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Abstract: We discuss the problem of electron transfer (ET) in mixed valence (MV) molecules that is
at the core of molecular Quantum Cellular Automata (QCA) functioning. Theoretical modelling of
tetrameric bi-electronic MV molecular square (prototype of basic QCA cell) is reported. The model
involves interelectronic Coulomb repulsion, vibronic coupling and ET between the neighboring redox
sites. Unlike the majority of previous studies in which molecular QCA have been analyzed only for
particular case when the Coulomb repulsion energy significantly exceeds the ET energy, here we do
not imply assumptions on the relative strength of these two interactions. Moreover, in the present
work we go beyond the adiabatic semiclassical approximation often used in theoretical analysis of
such systems in spite of the fact that this approximation ignores such an important phenomenon
as quantum tunneling. By analyzing the electronic density distributions in the cells and the ell-cell
response functions obtained from a quantum-mechanical solution of a complex multimode vibronic
problem we have concluded that such key features of QCA cell as bistability and switchability can be
achieved even under failure of the condition of strong Coulomb repulsion provided that the vibronic
coupling is strong enough. We also show that the semiclassical description of the cell-cell response
functions loses its accuracy in the region of strong non-linearity, while the quantum-mechanical
approach provides correct results for this critically important region.

Keywords: quantum cellular automata; cell-cell response function; molecular cell; mixed valence
clusters; electron transfer; Coulomb repulsion; vibronic coupling; multimode vibronic problem;
Jahn-Teller and pseudo Jahn-Teller effects

1. Introduction

Quantum dot cellular automata (QCA) pioneered by Lent et al. [1–3] is an emerging
technology in nanoelectronics based on the use of the assemblies of quantum dots, which
play the role of QCA cells suitable for composing the logic elements in digital integrated
circuits. Particularly, the two-electron four-dot square cells can serve as building blocks
of wires, fun-outs, majority logical gates and complex circuits [4–10]. The two antipodal
charge configurations of square cell in which the two electrons occupy the diagonals of the
molecular square are supported by the interelectronic Coulomb repulsion and can be used
to encode binary information (0 and 1) as shown in Figure 1. The QCA devices composed
of quantum dots have several important potential advantages over standard silicon ones,
such as current-free signal propagation and switching, strongly reduced power dissipation
in the circuits, and also much smaller size of the logic gates, which allow to achieve much
higher density of the devices.

A fundamental idea to scale down the cells by replacing the assemblies of quan-
tum dots with mixed-valence (MV) molecules having similar topology and electronic
structure [4,11–21] promises new advantages and allows to employ the controlled chemical
design of the molecules with required properties for creating of 2D networks mimicking
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electronic circuits. Molecular QCA are in the core of interdisciplinary field lying at the
borderline of chemistry, physics and molecular electronics. Numerous organic and in-
organic MV molecular squares suitable for the design of QCA cells have been obtained,
such as, for example, the MV tetramers [(cyclen)4RuII

2RuIII
2](pz)4]10+ and [FeII

2FeIII
2(L)4]2+

(cyclen = 1,4,7,10-tetraazacyclododecane, pz = pyrazine a nd H2L = bis[phenyl (2-pyridyl)
methanone] thiocarbohydrazone) [16–18]. Additionally, the grid-type architectures com-
prising two-dimensional arrays of molecular cells have been obtained [21], which has
interrelated the synthesis and characterization of the molecular cell prototypes with nan-
otechnological applications of the controlled 2D monolayers of such cells.
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The prerequisite for the efficient quantum-chemical design of molecular cells [19,20]
is in-depth understanding of the key electronic and vibronic interactions governing the
electron delocalization in MV molecules and also a route for possible control of the main
functional characteristics of cells. The physical role of different interactions traditionally
employed in the models of molecular MV cells is described in detail in [22–24] and also
reviewed in Refs. [25,26] (see also Ref. [27]). While the inner sphere electron transfer
(ET) changes the distribution of the excess charges inside the cell, promoting thus their
delocalization, the vibronic coupling with the local “breathing” modes has a competing
effect, which consists of self-trapping of the charges. An important role is played by the
interelectronic Coulomb repulsion tending to stabilize antipodal (diagonal-type) charge
distributions. In conjunction with the vibronic trapping, such effect of the Coulomb
repulsion ensures the cell bi-stability required for proper binary information encoding.
Finally, the transmission of binary information from cell to cell is carried out through the
intercell Coulomb repulsion, which can be modelled by considering the effect of the external
electric field produced by the polarized “driver-cell” on the neighboring “working cell”.

