactions, such as spin–orbital and exchange coupling. Moreover, the
cluster model has virtually no competitors in the description of impurity or dilute systems.
Cluster models do widely use the symmetry for atomic orbitals; point group symmetry;
and advanced technique, such as Racah algebra and its modifications for point group
symmetry [7,8,29]. On the other hand, the cluster model is an actual proving-ground for
various calculation techniques, from simple quantum chemical MO-LCAO (molecular
orbital linear combination of atomic orbitals) to the more elaborate LDA + MLFT (MLFT,
multiplet ligand-field theory) [30] approach. The LDA + MLFT technique implies a sort
of generalization of the conventional ligand-field model with the DFT-based calculations.
Haverkort et al. [30] started by performing a DFT calculation for the proper, infinite crystal
using a modern DFT code, which employs an accurate density functional and basis set (e.g.,
linear augmented plane waves (LAPWs)). From the (self-consistent) DFT crystal potential,
they then calculated a set of Wannier functions that were suitable for the single-particle
basis of the cluster calculation. The authors compared the theory with experimental spectra
(XAS, nonresonant IXS, photoemission spectroscopy) for different 3d oxides and found
overall satisfactory agreement, indicating that their ligand-field parameters are over 90%
correct. However, the authors were forced to treat on-site correlation parameter Udd and
orbitally averaged ∆pd as adjustable ones. Despite the involvement of powerful calculation
techniques, the numerical results of the LDA + MLFT approach seem to be more like semi-
quantitative ones. Nevertheless, any comprehensive physically valid description of the
electron and optical spectra for strongly correlated systems, as we suggest, should combine
simple physically clear cluster ligand-field analysis with a numerical calculation technique
such as LDA+MLFT [30], and a regular appeal to experimental data.

It is now believed that the most intensive low-energy electron–hole excitations in insu-
lating 3d oxides correspond to the charge transfer (CT) transitions [7,8,31–49]. Namely, the
CT transitions are considered as a likely source of the optical and magneto-optical response
of the 3d metal-based oxide compounds, in particular, ferrites, in a wide spectral range of
1–10 eV, primarily of the fundamental absorption edge. The low-energy, dipole-forbidden
d–d orbital excitations, or phonon-assisted crystal field transitions, are characterized by the
oscillator strengths which are smaller by a factor 102–103 than those for the dipole-allowed
p–d CT transitions, and usually correspond to contributions to the dielectric function ε′′ in
the order of 0.001–0.01.

Despite CT transitions being a well established concept in the solid state physics,
their theoretical treatment remains rather naive and hardly progressed during the last few
decades. Usually, it is based on the one-electron approach with some 2p–3d or, at best, 2p→
3d t2g, 2p→3d eg CT transitions in 3d oxides. In terms of the Hubbard model, this is a CT
transition from the nonbonding oxygen band to the upper Hubbard band. However, such
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a simplified approach to CT states and transitions in many cases appears to be absolutely
insufficient and misleading, even for qualitative explanation of the observed optical and
magneto-optical properties. First, one should generalize the concept of CT transitions
taking into account the conventional transition between the lower and upper Hubbard
bands, which corresponds to an inter-site d–d CT transition, or inter-site transition across
the Mott gap.

Several important problems are hardly addressed in the current analysis of optical
spectra, including the relative roles of different initial and final orbital states and respective
CT channels, strong intra-atomic correlations, effects of strong electron and lattice relaxation
for CT states, the transition matrix elements or transition probabilities, probable changes
in crystal fields and correlation parameters accompanying the charge transfer. One of the
central issues in the analysis of electron–hole excitations is whether low-lying states are
comprised of free charge carriers or excitons.

Despite all their shortcomings, the cluster models have proven themselves to be
reliable working models for strongly correlated systems- such as 3d compounds. These
have a long and distinguished history of applications in electron, optical and magneto-
optical spectroscopy, magnetism and magnetic resonance. The author and his colleagues
has successfully demonstrated the great potential of the cluster model for description of
the p–d and d–d charge transfer transitions and their contributions to optical and magneto-
optical responses of various 3d oxides, such as ferrites [31–40], cuprates [41–45], manganites
[40,46,47] and nickelates [48,49].

3. Cluster Model: The CT Configurations and CT Transitions in Ferrites

3.1. Electronic Structure of Octahedral [FeO6]9− Clusters in Ferrites

The slightly distorted octahedral [FeO6]9− clusters are main optical and magneto-
optical centers in weak ferromagnetic orthoferrrites, RFeO3; hematite, α -Fe2O3; borate,
FeBO3; cubic antiferromagnetic garnets such as Ca3Fe2Ge3O12; and tetrahedral [FeO4]5−

complexes in other ferrites as well.
Five Me 3d and eighteen oxygen O 2p atomic orbitals in the octahedral MeO6 complex

with the point symmetry group Oh form hybrid Me 3d-O 2p bonding and antibonding eg
and t2g molecular orbitals, and purely oxygen nonbonding a1g(σ), t1g(π), t1u(σ), t1u(π)
and t2u(π) orbitals (see, e.g., [5,8,29,46]). Nonbonding t1u(σ) and t1u(π) orbitals with
the same symmetry are hybridized due to the oxygen–oxygen O 2pπ-O 2pπ transfer. The
relative energy positions of different nonbonding oxygen orbitals are of primary importance
for the spectroscopy of the oxygen–3d–metal charge transfer. This is firstly determined by
the bare energy separation ∆ε2pπσ = ε2pπ − ε2pσ between O 2pπ and O 2pσ electrons.

Since the O 2pσ orbital points towards the two neighboring positive 3d ions, an
electron in this orbital has its energy lowered by the Madelung potential as compared
with the O 2pπ orbitals, which are oriented perpendicular to the respective 3d–O–3d axes.
Thus, Coulomb arguments favor the positive sign of the π− σ separation εpπ − εpσ, whose
numerical value can be easily estimated in frames of the well-known point charge model,
and appears to be in the order of 1.0 eV. In a first approximation, all the γ(π) states
t1g(π), t1u(π), t2u(π) have the same energy. However, the O 2pπ–O 2pπ transfer yields the
energy correction to bare energies with the largest value and positive sign for the t1g(π)
state. The energy of the t1u(π) state drops due to a hybridization with the cation 4p t1u(π)
state. In other words, the t1g(π) state is believed to be the highest in energy non-bonding
oxygen state [46]. For illustration, in Figure 1 we show the energy spectrum of the 3d–2p
manifold in the octahedral complexes MeO6 with the relative energy positions of the levels
according to the quantum chemical calculations [50] for the [FeO6]9− octahedral complex
in a lattice environment typical for perovskites such as LaFeO3. It should be emphasized
once more that the top of the oxygen electron band is composed of O 2pπ nonbonding
orbitals that predetermine the roles of the oxygen states in many physical properties of
3d perovskites.
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The conventional ground state electronic structure of octahedral Fe3+O6 clusters is
associated with the configuration of the completely filled O 2p shells and half-filled Fe 3d
shell. The typical high-spin ground state configuration and crystalline term for Fe3+ in the
octahedral crystal field or for the octahedral [FeO6]9− center are t3

2ge2
g and 6 A1g, respectively.

The excited CT configuration γ1
2p 3dn+1 arises from the spin-conserving transition of

an electron from the predominantly anionic molecular orbitals γ2p into an empty 3d-type
MO (t2g or eg). The transition between the ground and the excited configuration can be
presented as the intra-center p–d CT transition γ2p → 3d(t2g, eg) .

The p–d CT configuration consists of two partly filled molecular-orbital subshells,
localized predominantly on the 3d cation and ligands, respectively. The excited cation con-
figuration (3d6) nominally corresponds to the Fe2+ ion. Strictly speaking, the many-electron
p–d CT configuration should be written as tn1

2gen2
g γ2p with n1 + n2 = 6, or

((tn1
2gen2

g )2S′+1Γ′g; γ2p)
2S+1Γ (S = S′ ± 1

2 , Γ ∈ Γ′g × γ2p; 2S+1Γ is a crystal term of the CT
configuration), if we make use of the spin and orbital quasi-momentum addition tech-
nique [29].

3d

2p

eg

t2g

t  ( )2g p

e ( )g s

a  ( )1g s

t  ( )1u s

t  ( )1g p

t  ( )2u p

t  ( )1u p

Distorted MeO octahedron6

D =10Dq

Nondistorted MeO octahedron6

Figure 1. The diagram of Me 3d-O 2p molecular orbitals for the MeO6 octahedral center. The O 2p-
Me 3d charge transfer transitions are shown by arrows: strong dipole-allowed σ− σ and π − π by
thick solid arrows; weak dipole-allowed π− σ and σ−π by thin solid arrows; weak dipole-forbidden
low-energy transitions by thin dashed arrows. Adapted from reference [40].

3.2. Intra-Center Electric-Dipole p–d CT Transitions

The conventional classification scheme of the intra-center electric-dipole p–d CT
transitions in the octahedral [FeO6]9− clusters first of all includes the electric-dipole allowed
transitions from the odd-parity oxygen γu = t1u(π), t2u(π), t1u(σ) orbitals to the even-
parity iron 3dt2g and 3deg orbitals, respectively. These one-electron transitions generate the
many-electron ones, 6 A1g → 6T1u, which differ by the crystalline term of the respective 3d6

configuration:
(t3

2g
4 A2g; e2

g)
6 A1g → ((t4

2g; e2
g)

5T2g; γu)
6T1u, (1)

(t3
2g

4 A2g; e2
g)

6 A1g → ((t3
2g; e3

g)
5Eg; γu)

6T1u, (2)
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for γu → 3dt2g and γu → 3deg transitions, respectively. We see that in contrast to the
manganese centers Mn3+O9−

6 [46], each one-electron γu → 3dt2g transition generates one
many-electron CT transition.

