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Abstract: Li3V2(PO4)3/Li3PO4 (LVPO/LPO) composites as cathodes for Li-ion batteries were synthe-
sized by the hydrothermal method and subsequently annealed in an Ar atmosphere. The effect of
Li3PO4 content on the crystal structure, morphology and the related magnetic and electrochemical
properties of Li3V2(PO4)3/Li3PO4 composites, containing 7.5 wt% and 14 wt% of Li3PO4 (LVPO/LPO-
7.5 and LVPO/LPO-14) was investigated. The microstructure and morphology of the obtained
composites were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM);
magnetic and electrochemical properties investigations were performed using the electron spin reso-
nance and galvanostatic methods, respectively. It was shown that Li3V2(PO4)3/Li3PO4 composites
exhibit a high discharge capacity, good cycle performance (105 and 120 mAh g−1 for the 200th cycle
at 1C for LVPO/LPO-7.5 and LVPO/LPO-14, respectively), and insignificant changes in the surface
morphology after 200 lithiation/delithiation cycles. Our results demonstrate that the increase in
Li3PO4 content led to a decrease in the Li stoichiometry and magnetic inhomogeneity in Li3V2(PO4)3

phase; thus, the improvement in the electrochemical performance of LVPO/LPO composites due to
incorporation of Li3PO4 can be attributed to their chemical and magnetic inhomogeneity.

Keywords: Li3V2(PO4)3; cathode material; electron spin resonance; discharge capacity

1. Introduction

Nowadays, much research in the field of modernization of Li-ion batteries (LIB)
is devoted to the development of high-energy-density materials for the so-called “post-
lithium-ion batteries” [1,2]. Among others, oxides [3] and phosphorus-containing materials,
as potential electrode materials for LIB, are of particular interest, e.g., orthophosphate
vanadates as the cathode materials [4,5] and black phosphorus as the anode material [6].
Often, the orthophosphate vanadate Li3V2(PO4)3 (LVPO) is used as a cathode material in
the form of a composite: pure LVPO or in the form of the partially substituted composition
with carbon [7–14]. It is assumed that carbon can improve the electrochemical properties; at
the same time, it is not a trivial task to obtain pure LVPO without carbon. On the other hand,
it would be interesting to study a pure LVPO sample with a deficiency of lithium, assuming
that its initial structure will be more predisposed to the Li intercalation/deintercalation
process and more resistant to mechanical stress, therefore degrading less than was expected
in the case of the nanostructured cathode materials with high energy density, high rate
capability, and excellent cycling stability; this would be due to their huge surface area, short
distance for mass and charge transport, and freedom for volume change [15]. However,
lithium-deficient LVPO samples have not been studied in such detail to date [16,17], also
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because of the major difficulty in controlling the oxidation degrees of vanadium, namely
V(III), V(IV) and V(V), during the different synthesis processes [18].

At present, we have developed a method for composite synthesis without any carbon
but containing Li3PO4 as an additional phase that makes this system promising in terms
of improving the electrochemical properties [19,20]. Moreover, it was found here that the
phase with a deficiency of lithium Li3-xV2(PO4)3 is stable formed in the composition of
LVPO/LPO solid solutions.

It is known that to provide a high discharge capacity in a solid-state battery, which
includes a Li- and V-containing polyphosphate compound and contains Li3V2(PO4)3 as a
main phase, the content of Li3PO4 should be up to 15.0 wt% with respect to Li3V2(PO4)3 [21].
In this regard, two type of samples were synthesized for further investigations of their
structural, magnetic and electrochemical properties: (i) Li3V2(PO4)3/Li3PO4 composites
containing 14 wt% of Li3PO4 (of which their composition is close to the above-mentioned
limit) and (ii) Li3V2(PO4)3/Li3PO4 composites containing 7.5 wt% of Li3PO4 (one-half of
the limit of Li3PO4 concentration).

2. Experimental Results
2.1. Sample Synthesis and Characterization

In this paper, the investigated Li3V2(PO4)3/Li3PO4 composites containing 7.5 wt%
and 14 wt% of Li3PO4 (LVPO/LPO-7.5 and LVPO/LPO-14) that were obtained by the
hydrothermal method with the subsequent annealing in Ar atmosphere. The synthesis was
carried out according to the following scheme:

(i) Chemically pure vanadium (IV) formate VO(HCOO)2·H2O, lithium carbonate
Li2CO3, and ammonium phosphate NH4H2PO4 were used in stoichiometric molar ratios
as starting materials, except for vanadium(IV) formate, which was used in a stoichiometric
deficiency. The above-mentioned reagents were mixed to the homogenization stage in the
hydrothermal synthesis autoclave reactor (100 mL) using 5 mL of distilled water.