In the majority of studies devoted to the theoretical modelling of molecular QCA the
intracell interelectronic Coulomb repulsion has been considered as interaction dominating
over the ET. Due to that, the antipodal charge configurations prove to be stabilized and
hence bistability of the cell is ensured. Approximation of strong Coulomb repulsion has
been explicitly invoked in Ref. [22], allowing thus to essentially simplify the solution of
the electronic and vibronic problems. It is worth noting in this context that the concept of
charge separation solely due to strong Coulomb repulsion limits the search for systems that
could act as molecular cells. To overcome these limitations, we have recently attempted to
critically reconsider the parameters regime for achieving functionality with emphasis on
the role of the Coulomb repulsion and the vibronic coupling [28]. It has been demonstrated
that bistability and switchability of the square cell can be achieved even in the case of weak
or moderate Coulomb interaction provided that the vibronic coupling is strong enough.

Solution of the vibronic problem in [28] has been performed with the aid of semi-
classical adiabatic approximation. Although the latter approximation provides a reliable
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physical description and an imaginative picture of the main relevant characteristics of a
MV molecular cell, the frames of the adiabatic approach are rather limited (see article [29]
devoted to the discussion of this question). The aim of the present study is to demonstrate
how by implying the quantum mechanical vibronic theory one can correct the shortcomings
of the adiabatic approach as applied to the description of such important features of cell
behavior as the degree of non-linearity of the cell-cell response function in the general case
when the limit of strong Coulomb repulsion is violated.

2. Cell-Cell Response: Why Do We Need Quantum-Mechanical Approach

The QCA device performs its function through the action of the drive-cell on the
working cell [1–4]. It is assumed that the first one has a certain polarization, which is
transmitted to the adjacent working cell (Figure 1) via electrostatic field as illustrated in
Figure 2 (upper part). The response of the working cell to the field induced by the polarized
driver-cell is described by the so-called cell-cell response function which is defined as
dependence of polarization of the working cell Pwc on the polarization Pdc of the driver cell.
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Figure 2. Illustration for the strongly non-linear cell-cell response (upper part) accompanied by
corresponding semiclassical representation of the switching cycle showing the evolution of the lower
branch U−(q) of the adiabatic potential of the working cell caused by the change of the driver cell
polarization (lower part). Cell polarizations range from −1 (binary 0) to +1 (binary 1). For the sake of
utmost clarity, the case of one-dimensional adiabatic potential is shown.

The driver-cell is assumed to be polarized in a controllable manner in such a way that
the sites disposed in the diagonal AC acquire the electronic densities ρ while the electronic
densities in the sites located on the diagonal BD prove to be equal to 1 − ρ (the labelling
of the sites is that shown in Figure 1). This means that the driver-cell can be regarded as
electric quadrupole with polarization

Pdc = 2ρ− 1 (1)

representing the normalized excess of the electronic density on a certain diagonal of the
driver-cell with respect to the density on its another diagonal.

The electrostatic field of polarized driver-cell causes polarization of the neighboring
working cell with electronic site densities ρA, ρB, ρC and ρD, (numeration of the sites is
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shown in Figure 1) which are, in general, different. One can define the induced polarization
of the working cell as follows:

Pwc =
ρA + ρC − ρB − ρD
ρA + ρC + ρB + ρD

(2)

The efficiency of the effect of the driver-cell on the working cell is characterized by the
so-called cell-cell response function Pwc(Pdc) introduced by Lent et al. [1–4] and modeled
in more recent studies in the framework of different vibronic approaches [22–29]. This
function characterizes “intercommunication” between the molecular cells. To ensure high
performance of QCA-based device the driver-cell should be able to dictate the required
charge configuration to the working cell in a strongly non-linear (stepwise) manner. It
is also important that as discussed in ref. [30] the strong non-linearity is able to avoid
destructive influence of imperfections in the QCA devices (such as random variation in the
cell size, random fields, etc.) on the propagation of the signal.