The MeO6 octahedral center can be written with the aid of the Wigner–Eckart theo-
rem [29] as follows (see [46] for details):

〈γuµ|d̂q|γgµ′〉 = (−1)j(γu)−µ

〈
γu t1u γg
−µ q µ′

〉∗
〈γu‖d̂‖γg〉 , (3)

where
〈
· · ·
· · ·

〉
is the Wigner coefficient for the cubic point group Oh [29], j(Γ) is

the so-called quasi-momentum number and 〈γu‖d̂‖γg〉 is the one-electron dipole mo-
ment submatrix element. The 3d–2p hybrid structure of the even-parity molecular orbital
γgµ = Nγg(3dγgµ + λγg 2pγgµ) and a more simple form of purely oxygen odd-parity
molecular orbital γuµ ≡ 2pγuµ, both with a symmetry superposition of the ligand O 2p
orbitals, point to a complex form of the submatrix element in (3) to be a sum of local and
nonlocal terms composed of the one-site and two-site (d–p and p–p) integrals, respectively.
In the framework of a simple “local” approximation that implies the full neglect of all
many-center integrals,

〈t2u(π)‖d̂‖eg〉 = 0; 〈t2u(π)‖d̂‖t2g〉 = −i

√
3
2

λπd ;

〈t1u(σ)‖d̂‖t2g〉 = 0; 〈t1u(σ)‖d̂‖eg〉 = −
2√
3

λσd ;

〈t1u(π)‖d̂‖eg〉 = 0; 〈t1u(π)‖d̂‖t2g〉 =
√

3
2

λπd . (4)

where λσ∼tpdσ/∆pd and λπ∼tpdπ/∆pd are e f f ective covalence parameters for eg, t2g elec-
trons, respectively; d = eR0 is an elementary dipole moment for the cation–anion bond
length R0. We see that the “local” approximation results in an additional selection rule:
it forbids the σ → π and π → σ transitions, t1u(σ) → t2g and t1,2u(π) → eg, respectively,
though these are dipole-allowed. In other words, in frames of this approximation, only
σ-type (t1u(σ)→ eg) or π-type (t1,2u(π)→ t2g) CT transitions are allowed. Hereafter, we
make use of the terminology of “strong” and "weak” transitions for the dipole-allowed CT
transitions going on the σ− σ and π − π and π − σ and σ− π channels, respectively. It
should be emphasized that the “local” approximation, if non-zero, is believed to provide a
leading contribution to transition matrix elements with corrections of the first order in the
cation-anion overlap integral [40,46]. Moreover, the nonlocal terms are neglected in stan-
dard Hubbard-like approaches. Given typical cation-anion separations RMeO ≈ 4 a.u., we
arrive at values less than 0.1 a.u. even for the largest two-site integral; however, neglecting
them should be done carefully. Equations (3) and (4) point to likely extremely large dipole
matrix elements and oscillator strengths for strong p–d CT transitions, mounting to dij∼eÅ
and f∼0.1, respectively.

Hence, starting with three nonbonding purely oxygen orbitals, t1u(π), t1u(σ), t2u(π),
as initial states for one-electron CT, we arrive at six many-electron dipole-allowed CT
transitions 6 A1g → 6T1u. There are two transitions t1u(π), t2u(π) → t2g (π − π channel);
two transitions t1u(π), t2u(π) → eg (π − σ channel); one transition t1u(σ) → t2g (σ − π
channel); and one transition t1u(σ)→ eg (σ− σ channel).

It should be noted that the dipole-forbidden t1g(π)→ t2g transition seemingly deter-
mines the onset energy of all the p–d CT bands.

For our analysis to be more quantitative, we make two rather obvious model approxi-
mations. First of all, we assume that, as is usually the case for cation–anion octahedra in
3d oxides [5,40,46,47,50,51], the non-bonding t1g(π) oxygen orbital has the highest energy
and forms the first electron removal oxygen state. Furthermore, to be sure, we assume that
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the energy spectrum of the non-bonding oxygen states for [Fe3+O6]9− centers coincides
with that calculated in [50] for [Fe3+O6]9− in orthoferrite LaFeO3; in other words, we have
(in eV):

∆(t1g(π)− t2u(π)) ≈ 0.8 ; ∆(t1g(π)− t1u(π)) ≈ 1.8 ;

∆(t1g(π)− t1u(σ)) ≈ 3.0 .

Secondly, we choose for the Racah parameters B = 0.09 eV and C = 0.32 eV, the
numerical values typical for the Fe3+ ion [5].

The energies of the intra-center CT transitions for octahedral FeO6 and tetrahedral
FeO4 clusters in Y3Fe5O12 were calculated using the spin-polarized Xα discrete variational
(SP-Xα DV) method [32,37]. These results are presented in Table 1 together with the results
of fitting the experimental optical data [5,52,53], taking into account only the contribution
of the intra-center CT transitions with a Lorentzian line shape.

Table 1. Parameters (energies, oscillator strength, line width) of the dipole allowed intra-center CT
transitions in octahedral (6 A1g → 6T1u, number = 1–6) and tetrahedral (6 A1g → 6T2, number = 7–13)
clusters in Y3Fe5O12. Ecomp and E f it are the computed and fitted CT transition energies, respectively.
Adapted from references [32,37].

No. Transition Ecomp (eV) E f it (eV) f (×10−3) Γ (eV)

1 t2u → t2g 3.1 2.8 4 0.2
2 t1u(π)→ t2g 3.9 3.6 30 0.3
3 t2u → eg 4.4 4.3 60 0.3
4 t1u(σ)→ t2g 5.1 4.8 40 0.3
5 t1u(π)→ eg 5.3 5.2 200 0.3
6 t1u(σ)→ eg 6.4 6.1 200 0.3
7 1t1 → 2e 3.4 3.4 30 0.4
8 6t2 → 2e 4.3 4.6 20 0.3
9 1t1 → 7t2 4.5 4.7 40 0.3

10 5t2 → 2e 5.0 4.9 30 0.3
11 6t2 → 7t2 5.4 5.1 20 0.3
12 1e→ 7t2 5.6 5.6 10 0.3
13 5t2 → 7t2 6.0 6.0 20 0.3

In addition to several dipole-allowed CT transitions, the CT band also includes various
forbidden transitions. First of all, these are dipole-forbidden p–d transitions between states
with the same parity of the 2pt1g-3dt2g type, and satellites of allowed transitions having
the same electronic configuration but different terms for the final states. For instance, in the
FeO6 octahedron, these are the 6 A1g → 6Γu transitions (Γ = A1 , A2 , E , T1) forbidden
by the quasimoment selection rule, and the 6 A1g → 4Γu spin-forbidden transitions (if
Γ 6= T1u, then it is quasimoment forbidden, too). The forbiddenness of these transitions is
lifted by the electron-lattice interaction, low-symmetry crystal field, spin–orbital interaction,
or exchange interaction with neighboring clusters. A detailed analysis of the energy spec-
trum of the CT band requires taking into account the d–d, p–d and p–p correlation effects.

3.3. Inter-Center d–d CT Transitions

Strictly speaking, reliable identification of the intra-center p–d CT transitions is possi-
ble only in highly dilute or impurity systems, such as YAlO3:Fe or Ca3FexGa2−xGe3O12,
whereas in concentrated systems (YFeO3, Ca3Fe2Ge3O12, Y3Fe5O12, etc.), these transitions
compete with inter-center d–d CT transitions [41–43,45,47,48].

The inter-center d–d CT transitions between two MeOn clusters centered at neighboring
sites 1 and 2 define inter-center d–d CT excitons in 3d oxides [41–43,45,47,48]. These excitons
may be addressed as quanta of the disproportionation reaction

Me1Ov
n + Me2Ov

n → Me1Ov−1
n + Me2Ov+1

n , (5)
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with the creation of electron MeOv−1
n and hole MeOv+1

n centers. Depending on the initial
and final single particle states, all the inter-center d–d CT transitions may be classified as
eg− eg, eg− t2g, t2g− eg and t2g− t2g ones. For the 3d oxides with cations obeying the Hund
rule, these can be divided to so-called high-spin (HS) transitions S1S2S→ S1 ± 1

2 S2 ∓ 1
2 S

and low-spin (LS) transitions S1S2S→ S1 − 1
2 S2 − 1

2 S, respectively.
An inter-center d–d CT transition in iron oxides with Fe3+O6 octahedra

[FeO6]
9− + [FeO6]

9− → [FeO6]
10− + [FeO6]

8− (6)

implies the creation of electron [FeO6]10− and hole [FeO6]8− centers with electron configu-
rations formally related to Fe2+ and Fe4+ ions, respectively. The low-energy inter-center
d–d CT transitions from the initial Fe3+O6(t3

2ge2
g):6 A1g states can be directly assigned to

eg→eg, eg→t2g, t2g→eg and t2g→t2g channels with final configurations and terms [40]

eg → eg : t3
2ge1

g; 5Eg − t3
2ge3

g; 5Eg,

eg → t2g : t3
2ge1

g; 5Eg − t4
2ge2

g; 5T2g,

t2g → eg : t2
2ge2

g; 5T2g − t3
2ge3

g; 5Eg,

t2g → t2g : t2
2ge2

g; 5T2g − t4
2ge2

g; 5T2g. (7)

In the framework of high-spin configurations, the eg→t2g CT transition has the lowest
energy ∆ = ∆eg−t2g ; while the eg→eg, t2g→t2g and t2g→eg transitions have the energies
∆ + 10Dq(3d6), ∆ + 10Dq(3d4) and ∆ + 10Dq(3d6) + 10Dq(3d4), respectively. The transfer
energy in the Fe3+-based ferrites for the eg→t2g CT transition

∆Fe−Fe
egt2g

= A + 28 B− 10Dq

can be compared with a similar quantity for the eg→eg CT transition in Mn3+-based
manganite LaMnO3:

∆Mn−Mn
egeg = A− 8 B + ∆JT ,

where ∆JT is the Jahn–Teller splitting of the eg levels in manganite. Given B ≈ 0.1 eV,
Dq ≈ 0.1 eV, ∆JT ≈ 0.7 eV, ∆Fe−Fe

egeg ≈ 2.0 eV (see, e.g., [54]), we get A ≈ 2.0 eV,

∆Fe−Fe
egt2g

≈ 4.0 eV. In other words, the onset of the d–d CT transitions in Fe3+-based fer-

rites is strongly (∼2 eV) blue-shifted as compared to the Mn3+-based manganite LaMnO3.
Another important difference between ferrites and manganites lies in the opposite

orbital character of initial and final states for the d–d CT transitions. Indeed, the low-energy
d4d4 → d3d5 CT transition in manganites implies an orbitally degenerate Jahn–Teller initial
state 5Eg

5Eg [55] and an orbitally non-degenerate final state 4 A2g
6 A1g; and the low-energy

d5d5 → d4d6 CT transitions in ferrites imply an orbitally non-degenerate initial state
6 A1g

6 A1g and an orbitally degenerate Jahn–Teller final state, such as 5Eg
5Eg for eg → eg

or 5Eg
5T2g for eg → t2g CT transitions. An unconventional final state with an orbital

degeneracy on both sites or Jahn–Teller excited states may be responsible for the complex
multi-peak lineshape of the inter-center d–d CT band in ferrites.