(ii) The autoclaving was carried out at 200 ◦C for 10 h with the subsequent cooling
at room temperature without air access. The resulting dark violet gel-like precursor was
dried in a Petri dish at 100 ◦C.

(iii) The dried precursor was pressed and subjected to the carbothermal reduction:
calcination at 800 ◦C in an argon flow during 5 h in the presence of carbon (5 wt%) in a
separate crucible. Carbothermal reduction was used to exclude the oxidation of V3+ ions to
the most stable oxidation states V4+ and V5+. Moreover, the use of carbon makes it possible
to prevent the possible formation of an impurity phase—the ammonium hexavanadate
(NH4)2V6O16—since the formation of the gaseous CO and CO2 products is observed, which
comprise a reducing medium.

It should be noted that the use of the hydrothermal synthesis method instead of
thermal hydrolysis [22] made it possible to exclude the drying of the precursor in an
argon flow. Due to higher pressure inside the hydrothermal synthesis autoclave reactor,
the exposure time is almost 3.5 times less than the hydrothermal method. Moreover, the
increased pressure due to the released carboxyl and nitrate volatile components promotes
the process of the complete reduction of vanadium from V5+ to V3+, which makes it possible
to lower the phase formation temperature.

The composition of the obtained LVPO/LPO-7.5 and LVPO/LPO-14 samples was
controlled using a Shimadzu XRD-7000 S automatic diffractometer with 0.03◦ steps in the
10◦–70◦ range with an exposure of 2 s at a point. The phase analysis of the reaction products
was performed using the crystallographic database “Database of Powder Standard–PDF2”
(ICDD, USA, Release 2005). X-ray pattern processing was performed according to the
Rietveld method using the FULLPROF-2018 software. According to X-ray diffraction data,
the resulting products were Li3V2(PO4)3 (92.5 wt%)/Li3PO4 (7.5 wt%) and Li3V2(PO4)3
(86 wt%)/Li3PO4 (14 wt%) composites. The X-ray diffraction pattern of LVPO/LPO-14
sample is presented in Figure 1. The crystal structure parameters of the Li3V2(PO4)3 and
Li3PO4 phases are given in Table 1.
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Figure 1. Experimental, theoretical, and differential X-ray diffraction pattern of Li3V2(PO4)3

(86 wt%)/Li3PO4 (14 wt%) composite.

Table 1. Crystal structure parameters of Li3V2(PO4)3/Li3PO4 composites.

Sample LVPO/LPO-7.5 LVPO/LPO-14

main phase Li3V2(PO4)3, 92.5 wt% Li3V2(PO4)3, 86 wt%
syngony monoclinic monoclinic

space group P21/n (#14) P21/n (#14)
a, Å 8.606(1) 8.614(2)
b, Å 8.587(4) 8.595(3)
c, Å 12.032(1) 12.040(3)
β, ◦ 90.554(1) 90.55(1)

V, Å3 889.1(2) 881.6(2)

additional phase Li3PO4, 7.5 wt% Li3PO4, 14 wt%
syngony orthorhombic orthorhombic

space group Pnma (#62) Pnma (#62)
a, Å 6.146 6.146
b, Å 10.453 10.453
c, Å 4.913 4.913

V, Å3 315.64 315.64

The morphology of Li3V2(PO4)3/Li3PO4 composites was investigated using scanning
electron microscopy (SEM) via an EVO 50 XVP scanning electron microscope. SEM images
of the as-prepared LVPO/LPO-7.5 and LVPO/LPO-14 surfaces are shown in Figure 2a,b, re-
spectively. In addition to the as-prepared samples, the morphology of Li3V2(PO4)3/Li3PO4
composites was investigated during the lithium intercalation/deintercalation process
(Figures 3 and 4).
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Figure 3. SEM images of the Li3V2(PO4)3 (86 wt%)/Li3PO4 (14 wt%) composite surfaces after
200 charge/discharge cycles at different magnifications.