Figure 2 (upper part) illustrates an idealized (but practically unattainable) situation
when the cell-cell response function has almost perfect stepwise character, and only the
central part of the cell-cell response function being slightly more gradual, with the shape
of this central part being determined by the interplay between the ET, vibronic coupling
and Coulomb interaction [29]. As will be discussed below, just the shape of the central
non-linear part of cell-cell response function is responsible for switching performance and
hence it is of primary importance for the proper action of a QCA-based device. For this
reason, the degree of accuracy in the evaluation of cell-cell response in this area is decisive
in assessing the applicability of the approach to theoretical modeling.

The two approaches are conventionally used for treating the vibronic problem underly-
ing the localization-delocalization properties of MV clusters, and particularly, the functional
properties of MV molecular candidates for the creation of molecular QCA cells with re-
quired characteristics [26]. Application of the first (lower-level) such approach known
as semiclassical or adiabatic approximation is illustrated in the lower part of Figure 2 in
which the so-called switching circles (evolution of the lowest adiabatic potential surface
of the working cell in course of the change of the driver-cell polarization from −1 to +1)
is illustrated for simplest situation of one-dimensional adiabatic potential. At Pdc 6= 0 the
adiabatic potential is asymmetric due to the action of the quadrupole field of the driver-
cell. At the beginning of the switching circle (Pdc = −1) the working cell is localized in
a left deep minimum and its induced polarization acquires the value Pwc = −1. The left
global minimum becomes shallower with decreasing of |Pdc|, and the second exited (right)
minimum appears. The |Pwc| defined in the global minimum gradually decreases with
decreasing |Pdc| until the latter reaches the narrow critical range of values near Pdc = 0.
In this range, polarization of the working cell abruptly changes from Pwc = −1 to Pwc = +1
which is accompanied by interchanging of the global and the excited minima. Finally, at
the end of the cycle we arrive at the same energy of the working cell but the cell proves to
be localized in the right minimum with polarization Pwc = +1.

Consideration of the above idealized situation allows to make some preliminary
remarks concerning the limits of the applicability of the adiabatic approximation to the
description of molecular QCA cells. Indeed, according to the physical sense of the adiabatic
approximation its applicability is rather well justified when the system is strongly localized
in the deep global minimum as it occurs at Pdc = −1 and Pdc = +1. However, when |Pdc |
approaches the critical area (Pdc | ≈ 0) the minima are becoming shallower and the left
and the right minima become almost energetically equivalent. As a result, the quantum
tunneling effects are expected to play important role in this area.

The above discussion clearly shows that the adiabatic approximation loses its accuracy
at weak quadrupole fields, i.e., just in the range of |Pdc | values playing crucially important
roles in switching the cell between 0 and 1 states. Meanwhile, a more exact quantum-
mechanical vibronic approach is free from this shortcoming. This is true for the case of
strong Coulomb repulsion [28] for which the quantum-mechanical approach is shown to
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result in a more smooth Pwc(Pdc) dependence as compared with semiclassical one due to
presence of the tunneling processes facilitating reorientation of the cell polarization [29]. The
difference between semiclassical and quantum-mechanical description of cell-cell response
is expected to be even more significant for general cases when the intracell Coulomb
repulsion is comparable with the ET. Just such a general case will be discussed below.

3. Electronic and Vibronic Interactions in a Two-Electron Mixed-Valence
Molecular Square

Let us describe the key ingredients of the model. As a working cell, we consider a
square-planar tetramer A-B-C-D (Figure 1) comprising four diamagnetic centers (spinless
cores) and two excess electrons. The latter can occupy either the adjacent cites A-B, B-C,
C-D and A-D (sites forming the sides of the square) giving rise to the fourfold degenerate
excited Coulomb manifold, or the antipodal sites A-C and B-D located on the diagonals
(twofold degenerate ground Coulomb manifold). The Coulomb gap between the ground
and the excited Coulomb manifolds will be denoted as U. The driver-cell can be roughly
modelled as electric quadrupole composed of the following four point-charges located at
the vertices of the square: ρA′ e = ρC′ e = ρe and ρB′ e = ρD′ e = (1− ρ)e (the labels of the
redox sites forming the driver-cell are primed to distinguished them from those composing
the working cell). This quadrupole admits controllable polarization given by Equation (1)
from which it follows that the charges on the driver-cell sites can be thus obtained as
follows: ρA′ = ρC′ = (1 + Pdc)e/2, ρB′ = ρD′ = (1− Pdc)e/2. The polarized driver-cell
acts on the working cell causing its polarization. To interaction between the two cells is
described by the intercell Coulomb energy, which depends both on the polarization of the
driver-cell and on the electronic configuration in the working cell. The intercell Coulomb
energy will be denoted as uik for the configuration in which the charges in the working cell
occupy the sites i and k. The explicit expressions for all uik energies are given in Ref. [28].

