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Abstract: Accurate measurement of the flow curves of magnetic fluid under a uniform field has
always been a challenge. In this article, a novel method is proposed to measure the flow curve of
magnetic fluids based on plane Poiseuille flow. The measuring system was built and its performance
was compared with that of a commercial rheometer. Flow curves of magnetic fluid with different
zero-field viscosity were tested under various field strengths. This novel method facilitates direct
observation of the flowing behaviors of magnetic fluid under different stresses. By examining the
variation trend of viscosity under certain constant stress, a more reliable method to determine the
dynamic yield stress of magnetic fluid was used. The dynamic yield stress of the magnetic fluid
measured by the new method was larger than the value obtained by the fitting, which is more reliable
from an engineering point of view.
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1. Introduction

Magnetic fluid is a colloid composed of nano-magnetic particles, surfactants, and car-
rier fluid. The combination of the particle and surfactant guarantees its stable dispersion in
the carrier fluid. As a new kind of nano-functional material, magnetic fluid simultaneously
exhibits the fluidity of liquids and the magnetism of solid magnetic materials [1]. Due
to its unique characteristics, magnetic fluid has been widely used in biomedical applica-
tions [2], energy applications [3], mechanical applications [4], manipulation and transport
of matter [5], heat transfer [6].

As the research has gone further, people have realized that these applications of
magnetic fluid are closely related to its rheological properties, especially the rheological
properties under the action of a magnetic field. In magnetic hyperthermia, the increase in
solution viscosity leads to a decrease in the heating rate of the nanoparticle solution [7]. Li
et al. [8] have shown that viscosity is the decisive factor of the critical pressure value for
magnetic-fluid seal in the water environment. In a thermo-magnetic pump, the magnetic
fluid with lower viscosity can more effectively induce thermo-magnetic convection, thereby
obtaining higher performance [9,10].

Of all the rheological measuring items, the flow curve is one of the most convenient
and commonly adopted test types to characterize the overall rheological properties of
magnetic fluid. With or without an external magnetic field, the flow curve can be obtained
by measuring the viscosity under different shear rates or shear stresses. The flow curves of
the magnetic fluid provide a variety of information on its magnetorheological properties,
such as magnetoviscous effect, shear-thinning, and yielding, which are vital for the simula-
tion and application of magnetic fluid. Various methods and measuring apparatus were
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reported to measure the flow curve of magnetic fluid. Gu et al. [11] measured the viscosity
of the water-based magnetic fluid under different conditions with an Ubbelohde viscometer.
The effects on viscosity of the magnetic-particle-volume fraction, surfactant-mass fraction,
and temperature were studied. They found that the viscosity of the magnetic fluid increased
with the increase in the volume fraction of the suspended magnetic powder, increased
with the increase in the mass fraction of the surfactant, and decreased with the increase
in temperature. Yang et al. [12] studied the magnetoviscous properties of both dilute and
concentrated ferrofluids with a torsional oscillation cup viscometer, the study found that the
relative magnetic viscosity hysteresis coefficient is positive in a high magnetic field under a
horizontal toroidal magnetic field, and it is negative under the magnetic field. Yoshiyuki
Matsuno et al. [13] used a lab-made capillary experimental device to draw the flow curve
of the water-based magnetic fluid with and without the interaction of the magnetic field
and the flowing vorticity, and studied the dynamic yield stress of the water-based magnetic
fluid. They found that it was relatively small, and the calculated value was higher than the
experimental value. Ren et al. [14] also used a lab-made rheometer to measure the viscosity
of a sample, where the fluid was in the form of a ring, which allowed the magnetic field to
be more evenly distributed in the fluid, and the measurement data were more accurate and
reliable. Li et al. [15] used an MCR 302 rotational rheometer(Anton Paar, Graz, Austria) to
study the effects of different factors on the thixotropy of magnetic fluid, including particle
concentration, magnetic flux density, shearing time, and temperature. The research results
showed that under the action of a magnetic field, a magnetic fluid with a sufficiently high
particle concentration could exhibit obvious thixotropic behavior, which was related to the
gradual destruction and reconstruction of drop-like and chain-like structures.