2.2. Electron Spin Resonance

Electron spin resonance (ESR) spectra of the LVPO/LPO-7.5 and LVPO/LPO-14 com-
posites were measured on an ER 200 SRC (EMX/plus) spectrometer (Bruker, Bremen,
Germany) at the frequency of 9.4 GHz and at room temperature using a double rectangular
X-band resonator, ER 4105DR. This equipment allows detecting the electron spin resonance
spectrum of the investigated sample and the benchmark spectrum simultaneously. The ex-
perimentally observed ESR spectra of the LVPO/LPO-7.5 and LVPO/LPO-14 composites at
room temperature have a close line shape; the ESR spectrum of LVPO/LPO-14 is presented
in Figure 5.
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Figure 5. Electron resonance spectrum of the Li3V2(PO4)3 (86 wt%)/Li3PO4 (14 wt%) composites at
room temperature at the X-band frequency. Inset shows the electron spin resonance spectrum of the
benchmark containing Ns = 1.6 × 1017 spins.

2.3. Electrochemical Performance

Electrochemical property investigations were performed by the galvanostatic method
in a three-electrode electrochemical cell using a galvanostat/potentiostat PARSTAT 4000
(AMETEK Scientific Instruments, Berwyn, PA, USA). A Li3V2(PO4)3/Li3PO4 sample was
used as working electrode; plates of metallic Li were used as reference and counter elec-
trodes. A solution of LiPF6 in ethylene carbonate (EC) and dimethyl carbonate (DMC)
(1.0 M LiPF6 in EC/DMC = 50/50 (vol/vol)) was used as an electrolyte. All reagents were
purchased from Sigma Aldrich and were “Battery grade”. The assembly of electrochemical
cells was performed in a glovebox under a dry argon atmosphere. The oxygen content did
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not exceed 1 ppm. The galvanostatic cycling tests and cycle characteristics were studied
between the voltage window 2.5–4.5 V at room temperature.

Figures 6 and 7 show the electrochemical voltage profiles and the discharge capacity
depending on the number of charge–discharge cycles at 1C, respectively, for the investigated
LVPO/LPO-7.5 and LVPO/LPO-14 cathode materials.
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3. Discussion

In is known from the literature that the lattice parameters can slightly differ depending
on the synthesis process and monoclinic axis selection [16,22–27]. The here-observed
difference between the crystal structure parameters of two investigated samples obtained
by the same method lies within the error in determining the crystal structure parameters.
From the SEM images, one can see that the as-prepared composites have a granular structure
with closed values of the average grain sizes.

When discussing the nature of the signal, it is necessary to note that V3+ (3d2, S = 1)
has an even number of electrons in the respective electronic shells and singlet ground-state
levels may result in such so that no ESR is observable. Thus, as it was suggested in our
previous works [12,22], the observed ESR spectra is most probably due to a small amount
of V4+ ions (3d1, S = 1/2). To estimate the number of V4+ ions, the integral intensity of the
Li3V2(PO4)3/Li3PO4 spectrum was compared with the same parameters for the benchmark
(inset Figure 5). The ESR spectra integral intensities ratio of the investigated samples
(ILVPO/LPO) and the benchmark (I0) is given in Line 2 of Table 2. The corresponding number
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of V4+ magnetic centers in the investigated samples can be estimated as = ILVPO/LPO/I0·Ns,
where Ns is the spin number in the benchmark (Line 3 in Table 2); the total number of
vanadium ions N0 is given in Line 4 of Table 2. The relative number of tetravalent vanadium
ions is shown in Line 5 of Table 2. The change in the valence state of vanadium ions from
V3+ to V4+ can be associated with the lithium non-stoichiometry or anti-site defects (the
occupation of V sites by Li and vice versa) in the investigated compound; that is, to maintain
the electrochemical neutrality of the unit cell, the change in valence of one vanadium ion
from 3+ to 4+ corresponds to the deintercalation of one lithium ion. Taking into account
the vanadium to lithium ratio in the chemical formula, it is possible to estimate the degree
of lithium nonstoichiometry in the investigated samples (Line 6 of Table 2).

Table 2. ESR spectra integral intensity ratio ILVPO/LPO/I0, number of magnetic centers, total num-
ber of vanadium ions, relative number of tetravalent vanadium ions and lithium deficiency for
Li3V2(PO4)3/Li3PO4 composites.