The vibronic coupling is one of the main ingredients determining the properties of
the MV systems. The simplest and most convenient way to introduce this interaction is to
imply the vibronic Piepho, Krausz and Schatz (PKS) model [31], which includes only the
interaction of the excess electrons with the full-symmetric (“breathing”) modes qA, qB, qC
and qD located at the redox sites A, B, C, and D, with all these modes being assumed to
have the same frequency ω. The set local modes qi can be expressed in terms of symmetry
adapted molecular vibrations belonging to the irreducible representations A1, E, B1 of the
point group D4h. The corresponding unitary transformation is the following:

qA1g ≡ q1 = 1
2 (qA + qC + qB + qD),

qB1g ≡ q2 = 1
2 (qA + qC − qB − qD),

qEux ≡ q3 = 1
2 (qA − qC − qB + qD),

qEuy ≡ q4 = 1
2 (qA − qC + qB − qD).

(3)

Figure 3 shows the shapes of Eu and B1g vibrations illustrating their different physical
role. Indeed, qB1g type displacements are interrelated with the ground Coulomb manifold
comprising antipodal (diagonal type) charge configurations, while the double degenerate
vibration qEux, qEuy operates within the excited Coulomb manifold.

The full Hamiltonian of the working cell includes the ET (parameter t) between the
neighboring sites of the intracell Coulomb interaction which is the energy gap U between
the ground and excited Coulomb manifolds. The Hamiltonian also involves the potential
and kinetic energies of the free vibrations and linear vibronic coupling. The ET between
the diagonals of the square are assumed to be negligible due to long distance between
sites which are not connected through a bridge. The full Hamiltonian also includes the
Coulomb field produced by the polarized driver-cell, which is described by the set of
intercell Coulomb energies uik.
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The matrix of the full Hamiltonian, which includes all mentioned interactions, is
the following:

Ĥ =
}ω

2

(
q2

2 + q2
3 + q2

4 −
∂2

∂q2
2
− ∂2

∂q2
3
− ∂2

∂q2
4

)
Î (4)

+



U + uAB + υq4 t 0 0 (−1)St 0
t uAC + υq2 t t 0 (−1)St
0 t U + uAD + υq3 0 t 0
0 t 0 U + uBC − υq3 t 0

(−1)St 0 t t uBD − υq2 t
0 (−1)St 0 0 t U + uCD − υq4


The matrix in Equation (4) is defined in the electronic basis comprising the states

ψAB(S), ψAC(S), ψAD(S), ψBC(S), ψBD(S), ψCD(S), where S is the total spin of the elec-
tronic pair, which can take on the values S = 0 and 1. It has been earlier demonstrated (see,
for example, ref. [22]) that the ground state of the cell is has always spin S = 0 provided that
only the electron transfer between the nearest neighboring sites is allowed. For this reason,
in the further consideration we will solely focus on the states with S = 0. The first term in
Equation (4) is the Hamiltonian of the free vibrations, where Î is the unit 6× 6-matrix. Vi-
bronic coupling with Eu and B1g - modes is described by the terms υqi (i = 2, 3, 4) in which
υ is the vibronic coupling parameter that is the same for all vibrations in the PKS model
dealing with equivalent redox sites. The coupling with the full-symmetric mode does
not depend on the charge configuration and so it has been eliminated from the matrix in
Equation (4) by means of proper redetermination of the reference vibrational configuration.