3.4. Interplay of the CT Transitions in Ferrites

The most complete and detailed analysis of the optical spectra for a wide range of
ferrites has been carried out in relatively recent papers [39,40]. The authors analyzed
optical ellipsometry data in the spectral range of 0.6–5.8 eV for two groups of the iron
oxides with more or less distorted FeO6 octahedral and FeO4 tetrahedral clusters. One of the
two groups of materials includes orthoferrites RFeO3, bismuthate BiFeO3, Y0.95Bi0.05FeO3,
hematite α−Fe2O3, Fe2−xGaxO3 and borate Fe3BO6 in which iron Fe3+ ions occupy only
octahedral centro- or non-centrosymmetric positions, and distortions range from 1 to 20%.
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The second group includes lithium ferrite LiFe5O8, barium hexaferrite BaFe12O19, iron
garnets R3Fe5O12 and calcium ferrite Ca2Fe2O5, in which Fe3+ ions occupy both octahedral
and tetrahedral positions with a rising tetra/ortho ratio. Experimental data were discussed
within the cluster model, which implies an interplay of intra- (p–d) and inter-center (d–d)
CT transitions.

Some previously reported optical data on ferrites were in most cases obtained with the
use of conventional reflection and absorption methods. The technique of optical ellipsome-
try [39,40] provides significant advantages over conventional reflection and transmittance
methods in that it is self-normalizing and does not require reference measurements. The
optical complex dielectric function ε = ε′ − iε′′ is obtained directly without a Kramers–
Krönig transformation. The dielectric function ε was obtained in the range from 0.6 to
5.8 eV at room temperature. The comparative analysis of the spectral behavior of ε′ and
ε′′ is believed to provide a more reliable assignment of spectral features. The spectra were
analyzed using the set of the Lorentz functions.

To begin our discussion of the CT transitions in ferrites, we refer to the spectroscopic
data for garnets Y3FexGa5−xO12 (x = 5, 3.9, 0.29, 0.09) [56]. They demonstrate that the
optical response in the spectral range up to 30000 cm−1 (∼ 3.7 eV) is governed by the
intra-center transitions for both octahedral and tetrahedral Fe3+ centers. It means that the
onset energy for different d–d CT transitions in ferrites is expected to be >3.7 eV, which is
in agreement with our model estimates discussed in Section 3.3.

To uncover the role played by the octahedral Fe3+ centers, we turn to the optical
response of the orthoferrites RFeO3. These compounds contain the only type of centrosym-
metric, slightly (∼1%) distorted, FeO6 octahedra. Despite the long story of optical and
magneto-optical studies (see, e.g., [5,57]), the microscopic origin of the main spectral
features in orthoferrites remains questionable, and the transition assignments made earlier
in [5] need a comprehensive revisit. The ε′, ε′′ spectra of ErFeO3 for three main polariations
shown in Figure 2 are typical for orthoferrites, RFeO3 [5,57,58]. The low-energy intense
band around 3 eV may be assigned to a strong dipole-allowed intra-center t2u(π) → t2g

CT transition, as was proposed in [5]. This is a characteristic feature of the octahedral Fe3+

centers in oxides. However, such an assignment also implies the existence of a weak band
due to a low-energy, dipole-forbidden, intra-center t1g(π)→ t2g CT transition, red-shifted
by about 0.8 eV, as expected from estimates [50]. Indeed, a band around 2.5 eV can be found
in the optical and magneto-optical spectra of different orthoferrites [5]. This band is clearly
visible in the hematite (α-Fe2O3) spectrum near 2.4 eV [39,40], where the t1g(π) → t2g

transition becomes allowed due to a breaking of the centro-symmetry for Fe3+ centers.
The nearest high-energy neighborhood of the 3 eV band is expected to be composed

of t1u(π) → t2g CT transitions of comparable intensity and estimated energy about 4 eV.
All the dipole-allowed intra-center p–d CT transitions to the eg state are blue-shifted by
10Dq(3d5) as compared to their γ → t2g counterparts with the onset energy of the order
of 4 eV. Interestingly, for the dipole-allowed γu → t2g transitions, the maximum intensity
is expected for the low-energy t2u(π) → t2g transition, whereas for γu → eg transitions,
the maximum intensity is expected for the high-energy (∼6–7 eV) t1u(σ)→ eg transition.
The analysis of the experimental spectra for orthoferrites demonstrates the failure of the
intra-center p–d CT transitions to explain the broad intensive band centered near 4.5 eV
together with a narrow low-energy satellite peaked near 3.9 eV. Both features are typical for
orthoferrites [5,57] and may be assigned to a eg → t2g low-energy inter-center CT transition
6 A1g

6 A1g → 5Eg
5T2g to an unconventional final state with an orbital degeneracy on both

sites. These Jahn–Teller excited states are responsible for the complex line-shape of the
eg → t2g CT band, which is composed of a narrow exciton-like feature and a broad intense
band separated by ∼0.5 eV, which is believed to be a measure of the Jahn–Teller splitting in
the excited state. Thus, we see that all the spectral features observed in the optical spectra of
orthoferrites for energies below 5 eV can be directly assigned to the low-energy intra-center
p–d and inter-center d–d CT transitions.
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Figure 2. (Color online) The dielectric function spectra in ErFeO3 orthoferrite for three main polariza-
tions. The Lorentzian fitting is marked by dotted curves and filling. Adapted from [39,40].

It is worth noting that the dielectric function in orthoferrites is nearly isotropic due to
very weak (∼1%) rhombic distortions of FeO6 octahedra and nearly equivalent different
Fe–O–Fe bonds. Nevertheless, a fine structure of the main CT bands is clearly revealed in
magneto-optical spectra of orthoferrites, which was earlier assigned to the dipole-forbidden
d–d crystal field transitions [5,57]. In our opinion, their relation to the low-symmetry
distortions in the p–d CT band seems to be more reasonable.

The effect of a strong change in bulk crystalline symmetry and local trigonal non-
centrosymmetric distortions of FeO6 octahedra is well illustrated by the optical response of
hematite α-Fe2O3 [39,40]. First of all, there is a noticeable rise in intensity and a splitting for
dipole-forbidden t1g(π)→ t2g transition at 2.4 eV, which is clearly visible in the spectrum
of the gallium-substituted sample. Second, one should note a clear splitting in the order of
0.3–0.4 eV of the 3 eV band due to a sizable trigonal distortion of the FeO6 octahedra. In
both cases, the band splitting effect reflects the singlet–doublet splitting of the initial orbital
triplets, t1g(π) and t2u(π), respectively, due to the low-symmetry trigonal crystal field.
Interestingly, the integral intensity of the t2u(π)→ t2g band at 3 eV is visibly enhanced in
hematite as compared to similar bands in orthoferrites, which may result from the more
covalent Fe–O bonding in hematite.

4. Effective Hamiltonian for Fe Clusters in Ferrites

As the principal interactions determining the CT transitions’ contributions to the
optics and magneto-optics of ferrites, we note the low-symmetry crystal field (LSCF) ,
Zeeman interaction VZ, spin–orbit interaction VSO, exchange interaction Vex and exchange-
relativistic interactions Vex

so . The CT configurations have two unfilled shells—the 3d6 (t4
2g e2

g

or t3
2g e3

g) shell and the γ2p shell ( γ̃1
2p-hole), which distinguishes them considerably from

the ground state configuration having only one unfilled shell 3d5 (t3
2g e3

g), and leads to the
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specificity of the manifestation of various interactions, especially anisotropic ones. Below,
we consider the aforementioned interactions in the cluster approach.

4.1. Low-Symmetry Crystal Field

Using the the cubic-group irreducible tensor operator technique, in particular, the
Wigner–Eckart theorem [29], we can write the matrix of the effective Hamiltonian of the
low-symmetry crystal field, ĤLSCF, in general as follows:

〈κSMsΓM|ĤLSCF|κ′S′M′sΓ′M′〉 = ∑
γν

∑
ΓΓ′

Bγ?
ν (κΓκ′Γ′)(−1)Γ−M

〈
Γ γ Γ′

−M ν M′

〉
δSS′δMs M′s , (8)

where γ = E, T2, 〈:::〉 is the 3Γ symbol [29], κ, κ′ are certain CT configurations and Bγ
ν (ΓΓ′)

are crystal field parameters.
For a certain T1 (T2) term, the ĤLSCF can be written as an effective operator:

VLSCF = ∑
ij

BCF
ij

[
L̃iLj −

1
3

L(L + 1) δij

]
. (9)

where BCF
ij is the symmetric traceless matrix of the LSCF parameters; L̃iLj = (LiLj +

LjLi)/2; L is the effective orbital moment of the T1-, T2-term (L = 1). However, in general,
the LSCF can lead to the mixing of different cubic terms, 2S+1Γ, 2S+1Γ′ (E, T2 ∈ Γ× Γ′), of
identical or different CT configurations with the same spin multiplicity. All these effects may
be of importance, since HLSCF reaches a magnitude up to ∼0.1 eV under the low-symmetry
distortions of the [FeO6]9− complex of order 10−2.

4.2. Conventional Spin–Orbital Interaction

The conventional “intra-center” spin–orbital interaction VSO = ∑i a(ri)li · si for a
certain T1 (T2) term can be written as follows:

Vso = λ L · S , (10)

where λ is the effective spin–orbit coupling constant, tabulated for the CT states of the
[FeO6]9− and [FeO4]5− clusters in [32,37]. The contributions to λ are due to both the ligand
(oxygen) 2p-subsystem and the iron subsystem, the latter contribution being dominant.
VSO leads to the terms splitting and mixing, the latter being especially significant in the case
of identical configurations or those differing from each other in the state of the 3d-shell,
only. However, in general, the VSO can lead to the mixing of different cubic terms 2S+1Γ,
2S′+1Γ′ (|S− S′| ≤ 1 ≤ S + S′; T1 ∈ Γ× Γ′).