However, both the reported capillary and rotational measuring systems have certain
limitations in measuring the flow curve of magnetic fluid. As the capillary measuring
system was based on the continuous Poiseuille flow and the magnetic field is usually
exerted on part of the flowing sample, the nonuniformity of the magnetic field at the edge
of the coil will induce inevitable errors. The commercial rotational rheometer itself is of
relatively high accuracy and versatility. However, the magnetic field of the commercial
rheometer is generated by the equipped magnetic field module, which is essentially the
magnetic field generated by a single electromagnet. Compared with the Helmholtz coils
or paired electromagnets, the uniformity of the magnetic field of commercial rotational
rheometer is relatively poor. In addition, thorns will occur in the tested magnetic fluid at
the edge of the rotating rotor under a vertical magnetic field, owing to the instability of the
surface of the magnetic fluid. As the surface contact between the magnetic fluid and the
measuring rotor is uneven, the measurement data can be unstable during the flow curve
measurement process.

Dynamic yield stress has always been one of the most commonly used rheological
concepts in academia and industry. The definition of dynamic yield stress is based on
the assumption that the ultimate stress exists before flow. When the applied stress is less
than the ultimate stress, the sample exhibits a solid-like characteristic, that is, the sample
produces a fully recoverable deformation [16]. In actual tests, the shear stress is usually
directly extrapolated to the zero of the abscissa of the flow curve, or the flow curve is fitted
with a related rheological model to determine the dynamic yield stress. However, the
dynamic yield stress measured by this method is often determined subjectively. How to
define dynamic yield stress is still a hot issue in rheology [17]. Based on the observation
experiment of the equilibrium structures, Zubarev [18] proposed a drop model to explain
the mechanics behind the dynamic yield stress of magnetic fluid. When a magnetic field is
perpendicular to the flow field of the magnetic fluid, the large columnar structure inside the
magnetic fluid is approximately a drop-like structure that is elongated under the action of
the magnetic field. In the rheological measurement gap, the drop-like structure is connected
to the upper and lower surfaces of the measuring fixture, and its destruction process leads
to obvious yield stress under certain measurement conditions.
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Based on some of the problems of existing measurement methods, a specially designed
measuring system and related measuring method are proposed. Differently from traditional
measurement methods, the new method use slope measurement. During the measurement
process, the flow of fluid is always under its gravity component along the plane, thus
leading to more stable and reliable results, and the visualization of the flow makes the
result more intuitive. In order to ensure the uniformity of the magnetic field, a movable
magnetic field compensation is necessary. As far as we know, a specially designed device
to keep the sample under the uniform magnetic field zone had not been proposed prior to
this study.

In this study, a new novel measuring system is proposed and the flow curves of two
magnetic fluids with different viscosities are studied. The test results are compared with
those measured by a commercial rotational rheometer under the same conditions. The
reason behind the difference in both results is analyzed and discussed. By examining
the variation trend of viscosity under a certain constant stress, a more reliable method to
determine the dynamic yield stress of magnetic fluid was used. Because of its visualization,
the novel method can provide more detailed information during the test process. This will
help to better understand the complex rheological properties of magnetic fluids and will
promote further research.

2. The Novel Measuring System
2.1. Components of the System

The novel measuring system consists of a three-degree-of-freedom (3-DOF) motion
platform, a flow channel, a Helmholtz coil with a flip platform, a NI controller, and a
visual recognition system. The configuration of the novel measuring system is presented in
Figure 1.
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Figure 1. Components of the novel measuring system.

