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Abstract: The synthesis of the NiCr2O4 compound with the spinel structure via the high-temperature
solid-state reaction leads to different deviations of the cationic composition from the nominal depend-
ing on the atmosphere in the furnace chamber. The samples prepared from the same starting NiO
and Cr2O3 compounds but in different atmospheres differ in phase composition and orbital and spin
ordering temperatures. We find that a common route of synthesis in the air and a possible presence of
the Ni2O3 in initial NiO lead to the incorporation of the Ni3+ ions into the octahedral sites regularly
occupied by the Cr3+ ions. This results in a decrease in the orbital ordering and an increase in the
Nèel temperatures. We propose that the Nèel temperature value serves as a measure of a departure
of a composition from the nominal NiCr2O4. The lowest Nèel temperature among our series was
TN = 63 K which we consider the closest to the intrinsic quantity of the NiCr2O4 compound.

Keywords: spinel structure; solid-state synthesis; cationic composition; critical temperature

1. Introduction

Crystalline materials with the spinel structure and a general chemical formula MM’2X4
are studied for several decades due to a broad range of magnetic, structural, and dielectric
properties [1–9]. Typically, M and M’ are metal ions or a combination of them, and X repre-
sents oxygen or some chalcogen divalent anion (S2−, Se2−, Te2−). Among spinels, oxide
compounds reveal outstanding mechanical properties (hardness) and high-temperature
stability. Two types of cationic positions are present in spinels: tetrahedrally coordinated
A-sites and octahedrally coordinated B-sites. Cations in the B-sites form a network of
corner-sharing tetrahedra, typical for pyrochlores. Each face of a regular tetrahedron rep-
resents an equilateral triangle. If the B-sites are occupied by the magnetic ions with an
antiferromagnetic coupling in each pair, B-sublattice is the subject of magnetic frustration.
When Cr3+ ions reside at the B site, the material is known as chromite. ZnCr2O4 [10] and
MgCr2O4 [11] chromites are prominent representatives of frustrated magnets.

In recent decades, much attention has been paid to transition metal chromites, when
both A and B sites are occupied by magnetic ions [12,13]. In these compounds, a sequence
of magnetic phase transitions takes place. In some cases, spontaneous polarization de-
velopment accompanies these transitions, and a multiferroic state is formed. Thus, in
CoCr2O4 a polar state appears with an onset of a spiral modulation of ferrimagnetic struc-
ture [14]. Multiferroics are promising in practical applications for the creation of magnetic
non-volatile memory elements where the information is written by an electric field.

For FeCr2O4, electric polarization is induced by an applied electric field above the Nèel
temperature TN and is metastable [15]. Among transition metal chromites, nickel chromite
NiCr2O4 attracts much attention due to manifestations of multiferroicity, pronounced
magnetodielectric, and magnetostrictive phenomena. Moreover, NiCr2O4 has diverse
promising applications such as catalyst materials [16,17], electrodes in supercapacitors [18],
sensitive gas sensors [19], etc.
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Nickel chromite NiCr2O4 is a normal spinel with a cubic structure slightly above room
temperature [20]. The ground state of the Ni2+ ions in a regular tetrahedral surrounding is
the orbital triplet. Consequently, at TOO ≈ 310 K the nickel chromite spinel experiences the
second-order phase transition to an orbitally ordered state. Orbital ordering occurs in the
Ni-ion A-site sublattice, and crystal structure symmetry is lowered to tetragonal. On cooling
to ~ 70 K, the symmetry of the NiCr2O4 crystal structure is further lowered to orthorhombic,
almost simultaneously with an onset of the ferrimagnetic order at TN ~ 65 K [21,22]. On
cooling below 40 K, the magnetic order develops further which is manifested in a jump of
magnetization at Ts ~ 31 K [23,24]. The magnetic structure of NiCr2O4 is considered a su-
perposition of ferrimagnetic (longitudinal) and antiferromagnetic (transverse) counterparts,
and the latter sets in at Ts [23–27].

However, the complex magnetic structure of chromite spinels is still under debate.
NiCr2O4 spinels require careful verification that the samples under study correspond to
the declared stoichiometry. It is expected and verified experimentally that a dilution of the
chromium sublattice with guest ions disturbs the magnetic frustration and thus leads to an
increase in the Nèel temperature [28–31]. Our recent studies show that the substitution of
the chromium sublattice of FeCr2O4 spinel can also occur in an uncontrolled manner due
to the oxidation of Fe2+ ions to the Fe3+ state [32].

Summarizing, one can generally state that deviations of complex magnetic spinels,
and transition metal chromites in particular, from their nominal compositions, can easily
lead to wrong and misleading interpretations of the obtained experimental data. For
practical applications, it is highly desirable to have an easily controlled criterion that would
indicate a deviation from the nominal composition of a compound. In the case of iron
chromite, Mössbauer spectroscopy of iron nuclei has shown itself a powerful experimental
approach sensitive both to iron-ions coordination and oxidation state [33]. In the case of
nickel chromite, the use of the Mössbauer effect is in principle possible (for 61Ni nuclei
with a natural abundance of 1.1%). However, this requires experiments with synchrotron
radiation, which limits its use as an express method.

In this paper, the studies of NiCr2O4 polycrystalline powder samples with spinel
structure are presented. We show that the atmosphere in a furnace chamber in the course
of a conventional high-temperature solid-state synthesis affects notably the resulting com-
position of an output product. We analyze the output phase composition as well as the
elemental composition of the spinel fraction, its magnetic properties, and critical tempera-
tures of the spin and orbital orderings. It will be shown that all three critical temperatures
TOO, TN and Ts vary with changing the synthesis atmosphere. We suggest that the value of
the Nèel temperature can serve a criterion for a departure of a nickel chromite spinel from
the nominal NiCr2O4.