4. Electronic Densities in a Free Cell: Quantum-Mechanical Results

The subsequent analysis will be based on the quantum-mechanical vibronic approach,
which takes into account the kinetic energy of vibrations and for this reason will be referred
to as dynamic one. To gain more insight on the vibronic problem let us first consider the
pure electronic energy levels. The latter are expressed as follows:

Ed = 0, E1
n = E2

n = E3
n = U, E± =

(
U ±

√
U2 + 32t2

)
/2, (5)

Figure 4 shows the electronic energy pattern presented in the form E/U vs. t/U. One can
see that at t = 0 the six levels are grouped into the two sets, (1 A1g, 1B1g) and (1 A1g, 1B2g, 1Eu),
arising from the ground and excited Coulomb manifolds, respectively. Mixing of the
states belonging to these two manifolds by the ET processes leads to the splitting of the
ground and excited manifolds as shown in Figure 4. The irreducible representations
associated with the levels shows that the inclusion of the vibronic coupling with B1g and
Eu vibrations leads to the complicated three-mode vibronic problem combining Jahn-Teller
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and pseudo-Jahn-Teller problems. This combined vibronic problem can be designated as
(21 A1g +

1B1g +
1B2g +

1Eu)⊗
(
b1g + eu

)
.
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Since all PKS vibrations have equal frequencies, we are dealing with the three-
dimensional oscillator coupled to six electronic states, and so the total degeneracy of Hilbert
space including N vibrational levels is rather large, G(N) = (N + 1)(N + 2)(N + 3),
where N = n2 + n3 + n4 is the number of the vibrational levels involved in the basis
set. An efficient symmetry-assisted approach to solve multidimensional dynamic vibronic
problems [32–34] can be applied to a free cell to essentially reduce the vibronic matrix.
Nevertheless, while considering the interacting cells, the symmetry arguments lose their
advantages due to lowering the working cell symmetry caused by the electrostatic field of
the driver-cell. One can find that for N = 3 the dimension of vibrational space is G(3) = 120,
while for N = 6 it becomes rather large, G(30) = 32, 736. Correspondingly, the dimen-
sions of the full pseudo Jahn-Teller problems (21 A1g +

1B1g +
1B2g +

1Eu)⊗
(
b1g + eu

)
are

6G(3) = 720 and 6G(6) = 196,416. Depending on the size of the basis, a certain number of
the low lying vibronic levels can be adequately described. The required number of these
levels can be estimated as a pseudo Jahn-Teller stabilization energy in }ω units. Roughly,
this can be estimated as 3υ2}ω/2, so that the number of the levels under the potential
barrier is 3υ2/2. Conventionally, one can estimate that for N = 6 and υ = 1 only the ground
state can be satisfactorily described, while for N = 30 the consideration has good accuracy at
least for υ < 5. A more detailed discussion of the multidimensional problem of the vibronic
coupling in MV systems is given in Refs. [32–34].

Therefore, to solve the dynamic vibronic problem we present the matrix of the full
Hamiltonian, Equation (4), in the basis composed of products ψik|n2n3n4〉 of the six elec-
tronic functions ψik with different localization of the pair and unperturbed vibrational
functions |n2n3n4 〉 representing the wave functions of the three-dimensional harmonic
oscillator, where n2, n3 and n4 are the vibrational quantum numbers related to the three ac-
tive vibrational modes. To obtain a numerical solution of the dynamic problem the infinite
matrix has to be truncated. The dimension of the truncated matrix should be large enough
to ensure a good convergence that provides a satisfactory accuracy in the evaluation of the
low-lying vibronic levels. This dimension depends on the set of parameters involved in
the Hamiltonian.
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The numerical solution in the truncated basis gives a set of the vibronic energy levels εk
of the working cell and the corresponding vibronic wave-functions. The latter are obtained
as the following superpositions:

|k〉 = ∑
ij,n2,n3n4

c(k|ij, n2n3n4)ψij|n2n3n4〉, (6)

where the coefficients c(k|ij, n2n3n4) depend on the set of parameters U, t, υ,}ω, and also
on the polarization Pdc on the driver-cell. Below we will focus solely on ground vibronic
state |k = 1〉, which determine the properties of the cell in the low-temperature limit.