The 3-DOF motion platform includes an X-axis movement, a Y-axis movement, and
a Z-axis rotation, which are driven by stepping motors. To improve the measurement
accuracy, a small absolute encoder is installed inside the motor. The flow channel is
composed of two transparent polytetrafluoroethylene (PTFE) plates, separated by a gap-
adjustment gasket. Selecting different gaskets with different thicknesses leads to the
adjustment of the gap according to the viscosity of the measuring sample. The flow channel
is fixed on the Z-axis of the 3-DOF motion platform, which passes through the center of
the Helmholtz coil. The magnetic field is generated by the Helmholtz coils, which are
composed of a pair of identical, coaxial, and parallel closely wound current coils with
2000 turns. The maximum central magnetic field reaches 24 kA/m. A laser displacement
sensor is installed at the bottom of the Helmholtz coil to detect the position of the flow
channel in the vertical direction inside the Helmholtz coil. The turning platform is used for
the rotation of the Helmholtz coil, which can be rotated with the change of the angle of the
flowing channel.
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We use an OPEN MV4 H7 smart camera (OpenMV LLC, Atlanta, GA, USA) as a visual
recognition system to track and locate the magnetic fluid. The system is equipped with a
MicroPython interpreter and the recognition program is written by Python (Python 3.0, Guido
van Rossum, San Francisco, CA, USA). Grayscale is adopted in the visual recognition system
for color recognition. As the threshold value of the magnetic fluid is within 10–28, and the
threshold value of the flow path is greater than 40, it is easy to determine the position of
the magnetic fluid. After the magnetic fluid is selected by the frame, the frame position
information is automatically generated and transmitted to the PC via serial communication.
The system is controlled by a Data Acquisition Card NI-6250 built by NI Control. The
rotation of the stepper motor, the document of the position of the motor, and the data of the
visual recognition system is integrated and coordinated in the LabView platform(Labview
2018, National Instruments, Austin, TX, USA). There are two control modes to choose from
manual mode and automatic mode. While manual mode can realize single-point viscosity
measurement, multi-point viscosity measurement and the depiction of the flow curve can be
conducted under automatic mode.

2.2. Rheological Model

Round cross-section capillaries are widely used in the measurement of Newtonian fluid
viscosity, and the slit capillary is particularly proposed and adopted for the measurement
of non-Newtonian fluid [19]. In this study, magnetic fluid flows in an approximate slit
geometry, which conforms to Poiseuille’s law.

Laminar flow forms in the magnetic fluid sample between two parallel inclined plates,
Figure 2 shows the velocity distribution and geometric diagram.
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plates section [20].

Under its gravity component along with the inclined plane, the magnetic fluid sample
flows down along the inclined direction. The flow of magnetic fluid can be regarded as
the flow of many concentric strips, and the viscous resistance caused by any layer of fluid
constitutes a balance with external forces.

2KLτ = (K · 2h)∆p (1)

where K is the width of the contact surface between magnetic fluid and parallel plate, 2h is
the spacing between parallel inclined plates, among them, K�h, L is the distance that the
magnetic fluid flows, and ∆p is the pressure drop caused by the height difference between
the two ends of L in parallel inclined plates [19].

The average shear stress of the sample is

τ = (
2h
2L

)∆p = ρgh sin α (2)
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Based on the assumption of the formation of a uniform flow field in the sample, the
average shear rate can be calculated as

.
γ = [

6

K(2h)2 ]Q =
3Q

2Kh2 (3)

where Q is the flow rate of the magnetic fluid. Then the viscosity of the magnetic fluid is

η = τ/
.
γ =

2Kh3ρg sin α

3Q
(4)

2.3. Measuring Procedure and Details

Measuring was conducted according to the following procedure: The experiment was
carried out in a constant-temperature room, and the temperature was set to 20 ◦C. Before
measuring, we used base carrier fluid to pre-wet the PTFE flow channel to change the flow
performance of the magnetic fluid [21] and prevent excessive adhesion of the magnetic fluid to
the flow channel during the flow process. Before each test, the flow channel and the Helmholtz
coil were adjusted to the horizontal position automatically by the control system and then
the starting point of the flow channel was moved to the center position of the Helmholtz
coil in both horizontal and vertical directions, with the help of a laser displacement sensor
placed under the coil and the Y-axis movement of the 3-DOF motion platform. After a stable
magnetic field was acquired by preheating the coil for 0.5 h, a syringe was used to inject a
certain amount of magnetic fluid into the flow channel composed of two parallel plates. It
is worth noting that the appropriate measurement gap should be selected according to the
estimated viscosity of the measured sample. For each test in this paper, the gap between the
PTPE plates was 1 mm and the volume of the magnetic fluid was 0.3 mL. After that, the flow
channel was kept horizontal, and the magnetic fluid was placed under the magnetic field
for 120 s to form a stable structure inside, and then the measurement is started. During the
measurement, the synchronous motion of the 3-DOF motion platform and the flip platform
are accomplished by the sensing and control system, so that the magnetic field will always be
perpendicular to the sample layer, as shown in Figure 3.
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Figure 3. 3-DOF motion platform and flip platform coordinated movement.