4.3. Zeeman Interaction

The Zeeman interaction VZ = ∑i µB(li + 2si) ·H can be written for a certain T1 (T2)
term as an effective operator:

VZ = µB(gLL + gSS) ·H , (11)

where gS and gL are, respectively, the spin g-factor (gS ≈ 2) and the effective orbital
g-factor, whose values are listed in [32,37]. Note that gL can disagree with the classical
orbital value gL = 1 not only in magnitude, but even in sign. In particular, the CT state
of the t5

2u (t
4
2g e2

g
5T2 ) configuration dominating the magneto-optics of ferrites at the long

wavelength tail has the value gL = − 3
4 . It is worth noting that at variance with the spin–

orbital coupling, the contributions to gL due to the oxygen γ̃2p-hole and the 3d electrons
have comparable values.
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4.4. Exchange Interaction

The Heisenberg exchange interaction of the [FeO6]9− m-cluster in the CT state with
the neighboring n-cluster in the ground 6 A1g state can be written in a simplified form
as follows:

Vex = −2 ∑
m>n

Jmn(Sm · Sn), (12)

where Jmn is the exchange integral, although in general it should be replaced by the orbital
operator, e.g., for a certain 6T1u term for the m-cluster:

Ĵmn = J0
mn + ∑

i=αβ

Jαβ
mn(

˜̂Lα L̂β −
2
3

δαβ) . (13)

In general, the cluster spin momentum operators in (12) should be replaced by the
first rank spin operators, which can change the spin multiplicity. The Vex gives rise to the
orbital and spin splitting and mixing of the CT configuration terms. The exchange parame-
ters in Vex are determined not only by the ordinary cation–anion–cation superexchange,
Fe3+–O2−–Fe3+, but also by the considerably stronger direct cation–anion exchange, Fe3+–
O2− , reaching the magnitude in the order ∼0.1 eV. Strictly speaking, at variance with the
antiferromagnetic exchange interaction between the ground states, the exchange in the CT
state can lead to both antiferro- and ferromagnetic spin coupling. Interestingly, the matrix
of the orbital operator Ĵmn in (13) has a structure similar to VLSCF (8) with the main orbitally
isotropic γ = A1g term included. In other words, a nontrivial orbital part of V̂ex can be
considered as a spin-dependent contribution to the low-symmetry crystal field.

It should be noted that, in addition to the spin-dependent part, the exchange interaction
also contains a spin-independent contribution, which has a similar orbital structure.

4.5. Exchange-Relativistic Interactions

The combined effect of a conventional intra-center spin–orbital coupling and orbitally
non-diagonal exchange coupling for an excited orbitally degenerated state of the Fe cluster
within the second-order perturbation theory can give rise to a novel type of exchange-
relativistic interaction, modified spin–orbital coupling V̂ex

SO, which can be written as a
sum of isotropic, anisotropic antisymmetric and anisotropic symmetric intra-center and
inter-center terms [31,32,37,59]:

V̂ex
SO = ∑

m,n
λ
(0)
mn(Lm · Sn) + ∑

m,n
(λλλmn · [Lm × Sn]) + ∑

m,n
(Lm

↔
λλλ mn Sn) . (14)

It is worth noting that λλλmn has the symmetry of the Dzyaloshinskii vector [11,21,60,61],
and the last term has the symmetry of the two-ion quasi-dipole spin anisotropy. Generally
speaking, all the three terms can be of a comparable magnitude.

The contribution to the intra-center (m = n) bilinear interaction is determined by the
spin-independent purely orbital exchange, and the inter-center (m 6= n) term, or “spin-
other-orbit” coupling V̂SoO, is determined by the spin-dependent exchange interaction.
However, the spin-dependent exchange leads to the occurrence of additional nonlinear
spin-quadratic terms, the contributions of which can be taken into account by the formal
replacement of the linear spin operator Sn in (14) for the nonlinear operator Smn:

Ŝq(mn) = Ŝq(n) + γ
[
V̂2
(

S(m)
)
× S1(n)

]1

q
=

Ŝq(n) + γ ∑
q1,q2

[
2 1 1
q1 q2 q

]
V̂2

q1

(
S(m)

)
Sq2(n) , (15)

where [:::] is the Clebsch–Gordan coefficient [62] and V2
q (S) is the rank 2 spin irreducible

tensor operator. In particular,
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V̂2
0 (S) = 2

[
(2S − 2)!
(2S + 3)!

]1/2(
3Ŝ2

z − S(S + 1)
)

. (16)

The coefficient γ in (15) can be calculated for specific terms. The isotropic part of VSoO
can be presented, in the general case, as follows:

Viso
SoO = ∑

mn
λ(mn)(L(m) · S(n)) + + ∑

m 6=n
λ′(mn)

(
L(m) · S(m)

)(
S(m) · S(n)

)
. (17)

Similarly to the Dzyaloshinskii vector, to estimate the parameters of the spin-other-
orbit coupling, we can use the simple relation [63]

λ(m) ≈ λ(mn) ≈ λ′ J′

∆ESΓ
, (18)

where λ′ and J′ are the spin–orbital constant for the T1 and T2-states and the nondi-
agonal exchange parameter, respectively; ∆ESΓ is a certain excitation energy. Parame-
ters such as λ(m), λ(mn) can have values considerably larger than typical values of
the Dzyaloshinskii vector [11,21,61], due both to smaller values of ∆ESΓ and the direct
2p–3d exchange, which as stated above, is stronger than the 3d–2p–3d superexchange
determining d(mn). Effective orbital magnetic fields acting on the T1 and T2 orbital
states, e.g., for Fe3+ions in ferrites due to Vex

SO, can reach magnitudes larger than 10 T
(λ′ ≥ 102 cm−1, J′ ≥ 102 cm−1, ∆ESΓ∼104 cm−1).

The approach presented here can be immediately extended to tetrahedral clusters
[FeO4]5−.

5. Anisotropic Polarizability of the Octahedral [FeO6]9−-Cluster

Almost all ferrites are low anisotropic optical media in a wide spectral range:
∆ε/ε0 ≤ 10−2, ε0 and ∆ε, which are, respectively, the isotropic and anisotropic parts
of the permittivity tensor ε̂. The latter can be written as the sum of the symmetric and
antisymmetric parts:

∆ε = ∆εs
ij + ∆εa

ij , (19)

characterizing the linear birefringence/dichroism and the circular birefringence/dichroism,
respectively. The latter can be described by axial gyration vector g [64] which is dual to
∆εa

ij :

gi =
1
2

eijk∆εa
jk , (20)

where eijk is the Levi–Civita tensor.
Within a linear approximation, the Fe cluster’s contribution to the anisotropic permi-

tivity tensor can be expressed in terms of the cluster anisotropic polarizability tensor α̂
as follows:

∆ε̂ = 4πNLα̂ , (21)

where N is the number of clusters per unit volume; L =
n2

0 + 2
9 is the Lorentz-Lorenz factor.

Hence, for the gyration vector we have

g = 4πNLα , (22)

with α being the “microgyration vector,” related to the antisymmetric part of the cluster
polarizability tensor by an expression analogous to (20).

5.1. Simple Microscopic Theory

The microscopic analysis of the optical anisotropy is usually carried out on the basis
of the Kramers–Heisenberg formula [65] for the electronic polarizability; in the case of the
microgyration vector, it takes on following form:
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α =
1
h̄ ∑

ij
ρi
[
dij × dji

]
· F1(ω, ωij) . (23)

For the symmetric part of α̂ , the Kramers–Heisenberg formula reduces to

α
sym
kl =

1
h̄ ∑

ij
ρi 〈i|dk|j〉 〈j|dl |i〉 · F2(ω, ωij) . (24)

In these formulae, dij is the matrix element of the electric dipole moment d (dk, l
being its Cartesian projections) between the initial state |i〉 and the final state |j〉 for the CT
transition; ρi is the statistical weight of the |i〉 state. Fk (k = 1, 2) is the Lorentz dispersion
factor

Fk(ω, ωij) =
(ω + iΓij)[1 − (−1)k] + ωij [1 + (−1)k]

(ω + iΓij)2 − ω2
ij

. (25)

ωij denotes the CT transition frequency, and Γij is the line width.
Instead of the Cartesian tensor, one can introduce the irreducible polarizability ten-

sor [32,37]:

αk
q =

1
h̄ ∑

ij
∑
q1q2

ρi

[
1 1 k
q1 q2 q

]
〈i|dq1 |j〉 〈j|dq2 |i〉 · Fk(ω, ωij) , (26)

where [:::] is the Clebsch–Gordan coefficient [62], and dq is the irreducible tensor component
of the dipole moment d (d±1 = ∓ 1√

2
(dx ± idy), d0 = dz).

An important advantage of the irreducible tensor form is the natural separation of
isotropic and anisotropic contributions: α0

0 describes the isotropic refraction/absorption;
α1

q and α2
q describe the circular and linear birefringence/dichroism, respectively.

For octahedral [FeO6]9− (tetrahedral [FeO4]5−) clusters with an orbitally non-degenerate
ground state 6 A1g in ferrites, the contribution of the CT transitions 6 A1g → 6T1u (6 A1g →
6T2) to the anisotropic polarizability will be associated only with certain “perturbation” in
excited 6T1u (6T2) CT states.

In the linear approximation, we single out two main contributions, αk
q(split) and

αk
q(mix), associated with the orbital splitting of excited 6T-states and mixing/interactions

of different 6T-states, respectively, under the action of various perturbations, VLSCF, VZ,
VSO and Vex

SO [32,37].