As far as the dynamic vibronic problem is solved, one can evaluate the overall vibronic
probabilities of the diagonal-type and side-type two-electron populations in the ground
vibronic state |k = 1〉 with the aid of the following expressions:

ρd = ρAC + ρBD = ∑
(i,j)=(A, C), (B, D)

∑
n2n3n4

|c(1|ij, n2n3n4)|2,

ρn = ρAB + ρAD + ρBC + ρCD

= ∑
(ij)=(AC), (BD),(BC), (CD)

∑
n2n3n4

|c(1|ij, n2n3n4)|2
(7)

Hereinafter in all sample calculations we use for the intracell distance (side of the

molecular square) will have the value b = 8
o
A. To roughly estimate the Coulomb parameters

we will use the relative permittivity value ε = 10 that is supposed to mimic the screening ef-
fect. With these values, one obtains U = 425 cm−1. We use the fixed values }ω = 200 cm−1

and t = 200 cm−1 for the vibrational PKS quantum and the ET parameter.
Figure 5 shows the vibronic probabilities for the free cells evaluated as functions of υ

with the above adopted U, t and }ω values. It is seen that at υ = 0 the overall diagonal-
type probability is ρd = ρAC + ρBD ≈ 0.675 while the side-type probability is estimated
as ρn = ρAB + ρAD + ρBC + ρCD ≈ 0.325. It is clear that although ρd around two times
exceeds ρn, the distribution of the electronic density of the two electrons evaluated for the
considered set of t and U values and υ = 0 is far from being fully concentrated on the two
diagonal positions. This is an indication that we are dealing with the case for which the
limit of strong Coulomb repulsion is not achieved.
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An increase in υ leads to the enhancement of the diagonal probability ρd accompanied
by the decrease in ρd in such a way that at strong vibronic coupling the pair of the excess
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electrons becomes fully concentrated in the two antipodal positions (ρd ≈ 1, ρn ≈ 0). In gen-
eral terms, impact of the vibronic coupling is qualitatively the same as that derived within
the semiclassical approach [29]. However, as distinguished from the Born-Oppenheimer
states in the adiabatic potential minima representing the broken symmetry states with
predominant localization at a certain diagonal, the ground vibronic state obtained by using
quantum-mechanical approach corresponds to the unbroken symmetry with equal weights
of the resonant states, which are indicative of quantum tunneling. This shows that for a free
cell it is reasonable to analyze the overall probabilities ρd and ρn rather than the particular
probabilities such as ρAC, etc.

It is seen from Figure 5 that at a weak vibronic coupling (up to υ ≈ 250 cm−1) ρd and
ρn gradually depend on υ. At this range of the values of υ the lowest adiabatic potential
was shown to possess the only minimum or the two shallow minima separated by a barrier
whose top is lower in energy than the energy of the ground vibronic level found from
quantum-mechanical treatment. At moderate vibronic coupling, the functions ρd(υ) and
ρn(υ) show more rapid changes, which become again more gradual in the limit of strong
vibronic coupling when the tunneling is almost fully suppressed. Therefore, the obtained
dependences confirm the conclusion derived based on the semiclassical consideration [28]
according to which the strong vibronic coupling is able to effectively restore the dominance
of the diagonal-type electronic configurations typical of the strong limit of strong Coulomb
repulsion, which is broken down when the inequality t << U fails.

5. Effect of Quantum Tunneling on Cell-Cell Response

Now we apply the quantum-mechanical vibronic approach to the analysis of the
response of the working cell to the electrostatic field of the polarized driver-cell. In addition

to the set of parameters adopted in Section 4 we will use the intercell distance c = 16
o
A

to determine the intercell Coulomb energies uik. Figure 6a shows a family of cell-cell
response functions calculated with the aid of quantum-mechanical vibronic approach at
four different values of υ. It is seen that for weak vibronic coupling, the cell-cell response
is rather weak and almost linear (curves 3 and 4 in Figure 6a). Increase in the coupling
leads to a pronounced non-linearity in the response with the slope of Pwc(Pdc) curve being
increased with the increase in υ (curves 1 and 2 in Figure 6a). Finally, providing strong
vibronic coupling the cell-cell response function shows abrupt stepwise behavior, so that
even weak driver-cell polarization causes almost full polarization of the working cell
(curve 1 in Figure 6a).
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To facilitate the comparison of quantum-mechanical cell-cell response functions with
semiclassical ones calculated with the same values of υ we have shown a family of the latter
functions in Figure 6b. It is seen that qualitatively the physical role of the vibronic coupling
is properly reflected by the adiabatic approximation. It follows from the fact that the slopes