The system controls the flow channel to deflect a certain angle, and the magnetic
fluid will flow downward in an inclined direction. At this time, the visual recognition
system monitors the position of the magnetic fluid and calculates its flow speed in real-time
based on the distance that the magnetic fluid flows within a certain period of time. Due to
the inhomogeneity of the magnetic field generated by the Helmholtz coil system, and to
facilitate the visual recognition system to locate the magnetic fluid, the magnetic fluid must
flow in a region of uniform magnetic flux density. By using a Gauss meter, the deviation
of the magnetic flux density within the radius of 40 mm from the center of the coil was
within 1.3%, and this area was regarded as a uniform magnetic field. Such a small test
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area is not sufficient for multi-point data measurement, which requires the flow channel
to move in the opposite direction of the flow of the magnetic fluid. The movement of the
flow channel can be decomposed into movement along the X-axis and Y-axis, which are
operated by the 3-DOF motion platform. During the flow process, the moving speed of the
flow channel is adjusted according to the flow rate of the magnetic fluid calculated by the
system. The system records the flow time and flow a distance of the magnetic fluid at the
same time. After it flows through the set distance, the Helmholtz coil and the flow channel
will rotate to a new angle. During the rotation, the Y-axis will also follow the movement, so
that the flow channel is at the center of the Helmholtz coil in the vertical direction. Through
multiple angle changes of the flow channel, the system will calculate and draw a complete
flow curve.

The measurement time and flow images of different angles are shown in Figure 4.
The flowing image clearly shows the position and flow trace of the magnetic fluid. The
magnetic fluid can be easily identified by the system. As the angle increases, the color of the
flow trace gradually darkens. When the flow trace threshold is close to the color threshold
of the magnetic fluid, an external auxiliary light source is adopted to increase contrast.
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2.4. Materials

Two magnetic fluids with different viscosities were used for comparative experiments.
The physical parameters of the two samples are shown in Table 1.

Table 1. Physical parameters of commercial and lab-made magnetic-fluid samples.

Nanoparticle Type Saturation Magnetization
(kA/m)

Viscosity
@20 ◦C (mPa·s)

Density
@20 ◦C (kg/m3)

EFH1 35 9 1.22 × 103

Lab-made 33 464 1.27 × 103

The low zero-field viscosity sample EFH1 produced by Ferrotec was chosen as the
commercial magnetic fluid, the high zero-field viscosity sample was from a lab-made oil-
based magnetic fluid.

The basic steps for preparing the magnetic fluids are the synthesis of nanoparticles
and their distribution in the base carrier fluid; the detailed preparation process has been
reported elsewhere [22]. The co-precipitation method was used to synthesize the nano-
powder, and oleic acid was selected as a surfactant. The base carrier fluid was L-AN46
total loss system oil produced by China Petroleum & Chemical Corporation, and its basic
parameters are shown in Table 2.
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Table 2. Basic parameters of L-AN46 total loss system oil.

Standard No. Kinematical Viscosity
@20 ◦C (mPa·s)

Density
@20 ◦C (kg/m3)

Flash Point
(◦C)

Pour Point
(◦C)

L-AN46 327 0.92 × 103 220 −28

The morphology of the prepared Fe3O4 nanoparticles was characterized by transmis-
sion electron microscopy (TEM). As shown in Figure 5, the polydispersity of nanoparticles
can be seen through TEM images, and the size of nanoparticles was approximately 10 nm.
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Figure 5. TEM image of the magnetic nanoparticles.

Figure 6 shows the magnetization curve of a lab-made magnetic fluid sample measured
by a vibrating sample magnetometer (VSM). It can be seen that there is no obvious coercivity
and remanence in the hysteresis loop, which indicates that the prepared Fe3O4 magnetic
particles are mainly single-domain small particles, and the content of multi-domain large
particles is very small. The saturation magnetization of the sample can be read from the
maximum of the curves as 26.4 kA/m.
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3. Results and Discussion
3.1. Commercial Magnetic Fluid Measurement