No Sample LVPO/LPO-7.5 LVPO/LPO-14

1 mass (mg) 4.7 2.5

2 ILVPO/LPO/I0 4.813 8.355

3 7.7 × 1017 1 × 1018

4 12.83 × 1018 6.34 × 1018

5 6% 15.8%

6 lithium deficiency 4% 10.5%

One can see from Table 2 that the increase in the Li3PO4 content in LVPO/LPO
composites leads to the decrease in the Li stoichiometry. Moreover, our previous results
demonstrated the appearance of the magnetic inhomogeneity in LVPO/LPO-7.5 samples
due to the Li nonstoichiometry [22]. Thus, one can expect an increase in the degree of
magnetic inhomogeneity in the LVPO/LPO-14 sample with respect to the LVPO/LPO-7.5
sample, which can affect (improve) the electrochemical properties.

Traditionally, upon cycling in this voltage window, the curves for voltage profiles
can be divided into three regions. These regions span the following composition ranges:
x = 0–0.5, 0.5–1, and 1–2 in Li3-xV2(PO4)3, respectively. The removal of all three lithium ions
is accompanied by redox reactions V3+/V4+/V5+. In our case, we observed that the first two
lithiums were extracted at an average voltage of 3.6 and 4.1 V vs. Li/Li+, respectively. The
extraction of the third lithium associated with the V4+/V5+ redox couple usually occurs at
potentials higher than 4.5 V vs. Li/Li+ to form Li0V2(PO4)3, in which transition metal V is in
a mixed valance state of V4+ and V5+ and is not shown in the figure. The obtained discharge
capacity was lower than the theoretical value (197 mAh/g for 3 Li extraction) [4,28,29].
One can suppose that such a behavior could be due to the presence of an additional phase
that affects the electrochemical properties of the investigated samples and that leads to a
decrease in the specific capacity. It can be seen from Figures 6 and 7 that the specific capacity
is 10% higher for the sample with a higher lithium nonstoichiometry (with a high content of
the Li3PO4 salt). The obtained results also show that the Li3V2(PO4)3/Li3PO4 composites
demonstrate a lower initial specific charge–discharge capacity compared to Li3V2(PO4)3/C,
however, at the same time, they retain their specific capacity during multiple cycling (up
to 200 cycles), whereas for the Li3V2(PO4)3/C sample, the specific capacity value can be
maintained [7] or decreased by tens of percentage points even after 25 cycles [30].

One can see the retention of the granular structure after multiple intercalation/deintercalation
processes accompanied by the visual compression and surface leveling (see Figures 2 and 3)
which does not affect the electrochemical properties (see the values of the specific capacity
in Figure 7). The surface morphology for different stages of electrochemical investigations is
shown in Figure 4. One can see no visual difference between the delithiated and relithiated
samples, which corresponds to the charge and discharge stages of the electrochemical cell.
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4. Conclusions

Li3V2(PO4)3/Li3PO4 composites, containing 7.5 wt% and 14 wt% of Li3PO4, were syn-
thesized by the hydrothermal method and then subsequently annealed in an Ar atmosphere.
No effect of Li3PO4 amount on the surface morphology of the investigated samples was
observed; scanning electron microscopy measurements showed that the as-prepared sam-
ples had the granular structure and retained it after multiple intercalation/deintercalation
processes, accompanied by visual compression and surface leveling. No visual difference
between the surface morphology of delithiated and relithiated samples was observed.

At the same time, the effect of Li3PO4 content on the magnetic properties was detected.
Using electron spin resonance, it was observed that there was a decrease in the Li stoichiometry
with increasing Li3PO4 content in LVPO/LPO composites. From the point of view of the
electrochemical properties, the increase in Li3PO4 content led to the increase of the discharge
capacity: 105 and 120 mAh g−1 for the 200th cycle at 1C for LVPO/LPO-7.5 and LVPO/LPO-14,
respectively, while the good cycle performance was realized for both samples.

We suggest that the improvement in the electrochemical performance of LVPO/LPO
composites due to the incorporation of Li3PO4 can be attributed simultaneously to the
chemical and magnetic inhomogeneity of the samples or just to one of these reasons, which
requires further investigation.
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