αk
q(split) =

1
h̄2 ∑

i=6 A1g

∑
j=6T1u

∑
µµ′

∑
q1q2

ρi

[
1 1 k
q1 q2 q

]
×

〈i|dq1 |jµ〉 〈jµ|V̂|jµ
′〉 〈jµ′|dq2 |i〉 ·

∂Fk(ω, ω0
ij)

∂ω
(0)
ij

(27)

αk
q(mix) =

1
h̄ ∑

i=6 A1g

∑
(

j,j′=6T1u
Ej>E

j′
)

∑
q1q2

ρi

[
1 1 k
q1 q2 q

]
×

〈i|dq1 |j〉 ·
〈j|V|j′〉
Ej − Ej′

· 〈j′ |dq2 |i〉 · Fk(ω, ωij) (28)

A simple illustration of the nature of circular and linear birefringence due to a splitting
mechanism is presented in Figure 3.
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Figure 3. An illustration of the nature of circular and linear birefringence due to a splitting mechanism:
(a) schematic for the dipole allowed CT transitions 6 A1g → 6T1u for the light with right and left
circular polarization under external magnetic field and orbital Zeeman splitting; (b) schematic for
the CT transitions 6 A1g → 6T1u for the light with a linear polarization in a low-symmetry (rhombic)
crystal field and Stark splitting for excited 6T1u state. Note that we are dealing with final current (a)
and currentless (b) states, respectively.

Note that in ferrites with an orbitally non-degenerate ground 6 A1g state of Fe clusters,
both linear and circular birefringence will be associated with orbital splitting/mixing in ex-
cited states. Obviously, the Fe cluster’s contribution to the linear birefringeance/dichroism
will be related to the low-symmetry crystal field VLSCF in excited 6T1u states, and its con-
tribution to circular birefringence/dichroism will be determined by the orbital Zeeman
interaction or complex spin–orbital interactions, such as VSO and Vex

SO. Large exchange spin
fields of up to 103 T and large spin Zeeman splittings do not make direct contributions to
circular magneto-optics in ferrites.

Due to a competition of the splitting and mixing mechanisms, the spectral dependence
of the polarizability cannot be considered to be a sum of separate individual 6 A1g→ 6T
CT transitions.

5.2. Symmetry Considerations

Accounting for local point symmetry, crystal and magnetic symmetry in many cases
provides important qualitative and even quantitative information about various anisotropic
effects—in particular, the roles of certain microscopic mechanisms.

5.2.1. Linear Birefringeance in Orthoferrites

Simple symmetry considerations within the framework of the so-called “deformation”
model made it possible to explain the dependence of linear birefringence on the type of
R-ion in orthoferrites, RFeO3 [1].

The real FeO6 cluster in orthoferrites can be represented as a homogeneously deformed
ideal octahedron. To find the degree of distortion, we introduce a symmetric strain tensor
εij according to the standard rules. In the local system of cubic axes of the octahedron,

εij =
1

4l2

6

∑
n=1

(Ri(n)uj(n) + Rj(n)ui(n)), (29)

where R(n) is the radius-vector of the Fe-On bond, u(n) is the On-ligand displacement
vector or
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ε̂ =

 1− l1
l

1
2 (

π
2 − θ12)

1
2 (

π
2 − θ13)

1
2 (

π
2 − θ21) 1− l2

l
1
2 (

π
2 − θ23)

1
2 (

π
2 − θ31)

1
2 (

π
2 − θ32) 1− l3

l

, (30)

where l is the Fe–O separation in an ideal octahedron, li are the Fe–Oi inter-atomic distances
1
3 (l1 + l2 + l3) = l and θij are the bond angles of Oi–Fe–Oj in a real complex. Local x, y, z
axes in octahedron are defined as follows: the z-axis is directed along the Fe–OI bond,
the x-axis is along the Fe–OI I , the shortest Fe–O bond. In general, the deformations of
octahedra in orthoferrites are small and do not exceed 0.02.

Diagonal components of the traceless strain tensor (30) (tensile/compressive defor-
mations) can be termed as E-type deformations, since εzz and 1√

3
(εxx − εyy) transform

according to the irreducible representation (irrep) E of the cubic group Oh, and off-diagonal
components (shear deformations) can be termed as T2-type deformations, since εyz, εxz and
εxy transform according to the irrep T2 of the cubic group Oh.

In the linear approximation, the symmetric anisotropic polarizability of the octahedron
FeO6 can be related to its deformation as follows [1]:

αij =

{
pE εij , i = j
pT2 εij , i 6= j ,

(31)

where εij is the FeO6 octahedron deformation tensor (Tr ε̂ =0); pE, T2 are the photo-elastic
constants, relating the polarizability to E, T2-deformations, respectively. The relation (31) is
valid in the local coordinate system of the FeO6 octahedron. In the abc-axes system, it can
be rewritten as

αij = pE εE
ij + pT2 εT2

ij , (32)

where εE
ij and εT2

ij are the components of the tensors of the E- and T2-deformations of the
octahedron in the abc- system, respectively.

Proceeding to the permittivity tensor ε̂ and summing over all Fe-ions sites, we arrive
at nonzero diagonal components of ε̂:

εii = PEεE
ii + PT2 εT2

ii , (33)

where PE,T2 = 4πN
(

n2
0 + 2

3

)2
pE,T2 ; N is the number of Fe3+ ions per 1 cm3. The com-

ponents of ε̂E, ε̂T2 tensors serve as the structure factors and may be calculated taking into
account the known components of the tensor of FeO6 octahedron local deformations and
the Eulerian angles relating the local axes to the abc ones.

Thus, we have a two-parameter Formula (33) for the birefringence of orthoferrites as a
function of rhombic distortions of their crystal structure [1]. The photo-elastic constants
PE, PT2 can be found from the comparison of experimental data [66,67] with the theoretical
structure dependence of the ab plane birefringence:

∆nab = na − nb =
1

2n0

[
PE(ε

E
xx − εE

yy) + PT2(ε
T2
xx − εT2

yy)
]

(34)

treated as a dependence on the type of the orthoferrite. The Figure 4 shows both experi-
mental and calculated ∆nab given PE = 6.2 n0 , PT2 = 4.0 n0 (values obtained from the
least-squares fitting). Very nice agreement of the two-parameter Formula (34) with the
experiment testifies to the validity of the deformation model of the birefringence.

Using the determined parameter PE,T2 values, we are able to describe all the pecu-
liarities of the orthoferrite birefringence [1]. In particular, Figure 4 shows the theoretical
predictions for the orientation angles ±θ of optical axes, measured from the c-axis for the
ac and bc planes and from the a-axis for the ab plane, together with scarce experimental
data on Eu, Tb, Dy, Y, Yb orthoferrites [67,68]. Quite good agreement with the available
experimental data is another confirmation of the validity of the deformation model of
birefringence of orthoferrites. In general, for all its simplicity, the deformation model
reflects quite correctly the main peculiarities of the natural birefringence of orthoferrites.
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Figure 4. Left panel: Linear birefringeance ∆nab for orthoferrites RFeO3 in ab plane. Solid circles
are predictions of the deformation model; hollow circles are experimental data (λ = 0.633 µm)
[66]. Right panel: The orientation angles (±θ) of optical axes in respective planes of orthoferrites
predicted by the deformation model. The solid black circles are scarce experimental data for bc plane
(λ = 0.68 µm) [67,68]. Adapted from [1].

5.2.2. Circular Birefringeance/Dichroism in Ferrites

First of all, note that the gyration vector and the magnetic moment (or the ferromag-
netic vector m) have the same transformation properties. For f errimagnetic iron garnets,

g = Âama + Âdmd + ĈH, (35)

where ma and md are magnetic moments, or ferromagnetic vectors, of octahedral and
tetrahedral sublattices, respectively.

In weak ferromagnets such as RFeO3, and in a number of other magnetic compounds
with non-equivalent magnetic sublattices, certain components of the ferromagnetic vector
m and the antiferromagnetic vector l in a two-sublattice model transform identically, which
enables one to write g in the linear approximation through m, l, and the external magnetic
field H, as

g = Â m + B̂ l + Ĉ H, (m2 + l2 = 1) (36)

(the ferromagnetic (FM), antiferromagnetic (AFM) and field contributions, respectively).
The form of each of Â, B̂, Ĉ tensors is determined by the crystal symmetry. For

example, in orthorhombic weak ferromagnetic orthoferrites, RFeO3:

Â =

 axx 0 0
0 ayy 0
0 0 azz

, B̂ = B̂s + B̂a =

 0 0 bxz
0 0 0

bzx 0 0

 ,

axx 6= ayy 6= azz , bzx 6= bxz .

In rhombohedral weak ferromagnets (α-Fe2O3 , FeBO3 , FeF3, etc.):

Â =

 a⊥ 0 0
0 a⊥ 0
0 0 a‖

, B̂ = B̂a =

 0 bxy 0
byx 0 0
0 0 0

 ,

i.e., byx = − bxy, and the B̂ tensor, in contrast with orthoferrites, is antisymmetric. The
symmetry properties of the Â and Ĉ tensors are identical.

The special role of the antiferromagnetic contribution to the gyration vector for weak
ferromagnets is due to the fact that for them, as a rule, m � l; for example, m/l ≈ 0.01
in YFeO3 and m/l ≈ 0.001 in α-Fe2O3 , respectively [11,21,69]. However, the components



Magnetochemistry 2022, 8, 81 20 of 32

of the gyration vector g in α-Fe2O3 and YFeO3 are comparable in magnitude with those
for the yttrium iron garnet, Y3Fe5O12 [5,70], although the magnetization of the latter is
approximately by two orders larger than in the hematite and by one order larger than in
orthoferrites. It seems impossible to explain this phenomenon other than in terms of the
AFM contribution. Hence, it appears that there must be microscopic mechanisms causing
the antisymmetric relations of the gyration vector to spins:

g = ∑
mn

[B(mn) × 〈S(n)〉] , (37)

where the vector B(mn) is determined by the antisymmetric part of B̂.