Figure 7 shows the difference in results between the novel measuring system and the
commercial rheometer. In the commercial rheometer measurement, we used the stress-
control mode to measure the viscosity of the EFH1-type magnetic fluid. The plate-plate
method of 20 mm and a measuring gap of 0.2 mm was selected, the measurement time of
each point was 30 s. With the commercial rheometer, the measuring viscosity decreased
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with the increase in the shear rate and finally approached a constant. It is worth noting
that a significant non-Newtonian characteristic appeared in the sample even under zero
magnetic field. Using the novel method, the viscosity remained relatively stable under zero
field, and there was a gentle decreasing trend of viscosity with shear rate under magnetic
flux density of 24 kA/m. In contrast, under zero magnetic field intensity, the result of
the novel measuring system was closer to a certain value. Under 24 kA/m magnetic
field intensity, the measurement result showed the non-Newtonian and shear thinning
phenomenon of the sample. According to the zero-field viscosity value provided by the
factory, the results measured by the novel system seemed to be closer to the factory value.
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of magnetic fluid under different magnetic flux densities and factory value and (b) novel measuring
system results of magnetic fluid under different magnetic flux densities and factory value.

The commercial rotational rheometer measures the rotation of the rotor driven by DC
motor through a grating encoder. The rheometer program presets a certain torque value,
measures the resulting rotor speed, converts the two into shear stress and shear rate, and
obtains the corresponding viscosity value [22]. In the actual measurement process, the
resistance torque generated inside the low-viscosity magnetic fluid is much smaller than
that of the high-viscosity magnetic fluid. At the same time, the drive motor itself also has a
certain moment of inertia. When measuring low-viscosity magnetic fluid, the moment of
inertia of the instrument itself is greater than the resistance torque of the magnetic fluid.
Although the moment of inertia of the instrument will be removed from the result, the
measurement error of the instrument will have a large effect on the measurement result.
The novel measuring system is free from the influence of the motor inertia, as the shear
stress of the measuring system is generated by the gravity of the magnetic fluid. This
may be the main reason behind the difference in the viscosity value and trend between
the results from different measuring methods. There was a certain difference between
the measured value and the factory value, which may have been due to the influence
of the material of the flow channel. The contact angle of the magnetic fluid on the flow
channel was small, and the magnetic fluid was not uniformly distributed in the gap, which
destroyed the flow model and causes the fluidity to deteriorate. By pre-wetting, the surface
of the flow channel, the flow integrity of the magnetic fluid can be improved.

Under the magnetic flux density of 24 kA/m, the measurement result acquired from
different setups was significantly greater than the viscosity measured under zero field,
indicating the existence of a magnetoviscous effect. Compared with the rheometer, the
viscosity versus shear rate curve measured by the new measuring system had a smoother
downward trend. Since the measuring shear rate was in the range of 60 s−1 to 275 s−1,
the structural form of the magnetic fluid manifested as single chains. The reduction in the
length of the chain was relatively small, therefore a weak shear thinning effect was expected.
The shear-thinning extent shown from the results of the rheometer was overestimated,
which may have been caused by the uneven distribution of the magnetic field under the
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measuring geometry. With the help of the tracking modulus of the novel measuring system,
the magnetic fluid can be kept in the center of the Helmholtz coils where the homogeneity
of the magnetic field is more than 95%, so the shear-thinning extent reflected by the curve
of the novel measuring system is believed to be more objective.

3.2. Lab-Made Magnetic Fluid Measurement

The basic rheological properties of the lab-made magnetic fluid under different mag-
netic flux densities can be seen in Figure 8. The difference between the flow curves
measured by the rheometer and the novel measuring system was rather small, as can be
seen in Figure 8a, where the rheometer measurement curve is individually marked in the
legend. When the rheometer measures high-viscosity magnetic fluids, the resistance torque
generated inside the high-viscosity magnetic fluid is much greater than the moment of
inertia of the drive motor itself, so the measurement results are more accurate and reliable.
As the measurement time of the novel measuring system increased, the influence of the
contact angle on the flow performance decreased, and the measurement accuracy improved,
when the novel measuring system measured high-viscosity magnetic fluids. The closeness
of the two curves illustrates the accuracy of the measurement results of the novel measuring
system. As the intensity of the magnetic field increased, the viscosity of the magnetic fluid
also increased, manifesting as the increase in the slope of flow curves.
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Based on the flow curves measured by shear rate or shear-stress sweep, the dynamic
yield stress of soft matter is usually determined by fitting on a certain phenomenological
rheological model [23]. In experimental rheology, the dynamic yield stress τ0 of magnetic
fluid is most frequently determined by the fitting of the Herschel–Bulkley (H–B) model.