Magnetochemistry 2022, 8, 92 10 of 12

of both semiclassical and quantum-mechanical cell-cell response functions increase with
the increase in the vibronic coupling. On the other hand, by comparing the two families
of curves one can conclude that there are remarkable quantitative differences between
the semiclassical and quantum-mechanical functions. Indeed, whereas the semiclassical
response exhibits non-linear abrupt at υ = 300 cm−1 curve 3 in Figure 6b), the quantum-
mechanical cell-cell response calculated with the same υ proves to be rather weak and
practically linear (curve 3 in Figure 6a). The difference between semiclassical and quantum-
mechanical curves diminishes with the increase in the vibronic coupling, so that at strong
coupling (case of υ = 600 cm−1) the cell-cell responses evaluated with these two approaches
prove to be quite similar in the sense that both curves show abrupt non-linear behavior,
with full polarization of the working cell being reached at a weak driver-cell polarization
(curves 1 in Figure 6a,b). Still, even in this case the quantum-mechanically evaluated
Pwc(Pdc)-dependences proves to be more gradual as compared with the semiclassical one.

The above noted difference between quantum-mechanical and adiabatic curves can
be attributed to the quantum tunneling ignored by the semiclassical approach by its very
nature. Indeed, quantum tunneling is a competing factor with respect to the localizing
effect of the field of the driver-cell, which tends to stabilize a certain polarization of the
working cell. The stronger the vibronic coupling, the smaller the tunneling gap between
the ground and the first excited vibronic levels evaluated at Pdc = 0 when the lowest
levels in the two equivalent potential wells are in resonance. This can be evidenced by
comparing the field dependences of the two low-lying vibronic tunnel levels evaluated for
υ = 500 cm−1 and υ = 600 cm−1 (Figure 7). It is seen that for υ = 600 cm−1 the tunneling
can be more easily suppressed by the electrostatic field of the driver-cell so that even at
very weak polarization of the driver-cell the dependences of the ground and first excited
vibronic levels on Pdc are becoming linear. In contrast, at υ = 500 cm−1 the tunneling gap
is larger and so a higher field is required to ensure linear dependencies of the energies
on Pdc. Such difference in tunneling gaps determines the difference in the slopes of the
Pwc(Pdc)-dependences and in the saturation Pwc-values as evidenced from comparison of
the curves 1 and 2 in Figure 6a.
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6. Conclusions

The above analysis demonstrates that the semiclassical adiabatic approach loses its
accuracy when discussing the critical characteristics of the molecular QCA cells such as
their polarizability and switchability as well as the cell-cell response function. To provide
an accurate and physically justified description of the functional properties of the two-
electron square planar MV cell with arbitrary interrelation between the Coulomb energy
gap U and the vibronic and the ET energies, we have resorted to the quantum-mechanical
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(dynamic) vibronic approach and solved the three-mode combined Jahn-Teller and pseudo-
Jahn-Teller problem (21 A1g +

1B1g +
1B2g +

1Eu)⊗
(
b1g + eu

)
in which the six electronic

levels are mixed due to the coupling of the excess electrons with three active PKS vibrations.
Based on this solution we have revealed the key role of the vibronic interaction to ensure
the proper functioning of the cell. It has been demonstrated that sufficiently strong PKS
vibronic coupling is able to efficiently suppress the ET, thus leading to the dominance
of the diagonal-type electronic configurations. The most important conclusion following
from the results of the performed analysis is that the bistability and polarizability of
the cell can be reached even if the intracell Coulomb repulsion cannot be referred to as
dominating interaction (violated limit of strong Coulomb repulsion). This manifests itself
in the substantially non-linear stepwise cell-cell response shape occurring at strong vibronic
coupling that is a prerequisite for the creation of properly functioned QCA circuits. Such
finding is expected to allow considerable expansion of the search area for suitable molecular
candidates for high-performance QCA cells.
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