6. Charge Transfer Transitions and Magneto-Optical Effects (MOE) in Ferrites
6.1. Working Microscopic Models for Circular MOE

The main contributions to the micro-gyration vector for [FeO6]9−and [FeO4]5− clus-
ters and the circular MOE for ferrites are determined by the splitting and mixing mecha-
nisms [32]. In the first order of perturbation theory, only the interactions VSO , VZ , Vex

SO
play a part, as these are odd in the orbital moment and enable the orbital splitting and
mixing of excited CT states of the 6T1u type. Note that the spin part of VZ, just as the
isotropic Heisenberg spin exchange of the [FeO6]9− cluster with its magnetic surroundings,
characterized by the spin exchange field Hex, does not contribute in the linear approxima-
tion to the circular MOE. VSO and the orbital part of VZ yield the FM and field contributions
to the gyration vector; their combined action for the “octahedral” CT transitions due to the
splitting of the excited 6T1u states is given by

gsplit
a = 2 ∑

j=6T1u

π e2 L N
h̄ me ω0j

(
λj〈S〉+ µB gj

L H
)

f j
∂F1(ω, ω0j)

∂ω0j
. (38)

where 〈S〉 is the thermodynamic spin average; f j is the oscillator strength for 6 A1g − 6T1u

CT transition; λj and gj
L are the effective spin–orbital constant and orbital g-factor for a

certain 6T1u term (see Tables 1 and 2 in reference [32]).
The contribution of the mixing mechanism, that is, of the interaction of different 6T1u

CT terms of the octahedral [FeO6]9− (6T2 CT terms of the tetrahedral [FeO4]5−) cluster, can
be written as follows [32]):

gmix
a = 4 ∑

(
j,k=6T1u
E0j>E0k

)

πe2LN
me

(
λjk〈S〉+ µB gjk

L H
)( f j fk

ω0j ω0k

)1/2

×

sign
(
〈6 A1g‖d‖j〉〈6 A1g‖d‖k〉

)
·

F1(ω, ω0j)− F1(ω, ω0k)

E0j − E0k
, (39)

where 〈6 A1g‖d‖j〉 is the dipole moment submatrix element. The parameters of the type of

effective orbital g-factors gjk
L and spin–orbit coupling constants λjk

gjk
L =

〈κj
6T1u‖∑n ln‖κk

6T1u〉
〈1‖ l̂ ‖1〉

; gL ≡ gjj
L ≡ gj

L ; (40)

λjk =
〈κj

6T1u‖ Q̂11 ‖κk
6T1u〉

〈1‖ l̂ ‖1〉〈 5
2‖ŝ‖

5
2 〉

; λ ≡ λjj ≡ λj , (41)

are determined by the submatrix elements of the sum ∑n ln of one-particle orbital moment
operators acting on all atomic orbitals in the molecular orbitals, and by the submatrix
element of the double irreducible spin–orbit tensor operator Q̂11 [71]. Numerical val-
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ues of gjk
L and λjk for the CT states of the [FeO6]9− and [FeO4]5− clusters are given in

Tables 1 and 2 in [32]. In (40) and (41), both the splitting (j = k) and mixing (j 6= k)
are taken into account. κj is the set of intermediate quantum numbers necessary for dis-
tinguishing different 6T1u terms. f j is the oscillator strength of the 6 A1g → κj

6T1u CT
transition, and E0j is its energy.

Thus, VSO and VZ to the 1st order of the perturbation theory give rise to isotropic Â, Ĉ
tensors (36). The frequency dependencies of the real and imaginary parts of the splitting
contribution to g for a CT transition have, respectively, the “dissipative” and “dispersive”
forms.

The splitting contribution of the exchange-relativistic interaction Vex
SO (14) for the

isolated 6T1u term to the gyration vector can be represented as follows [31,32,37,59]:

g =
2πLe2 fAT

mh̄ω0

(
↔
λλλ 〈Ŝ〉+ ∑

n

↔
λλλ n 〈Ŝn〉

)
∂F(ω, ω0)

∂ω0
, (42)

where first and second terms in brackets correspond to intra-center and inter-center, or

spin-other-orbit exchange-relativistic contributions, respectively; and
↔
λλλ and

↔
λλλ n are the

effective tensors of the respective interactions. In other words, these terms correspond
to contributions with m = n and m 6= n in Vex

SO (14). The summation over n in (42)
extends to the nearest neighbors of the considered center; fAT is the oscillator strength

of the 6 A1g − 6T1u transition. In general, in accordance with (14), the tensors
↔
λλλ and

↔
λλλ n

of the intra- and inter-center exchange-relativistic contributions in (42) contain isotropic,
antisymmetric and symmetric anisotropic components.

In addition to the “gyro-electric” contribution to the gyration vector that we have
considered, we should note the existence of a small “gyro-magnetic” contribution related
to the magnetic susceptibility, which determines the frequency-independent contribution
to the Faraday rotation [72]:

∆ΘF =
2πn0

c
γ m, (43)

where γ is gyro-magnetic ratio and m is the magnetic moment. It is interesting that the
yttrium iron garnet in the wavelength range λ > 5 µm is a gyro-magnetic medium, since
the gyro-magnetic contribution to the Faraday rotation is predominant (ΘF ≈ 60 deg/cm at
T = 300 K), although in the wavelength range λ < 4 µm, it can be considered as an ordinary
gyro-electric medium due to a sharp increase in the gyro-electric contribution in ΘF [72].

6.2. Fe3+ Diluted Nonmagnetic Compounds

The most suitable objects for the application and justification of the cluster theory for
ferrites are the Fe3+ diluted nonmagnetic compounds, such as YAlO3 and Ca3Ga2Ge3O12,
which have crystal structures similar to those of orthoferrite YFeO3 and iron garnet
Ca3Fe2Ge3O12, respectively. In such dilute systems, band models are inapplicable for
describing Fe 3d states, so that the cluster model has virtually no competitors for describing
the optical and magneto-optical responses of dilute systems in the O 2p-Fe 3d charge trans-
fer range, especially since it becomes possible to restrict ourselves to taking into account
only intra-center p–d transfer.

The Faraday effect was measured in single-crystalline samples of diluted garnet
Ca3Ga2−xFexGe3O12 (x = 0.15) [31], where the Fe3+ ions occupy only the octahedral posi-
tions, and the [FeO6]9− octahedrons are assumed to be essentially non-interacting. Making
use of the splitting (38) and mixing (39) contributions to the gyration vector with the data
for effective orbital g-factors and spin–orbital parameters from Table 1 in reference [32] and
assuming that energies of all “octahedral” CT transitions in this garnet are blue-shifted by
1.4 eV in comparison with corresponding energies in “orthoferrite” complexes (see Table 1),
the authors calculated both ferromagnetic and field contributions to the Faraday rotation
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ΘF =
ω

2 n0 c
g = AF m + CF H , (44)

over the entire CT band. As a result, good agreement was obtained with the experimental
values of the ferromagnetic and field contributions to ΘF, measured in the spectral range
1.4–3.1 eV (see Figure 2 in [31]).

Unfortunately, there are few examples in the literature of a systematic study of the
concentration dependence of optical and magneto-optical effects in diluted systems.

6.3. The Yttrium Iron Garnet

The absence of the magneto-optically active rare-earth sublattice in yttrium iron gar-
net Y3Fe5O12 permits the evaluation of the “undistorted” iron sublattices contribution.
In addition, experimental studies of YIG magneto-optics are abundant [5,56,73,74]. The
authors [32] undertook the model computation of the FM and field contributions (36) to the
gyration vector of YIG, taking into account the CT transitions both in octahedral [FeO6]9−

and tetrahedral [FeO4]5− clusters. Figure 5 shows the results of the theoretical simula-
tion of the spectral dependencies of the real and imaginary parts of the gyration vector
z-component, Re gz and Im gz, in YIG (solid lines), with dipoles allowed and a number of
dipole forbidden CT transitions (marked by long and short line segments at the bottom of
Figure 5), taken into account. The parameters of the main CT transitions used in the model
simulation are presented in Table 1. Besides satisfactory agreement with the experimental
data in a wide spectral range, 2.5–5.5 eV, the computed Re gz value on the long wave-
length tail of the CT transitions band (λ = 0.63 µm) yielded the Faraday rotation in YIG
ΘF = 860 deg/cm, practically coinciding with the experimental value 830 deg/cm [75,76].
The computed values of the partial Faraday rotation’s contributions due to octahedral CT
transitions (6500 deg/cm) and tetrahedral ones (−5640 deg/cm) satisfactorily agree with
the experimental values 8670 and −7840 deg/cm, respectively [75,76]. As expected for
a longitudinal ferrimagnet, we see the effect of significant mutual compensation for the
contributions of the octa- and tetra-sublattices.

hw, eV

Imgz

-0.04

0.02

0.00

-0.02

3 4 5

Regz

YIG

Figure 5. Spectral dependence of the real and imaginary parts of the z-component of the gyration
vector in YIG: experimental data are shown by dotted curves; model fitting is shown by solid curves.
Adapted from [32].

In the octahedral CT transitions’ contribution to Re gz and in that of the tetrahedral
transitions, the main role belongs to the mixing mechanism, in agreement with the predom-
inance of paramagnetic-shaped lines in magneto-optical spectra of YIG noted in [77].

The authors of [32] have also computed the field contribution (36) to the YIG gyra-
tion vector g, with theoretical values of the orbital Landé factors gjk

L (see Tables 1 and 2
in [32]), taking into account the main electric-dipole-allowed CT transitions only. Rough
as it is, the approximation of allowed CT transitions nevertheless gives the ΘF/H val-
ues of −10◦·cm−1·T−1 (λ = 0.7 µm) and −2.4◦·cm−1·T−1 (λ = 1.1 µm)—near the
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corresponding experimental data (− 12.4◦·cm−1·T−1 [78] and −2.5◦·cm−1·T−1 [79], respec-
tively). The lack of experimental data precluded a comparison at shorter wavelengths.

The electronic structure, and magnetic, optical and magneto-optical properties of
yttrium iron garnet were investigated recently [4] by using “first principles” GGA+U calcu-
lations with Hubbard energy correction for the treatment of the strong electron correlation.
The authors boldly made too strong of a statement: “The calculated Kerr spectrum which
included on-site Coulomb interaction of Fe 3d electrons described well the experimental
results,” which clearly does not follow from the data presented in Figure 6 from their
article, especially since the calculated dielectric function shows a dramatic discrepancy
with the experiment.