τ = τ0 + k
.
γ

n (5)

where k is the viscosity coefficient and n is the flow index.
With a maximum number of iterations of 400, the fitting results based on the H–B

model were acquired, as shown in Table 3. Under the action of the magnetic field, with the
increase of the magnetic field intensity, the k and n of the fitting result increased, indicating
an enhancement in the degree of shear thinning. The fitted dynamic yield stress under
the 8 kA/m and 16 kA/m magnetic fields was very small or even negligible, while the
fitted dynamic yield stress was 10 times larger than the former two under the 24 kA/m
magnetic field. It seems that significant yielding behavior only performs when the magnetic
flux density is beyond a threshold. As the result of the fitting depends on the choice of
the range of shear rate points, the dynamic yield stress of the magnetic fluid reflects the
mathematic relation of the measuring results and a specified model, while the definition of
dynamic yield stress is the minimum shear stress required for the breakage of the internal
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equilibrium structure of the material and formation of steady flow, which is free from the
influence of the overall trend of the flow curve. Therefore, the fitting result cannot represent
the true dynamic yield stress, and a more convincing method is needed.

Table 3. Herschel–Bulkley fitting results on the flow curves of lab-made magnetic fluid.

Magnetic Flux Density
(kA/m) k n Fitted Dynamic Yield Stress

(Pa)

0 0.3936 1.0578 0.1159
8 0.5992 0.9985 0.039
16 0.6798 1.0415 0.0377
24 0.6976 1.159 0.3567

Figure 8b shows the change of magnetic fluid viscosity under low shear stress at
24 kA/m by the novel measuring system. The points under very low shear stress in the
measurement of a flow curve can be seen in Figure 8a. Before each test, the magnetic
fluid was placed for a while under the corresponding magnetic field. During the period,
the magnetic particles in the magnetic fluid combined and finally formed an equilibrium
columnar structure connecting the upper and lower surfaces of the measuring fixture. The
viscosity curve of the magnetic fluid under different stresses showed a significant peak in
the initial stage, this may have been due to the response of the internal structure of the
sample to stress changes. Measurement errors also have a certain impact on the occurrence
of the peak in the curve. Under the action of a 24 kA/m magnetic field, the lab-made
magnetic fluid exhibited obvious viscous bifurcation, which can be seen from the different
trends in the viscosity curves under various shear stresses. When the shear stress was less
than 0.5 Pa, the magnetic fluid aged over time and its viscosity continued to increase. Since
large columnar structures arranged in a magnetic fluid are always dynamically adjusting
under certain stress, and the duration of the process was very long, with the viscosity
versus time monotonically increasing in the measurement range. When the shear stress was
greater than 0.5 Pa, the viscosity of the magnetic fluid finally reached an equilibrium value,
indicating that the magnetic fluid had undergone shear regeneration and that a stable
flow state had finally been reached. It can be inferred that the dynamic yield stress of the
magnetic fluid was 0.5 Pa, and the internal structure of the magnetic fluid was dominated
by a chain structure at this time.

During the measurement process, the viscosity of the magnetic fluid decreased with
the increase of the shear stress under different magnetic fields, as can be seen in Figure 9.
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The stronger the magnetic field, the more obvious the shear thinning characteristics. It
can be learned from the chain model [23] that the magnetoviscous effect is mainly caused
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by the resistance on the flow field by the single-chain structure composed of magnetic
particles. As the single-chain structure decomposes into smaller units under high shear
stress, the magnetic fluid shows the characteristics of shear thinning. The magnetic flux
density determines the average length and number of single-stranded structures and affects
the degree of shear-thinning of the magnetic fluid.

In practical applications, what is of importance is not the absolute viscosity, but the
viscosity change caused by external influences. The magnetoviscous effect R of the magnetic
fluid is defined as the ratio of the viscosity change to the initial viscosity [24].