Regz

0.02

-0.02

2 3 4 5

0.04

0

EuFeO
3

hw, eV

Figure 6. Spectral dependence of the real part of the z−component of the gyration vector in EuFeO3:
experimental data are shown by the dotted curve; model fitting is shown by the solid curve. Adapted
from [34].

6.4. Bi-Substituted Iron Garnets

Although pure yttrium iron garnet has several advantages in terms of magneto-optical
response, it has not been widely applied in integrated devices due to its limited Faraday
rotation. However, decompensation of the contributions of the octa- and tetra-sublattices,
in particular, due to the replacement of R-ions in R3Fe5O12 garnets by Bi3+ or Pb3+ ions,
makes it possible to increase the Faraday rotation of iron garnets by one or two orders of
magnitude in the visible and near-infrared region (see, e.g., [52]).

Wittekoek et al. [52] proposed in a purely qualitative manner that the origin of the
large Faraday rotation in Bi,Pb-substituted iron garnets is the hybridization of Bi,Pb 6p
orbitals, which possess anomalously large spin–orbit coupling (ζ6p ≈ 2 eV), with the O 2p
and Fe 3d orbitals. Later, this idea was supported and developed within cluster molecular
orbital theory [36,38,53]. The enhancement of spin–orbit coupling in Fe 3d orbitals was
assumed to be much smaller than that in O 2p orbitals, because Fe sites are located more
distant than O sites from Bi sites.

Taking account of the overlap of 2p (O2−) and 6p (Bi3+) electronic shells and the
virtual transition of the oxygen 2p electron to the bismuth empty 6p shell, the wave function
of the outer 2p electrons of the neighboring oxygen ion thereby acquires an admixture of
Bi 6p-states [36,38]:

ϕ2p m −→ ψ2p m = ϕ2p m − ∑
m′
〈6p m′ | 2p m〉∗ ϕ6p m′ , (45)

where ϕ2p m and ϕ6p m are atomic wave functions.
The Bi 6p-O 2p hybridization results in the modification of the spin–orbit interaction

on the oxygen ion:

VSO = VSO(2p) + ∆Viso
SO(2p) + ∆Van

SO(2p) , (46)
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where VSO(2p) = ζ2p (l · s) is the conventional spin–orbital interaction with ζ2p ≈ 0.02 eV,
∆Viso

SO(2p) and ∆Van
SO(2p) are effective isotropic and anisotropic terms due to the Bi 6p-O 2p

hybridization:
∆Viso

SO(2p) = ∆ζ2p (l · s), (47)

where the effective spin–orbital parameter is estimated in [38] to be ∆ζ2p ≤ 0.1 eV per
Bi3+-ion; that is several times larger than conventional parameter ζ2p:

∆Van
SO (2p) = λij l̂i ŝj , (48)

where the effective spin–orbit interaction tensor λij depends on the geometry of the Bi–O
bond [36,38]

λij ∝ ζ6p

(
Ri Rj −

1
3

δij

)
, (49)

where R is a unit vector along the Bi–O bond.
Thus, the effect of the bismuth ions on the circular MOE in iron garnets is essentially

related to the oxygen O 2p-states in [FeO6]9− and [FeO4]5− clusters. The Bi3+ ions, leading
to an increase in the effective spin–orbital coupling constant for oxygen ions, have a
significant effect on the circular magneto-optics of iron garnets, through a change in the
effective spin–orbital coupling parameters

λ = λ(3d) + λ(2p)

for the excited 6T-states with the p–d charge transfer.
The simple theory we are considering allows us to make a number of predictions.

First, the effect of the Bi 6p-O 2p hybridization may be particularly significant for the CT
transitions, whose final state spin–orbit coupling constant λ contains the ligand contribution
λ(2p) only, e.g., the transitions t2u − eg and t1u(π)− eg in the [FeO6]9− clusters (predicted
energies 4.4 and 5.3 eV, respectively). Since ζ2p � ζ3d ≈ 0.1 eV, the contribution of
such transitions to the FM part of the gyration vector (36) in unsubstituted garnets is
practically zero. The Bi substitution makes these transitions observable. On the contrary,
the CT transitions whose final state VSO constant λ includes only the 3d contribution, e.g.,
transition t1u(σ)− eg in the [FeO6]9− clusters (predicted energy 6.4 eV), are not appreciably
influenced by the Bi3+-ions. Thus, the spectral dependence of the gyration vector in YIG and
Bi-substituted compounds can differ greatly. Second, the Bi 6p-O 2p hybridization induces
the anisotropy of the Â tensor in the FM contribution to the gyration vector (36), which
differs for the octa- and tetra-positions of the Fe clusters. Third, in our model, bismuth ions
do not directly affect the value of the field contribution Ĉ H (36) to the gyration vector.

At variance with the cluster model, the “first-principles” band calculations indicate
a slightly different, albeit contradictory, picture of Bi 6p-O 2p-Fe 3d hybridization. Thus,
analyzing the electronic structure of Bi3Fe5O12 (BIG) calculated by the fully relativistic
first-principles method based on the full-potential linear-combination-of-atomic-orbitals
(LCAO) approach within the local-spin-density-approximation (LSDA), Oikawa et al. [2]
found that the enhancement of the spin–orbit coupling due to the hybridization of Bi 6p
is considerably larger in the Fe 3d conduction bands than in the O 2p and Fe 3d valence
bands. The origin of this enhancement is that the Fe 3d conduction bands energetically
overlap with Bi 6p bands. Their results indicate the significance of spin–orbit coupling
in Fe 3d conduction bands in relation to the large magneto-optical effect observed in BIG.
However, the results of recent GGA+U calculation by Li et al. [15] show that, quite to
the contrary, Bi 6p orbitals in BIG hybridize significantly with Fe 3d orbitals in the lower
conduction bands, leading to large VSO-induced band splitting in the bands. Consequently,
the transitions between the upper valence bands and lower conduction bands are greatly
enhanced when Y is replaced by Bi. Such contradictions turn out to be typical for various
“ab initio” DFT-based calculations.
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6.5. Exchange-Relativistic Interaction and Unconventional Magneto-Optics of Weak
Ferromagnetic Orthoferrites

Interestingly, circular magneto-optical effects in weak ferromagnets are anomalously
large and comparable with the effects in ferrite garnets, despite two-three orders of mag-
nitude smaller magnetization [5,67,70,80–83]. In 1989, the anomaly has been assigned to
a novel type of magnetooptical mechanism related to exchange-relativistic interactions,
in particular, with so-called spin-other-orbit coupling [59]. We have shown that an anti-
symmetric exchange-relativistic spin-other-orbit coupling gives rise to an unconventional
“antiferromagnetic” contribution to the circular magneto-optics for weak ferromagnets,
which can surpass the conventional “ferromagnetic” term [31–35,37,59] (see, also [81]).
The ferromagnetic and antiferromagnetic terms with identical transformation properties
are competing contributors to the gyration vector in weak ferromagnets; see Exp. (36). It
should be noted that within the two-sublattice model for orthoferrites, we neglect weak
antiferromagnetic A- and C-modes (see, e.g., [1,11,21,61]).

For the first time, the antiferromagnetic contribution to circular MOE was experi-
mentally identified and evaluated in orthoferrite YFeO3 [59]. An analysis of the field
dependence of the Faraday rotation ΘF(Hext) made it possible to determine all the contri-
butions to the gyration vector (λ = 0.6328µm):

Azzmz = (0.95± 0.55)× 10−3; Bzx|lx| = (3.15± 0.55))× 10−3;

Axxmx = (0.2± 0.7)× 10−3; Bxz|lz| = (−2.1± 1.0))× 10−3;

Czz ≈ Cxx = (−1.1± 2.8)× 10−6 kOe−1 , (50)

where |lx| ≈ |lz| ≈ 1. Interestingly, rather large measurement errors allow for certain
to determine only the fact of a large if not a dominant antisymmetric antiferromagnetic
contribution related to antisymmetric spin-other-orbit coupling. Strictly speaking, the
mutual orientations of the ferro- (m) and antiferromagnetic (l) vectors depend on the sign
of the Dzyaloshinskii vector [11,21,61]. Interestingly, rather arbitrarily chosen relative
orientations of these vectors in reference [59] with positive signs of mz and lx exactly match
the theoretical predictions about the sign of the Dzyaloshinskii vector [11,21,61].

The existence of spontaneous spin-reorientational phase transitions Γ4(FzGx) →
Γ2(FxGz) in several rare-earth orthoferrites does provide large opportunities to study
anisotropy of circular magneto-optics [5,33–35,37,67,80]. Gan’shina et al. [34] measured
the equatorial Kerr effect in EuFeO3, TmFeO3 and HoFeO3, and found the gyration vector
anisotropy in a wide spectral range 1.5–4.5 eV. The magneto-optical spectra, both real and
imaginary parts of the gyration vector, were nicely fitted within a microscopic model theory
based on the dominating contribution of the O 2p–Fe 3d charge transfer transitions and
spin-other-orbit coupling in [FeO6]9− octahedra. An example of modeling the spectrum of
the real part of the gyration vector in orthoferrite EuFeO3 is shown in Figure 6. Let us again
pay attention to the comparable values of circular MOEs in orthoferrites and ferrite garnets
at more than an order of magnitude lower magnetic moments in weak ferromagnets of
the YFeO3 type and longitudinal ferrimagnets of the YIG type. The authors [34] have
demonstrated a leading contribution of the antisymmetric spin-other-orbit coupling and
estimated effective orbital magnetic fields in excited 6T1u states of the [FeO6]9− octahedra,
HL∼100 T. These anomalously large fields can be naturally explained to be results of strong
exchange interactions of the charge transfer 6T1u states with nearby octahedra that are
determined by a direct p–d exchange.

While the existence of the antiferromagnetic contribution to the gyration vector is
typical of a large number of multi-sublattice magnetic materials, the antisymmetry of the

tensor
↔
B is a specific feature of weak ferromagnets alone. In the case of rhombohedral weak

ferromagnets, such as FeBO3, FeF3 or α-Fe2O3, the tensor
↔
B , governing the antiferromag-

netic contribution to the Faraday effect, is entirely due to the antisymmetric contribution,
in view of the requirements imposed by the crystal symmetry. In crystals of this kind the
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appearance of the antiferromagnetic contribution to the gyration vector is entirely due to
allowance for the antisymmetric spin-other-orbit coupling.

However, the data on the anisotropy of the Faraday effect in TmFeO3 [80] and the
values of the Faraday effect in SmFeO3 (m ‖ a-axis) and a number of other orthoferrites
with m ‖ c-axis [67] bear evidence of the existence of an appreciable symmetric AFM B̂sl
contribution to the gyration vector of orthoferrites. Indeed, the Faraday effect in the Γ4
phase (m ‖ c) and in the Γ2 phase (m ‖ a) are determined, respectively, by the z- and x-
component of g :

gz = A mz + Bzx lx ; gx = A mx + Bxz lz (51)

(under the justified assumption that Â be isotropic). Since m ⊥ l and mx ≈ mz = m,
while letting lx = 1 with the view of the definitude, we obtain:

gz = A m + Ba
zx + Bs

zx; gx = A m + Ba
zx − Bs

zx , (52)

so that the experimentally found ratio [67,80] Re gz /Re gx ≈ 2.5−3 (at λ ≈ 1–2µm)
indicates unambiguously the existence of an appreciable symmetric AFM term Bs

zx:

Bs
zx

A m + Ba
zx
∼ 0.5 .

6.6. The Temperature Dependence of the Circular Magneto-Optics of Ferrites

The analysis of the temperature dependencies of MOE can yield an important infor-
mation about the role of various mechanisms of the circular MOE. Experimental studies of
the Faraday and Kerr effects in weak ferromagnets α-Fe2O3 [81], FeBO3 [82,83],YFeO3 [70]
have shown that their circular MOE and the magnetic moment, both total and that of each
sublattice, have different temperature dependencies. In references [70,81,83], an attempt
was made to connect this phenomenon with the so-called pair transitions.

However, we show here that all peculiarities of the temperature dependence of the
Faraday and Kerr effects for weak ferromagnets can be naturally and consistently explained
by taking into account the AFM B̂l contribution to the gyration vector due to the exchange-
relativistic interactions. In spite of the FM Âm contribution to g (36), the AFM B̂syml
contribution due to LSCF in 6T1uCT states (36), and the contributions due to intra-center
Vex

so have the temperature dependence determined by the ordinary thermodynamic average
of the spin 〈S(m)〉; the AFM contribution owing to the “spin-other orbit” interaction is
related to the average value of a complicated spin operator S̃(mn) (15).

In the molecular field approximation, the thermodynamic average of the nonlinear
operator Smn in (15) can be written as follows [84]:

〈Ŝq(mn)〉 = 〈Ŝz(n)〉C1
q(S(n)) +

γ〈V̂2
0 (S(m))〉T〈Ŝz(n)〉 ∑

q1,q2

[
2 1 1
q1 q2 q

]
C2

q1
(S(m))C1

q2
(S(n)), (53)

where C2
q1
(S(m)) and C1

q2
(S(n)) are spherical tensorial harmonics (Ck

q =
√

4π
2k+1 Ykq) as the

functions of classical spin direction:

〈Sz〉 = S BS(x) ,

where BS(x) is the Brillouin function

BS(x) =
2S + 1

2S
coth

2S + 1
2S

x− 1
2S

coth
1

2S
x ; x =

3S
S + 1

σ

τ

(σ = Sz/S and τ being the reduced magnetic moment and temperature, respectively);
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〈V̂2
0 (S)〉T = 2

[
(2S − 2)!
(2S + 3)!

]1/2(
3〈Ŝ2

z〉 − S(S + 1)
)

, (54)

where (
3〈Ŝ2

z〉 − S(S + 1)
)
=
(

2S (S + 1)− 3S coth
x

2S
· BS(x)

)
, (55)

Thus, the temperature dependence of the gyration vector in the molecular field ap-
proximation is determined by the following two-parameter formula:

g(T) = a 〈Sz〉+ a′ 〈Sz〉〈S2
z〉 ≈ A m + A′ m3, , (56)

with the frequency dependent coefficients a, b. Temperature dependencies of the thermody-
namic factors 〈Sz〉 and 〈Sz〉〈S2

z〉 are presented in Figure 7, where the inset shows examples
of fitting experimental data on the temperature dependencies of the equatorial Kerr effect
in hematite α-Fe2O3 (see Figure 6 in [70]) using the two-parameter Formula (56).
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Figure 7. Temperature dependence of the normalized thermodynamic quantities determining the
temperature dependence of the circular MOE. The inset shows an example of fitting the experimental
data on the temperature dependencies of the equatorial Kerr effect in hematite α-Fe2O3 (see Figure 6
in [70]) using the two-parameter Formula (56). Dotted curve is the 〈Sz〉 dependence.

In other words, the MOE in weak ferromagnets will be characterized by a clear
nonlinear dependence on the magnetic moment of sublattices, the presence of which is a
direct indication of the contribution of exchange-relativistic interactions of the spin-other-
orbit type. As expected, the nonlinear contribution, both in magnitude and in sign, will
depend substantially on the frequency [70,81–83].

It is worth noting that Exp. (53) provides a dependence of the exchange-relativistic
contribution to the gyration vector on the mutual orientation of neighboring spins.

6.7. The High-Energy Optics and Magneto-Optics of Ferrites

The availability of modern high-intensity synchrotron radiation has facilitated the
refinement of conventional spectroscopy. This is especially true in the field of MOE, where
the synchrotron radiation is a convenient tool of obtaining the spectra at high energies.

Kučera et al. [85] have obtained the reflectivity spectra of a number of iron and non-
iron garnets and yttrium orthoferrite in the vacuum ultraviolet 5 to 30 eV range using
synchrotron radiation as the light source. Contrary to the visible and near UV regions, all
the spectra obtained are strikingly similar in this spectral range. Two broad bands situated
at about 10 and 17 eV have been found in both garnet and orthoferrite reflectivity and optic
absorption spectra. The 10 eV band was assigned to the CT transition from the oxygen 2p
valence band to the yttrium 4d or 5s conduction states. The band centered near 17 eV was
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attributed to the “orbital-promotion” inter-configurational Fe 3d→ Fe 4p transition. Despite
the large peak values, the contribution of these transitions to the MOE of ferrites in the
visible region, being structureless, is significantly inferior to the contribution of O 2p–Fe 3d
CT transitions.

6.8. Rare-Earth Ions in Ferrites

The simplest expression for the contribution of the dipole-allowed 4f—5d transition to
the rare-earth ion polarizability tensor can be obtained by neglecting the splitting of the
4fn−15d- configuration [86]:

αk
q = (−1)1+k3

√
2k + 1

1
h̄

{
3 3 k
1 1 2

}
e2r2

f dFk(ω, ω f d)〈Ûk
q(J)〉 (57)

where {:::} is the 6j-symbol [62], r f d = 〈4 f |r|5d〉 is the radial integral, and 〈Ûk
q(J)〉 is

the thermodynamical average of the irreducible tensor Ûk
q(J) with submatrix element

U(k)
SLJ;SL′ J′ [62].

The components of the tensor α1
q, which determine the contribution of the rare-earth

ion to the circular magneto-optics, can be written as follows:

α = − 1
7
√

2
e2r2

f dF1(ω, ω f d)
2− gJ

gJµB
mR, (58)

where mR is the magnetic moment of the R-ion and gJ is the Lande factor. The symmetric
anisotropic part of the polarizability tensor determines the effects of linear birefringence
and dichroism. In Cartesian form, we get [86]

αij =

√
3

14
e2r2

f dF2(ω, ω f d)α〈3 ˜̂Ji Ĵj − J(J + 1)〉, (59)

where J̃i Jj =
1
2 ( Ĵi Ĵj + Ĵj Ĵi), α is the Stevens parameter [87].

A detailed analysis of the role of the effects of a strong crystal field for the 5d electron
was carried out in [86,88].

7. Conclusions

The paper presents the theory of the optical and magneto-optical properties of strongly
correlated iron oxides, primarily iron garnets and orthoferrites, based on the cluster model,
including the leading contribution of the charge transfer transitions. At variance with
the “first-principles” DFT-based band models, the cluster model is physically clear; it
allows one to describe impure, dilute, and concentrated systems; provides a self-consistent
description of the optical, magnetic, and magneto-optical characteristics of the Fe centers
with a detailed account of local symmetry, low-symmetry crystal field effects, spin–orbital
and Zeeman interactions and also the relatively new exchange-relativistic interaction, which
plays a fundamental role in the circular magneto-optics of weak ferromagnets. The cluster
approach provides a regular procedure for classifying and estimating the probabilities of
allowed and forbidden electric-dipole CT transitions and their contributions to optical
and magneto-optical anisotropy. The model makes it possible to describe all the specific
features of the influence of Bi ions on the circular magneto-optics of ferrites by the Bi 6p-
O 2p hybridization and partial Bi–O “transfer” of the large Bi 6p spin–orbit interaction. It
predicts the “selective” nature of the influence of the Bi ions only for certain CT transitions,
the appearance of an anisotropy of the ferromagnetic contribution and the absence of any
influence on the field contribution to the gyration vector.

We presented numerous examples of comparisons of cluster theory with experimental
data for orthoferrites, iron garnets and other ferrites. As one of the most important results
of the theory, we considered the introduction of a new exchange-relativistic interaction
and the elucidation of its role in the circular magneto-optics of ferrites. The contribution
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of this interaction for the excited 6T1u terms in [FeO6]9− clusters leads not only to the
appearance of a puzzling “antiferromagnetic” contribution to the gyration vector of weak
ferromagnets, such as orthoferrite RFeO3 and hematite α-Fe2O3, but also to the deviation
of the temperature dependence of circular MOE from the simple proportionality to the
magnetization m. The appearance of a nonlinear m-dependence is an indication of the
contribution of the unusual “spin-other-orbit” interaction in excited 6T1u states.

Undoubtedly, the considered version of the cluster theory requires more detailed
development both in terms of improving the used MO-LCAO scheme and in terms of the
possible application of the “hybrid” LDA + MLFT scheme [30]. In any case, the further
development of the cluster model of magneto-optical effects in ferrites needs data from sys-
tematic experimental studies of the concentration, spectral and temperature dependencies
of various optical and magneto-optical effects for the Fe centers in oxides.
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