R =
η(H) − η(H=0)

η(H=0)
=

ηr

η0
(6)

When the shear stress was 1.5 Pa, the magnetoviscous effect of the magnetic fluid
changed with the change of the magnetic field strength, which is shown in Figure 10. The
measurement results from the two measuring setups are compared and the data from
the new measurement system’s multiple measurements averaged. As the intensity of the
magnetic field increased, the magnetoviscous effect of the magnetic fluid also increased,
and there were some differences in the variation trend of the two curves.
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Figure 10. The influence of magnetic flux density on the magnetoviscous effect of magnetic fluid.

When the magnetic flux density is low, the magnetic moment of the particles tries to
align along the direction of the magnetic field. The magnetic torque offsets the free rotation
of the particles in the flow, increasing fluid viscosity. According to the physical model of
the hindrance of rolling on the particles by Hall and Busenberg [25], the viscosity ηr of
magnetic fluid under magnetic field is as follows:

ηr =
3
2

φ′η0
α− tanhα

α + tanhα
< sin2 β > (7)

α =
µ0mH

kBT
(8)

where η0 is the zero magnetic field viscosity, φ’ denotes the volume fraction of the particles
including the surfactant, β denotes the angle between the vorticity of the flow and the
magnetic field direction, α is the ratio of magnetic and thermal energy, µ0 is the vacuum
permeability, m is the magnetic moment of the particle, H is the magnetic flux density, kB
is the Boltzmann’s constant, T is the absolute temperature and < . . . > denotes the spatial
average of the respective quantity.

The expression(α − tanh(α))/(α + tanh(α)) in Equation (7) can be approximated
as follows:

α− tanhα

α + tanhα
≈ 1

6
α2 (9)
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R ≈ 1
4

φ′α2 ∼ H2 (10)

Thus, for weak magnetic flux density, the magnetoviscous effect of the magnetic fluid
is proportional to the square of the applied magnetic field. Under higher magnetic flux
density, the magnetic potential energy between particles is far greater than the van der
Waals force interaction, so the magnetic dipoles are connected end to end to form a long
chain structure and are arranged along the direction of the magnetic field. The viscosity of
the magnetic fluid is mainly related to the chain length. The higher the magnetic flux density,
the smaller the angle between single-strand orientation and the flow vortex. Odenbach [26]
considered the conditions for breaking in a single strand to obtain the maximum single
strand length before its breakage. The maximum number of particles in the single-chain
structure is determined by the combination of shear rate and magnetic flux density.

nmax =

√
µ0

18ηc
.
γ

M
d3

(d + 2s)3 (11)

where M = χH, ηc is the dynamic viscosity of the carrier liquid, M is the magnetization,
χ is the susceptibility, d is the average particle diameter and s is the average thickness of
surfactant layer.

The theory on magnetoviscous effect corresponding to a single particle or chainlike
structures indicates varying trends of viscosity on the magnetic flux density. While the
viscosity varies with the square of the magnetic flux density under a low field, a propor-
tional relationship between viscosity and magnetic flux density can be established under a
relatively high field. Comparing the two measurement results, the curve measured by the
rheometer was generally linear, while the measurement data of the measuring system first
accelerated in a curve and then tended to be linear, which is closer to the trend predicted
by theory. The error in the measurement result of the rheometer may have been caused by
the uneven distribution of the magnetic field.

4. Conclusions

A new method for measuring the magnetic-fluid flow curve is proposed based on plane
Poiseuille flow. Commercial magnetic fluid and lab-made magnetic fluid were measured
and analyzed, and the flow curves of the two magnetic fluids under different magnetic flux
densities were studied. By comparison experiments, we showed that the novel measuring
system can achieve accurate measurement of the viscosity of magnetic fluids. In particular,
when measuring low-viscosity magnetic fluids, the new method eliminates the influence of
the starting torque of the commercial rheometer, and the measured flow curve is smoother
and closer to the factory value. By examining the variation trend of viscosity under certain
constant stress, a more reliable method to determine the dynamic yield stress of magnetic
fluid was used. Under the action of the magnetic field of 24 kA/m, the lab-made magnetic
fluid exhibited obvious viscous bifurcation, from which the true dynamic yield stress was
determined to be 0.5 Pa. The dynamic yield stress of the magnetic fluid measured by the
new method was larger than the value obtained by the fitting, which is more reliable from
the engineering point of view.
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