2. Sample Preparation and Experimental Details

A series of seven polycrystalline NiCr2O4 samples (Table 1) was synthesized by the
high-temperature solid-state reaction procedure using the nickel (II) oxide NiO (99.95%
from Lanhit Ltd., Moscow, Russia) and chromium (III) oxide Cr2O3 (99.5% from Alfa Aesar,
Haverhill, MA, USA). The reagents were dried at the temperature of 250 ◦C for 12 h in
the air, mixed in a target ratio (in the majority of cases, stoichiometric), and thoroughly
ground in an agate mortar for 3 h. The synthesis was performed in the vertical tube furnace
(GSL1700X, MTI, Richmond, VA, USA) with the mixture kept in an alumina crucible.
Several syntheses were carried out with various atmospheres in the furnace chamber—in
the air (samples I and II), in an argon flow (sample III), in a steady mixture of 90% of Ar and
10% of air (sample IV) or in the steady nitrogen (samples V–VII). In a case of an argon or
nitrogen atmosphere, the chamber was evacuated to 10−2 mbar and purged with the pure
Ar/N2 gas (99.9998%) several times. Then the synthesis took place in either a weak flow of
argon (~0.01 L/min) or a sealed chamber with a slight overpressure (~0.02–0.03 bar) of Ar,
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Ar/air mixture or N2-gas at a temperature of 1200 ◦C or 1300 ◦C for 24 h. The synthesis
was supposed to follow the reaction of

NiO + Cr2O3 → NiCr2O4 (1)

Table 1. A list of the NiCr2O4 powder samples obtained by the solid-state synthesis procedure,
conditions of the synthesis, products of the reaction according to XRD data, and temperature of the
orbital ordering TOO.

Sample Atmosphere
Synthesis

Temperature,
Deg. C

Molar Ratio
Cr2O3/NiO

in Initial
Mixture

Products TOO, K

I Air 1200 1:1 spinel (92%),
Cr2O3 (8%) <295

II Air 1200 1:1.1 spinel (99.8%),
Cr2O3 (0.2%) <295

III Ar flow 1200 1:1
spinel (65%),
Cr2O3 (8%),

Ni (27%)
>295

IV Air (10%)+ Ar
(90%) closed 1200 1:1 spinel (99.3%),

Cr2O3 (~0.7%) <295

V N2 closed 1200 1:1
spinel (67%),
Cr2O3 (22%),
NiO (11%)

>295

VI N2 closed 1300 1:1 spinel (99.6%),
Cr2O3 (0.4%) 313

VII N2 closed 1300 1:1 spinel (99.6%),
Cr2O3 (0.4%) >295

Note that the synthesis in a nitrogen atmosphere demanded an elevated temperature
of 1300 ◦C (samples VII and VIII) as its performance at 1200 ◦C left a significant part of an
initial mixture unreacted (sample VI).

The resulting product in all cases was examined for a formation of the desired phase
as well as the impurity phases with the powder XRD analysi. XRD measurements were
carried out with the Bruker D8 Advance diffractometer (Bruker AXS GmbH, Karlsruhe,
Federal Republic of Germany) equipped with the Cu-Kα source. Due to imperfect spectral
filtering of the X-rays, each diffraction maximum has a doublet structure originating from
the Kα1 and Kα2 components. Prior to measurements, samples were carefully ground in
an agate mortar to a fine powder state. The temperature of a sample was stabilized with
the nitrogen vapor flow system (Anton Paar, Graz, Austria).

The morphology of the obtained samples was studied with scanning electron mi-
croscopy (SEM). The images were taken with the Merlin (Carl Zeiss, Oberkochen, Federal
Republic of Germany) high-resolution self-emission microscope at a low acceleration volt-
age of 5 kV in the secondary electron detection mode. A sample was dispersed over a carbon
tape and covered with 10 nm of AuPd 80/20 alloy using the Q150T ES (Quorum Tech-
nologies, Lewes, UK) sample preparation system. Elemental analysis was performed by
means of energy-dispersive spectrometry (EDX) with the X-Max setup (Oxford Instruments,
Abingdon-on-Thames, UK) combined with SEM, at an accelerating voltage of 20 kV.

Magnetization measurements of the samples were performed with vibrating sample
magnetometry (VSM) option of the Physical Property Measurement System PPMS-9 (Quan-
tum Design, San Diego, CA, USA) in a temperature range of 5–300 K and the magnetic
fields within ± 9 T. Temperature dependences of the susceptibility were studied under an
applied field of 10 mT.
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Further, the results for the four characteristic representatives of the series, namely,
samples I, II, III, and VI, will be presented and discussed.

3. X-ray Diffraction Analysis

Powder XRD patterns of the synthesized NiCr2O4 samples I, II, III, and VI at room
temperature (RT) are presented in Figure 1. Diffractograms of samples I and II produced
in the air reveal an occurrence of two crystalline phases—a dominant cubic-symmetry
spinel and a residual α-Cr2O3. For sample I, the phase’s contents were 92% and 8%, and
for sample II, these were 99.8% and 0.2%, respectively. A modification of the NiO/Cr2O3
mixture composition from stoichiometric (see Table 1) by an excessive 10 mol.% of NiO was
done intentionally to compensate for an assumed loss of NiO in the course of a synthesis.
This trick has indeed led to essentially a single-phase spinel-structure product. However,
the masses of an initial NiO/Cr2O3 mixture and of a product were identical indicating no
loss of NiO. It means that nickel ions somehow substitute partially for Cr3+-ions in the
B-sites of the spinel.
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the (440) maximum of the cubic spinel phase (see text). 

Figure 1. Powder XRD patterns of samples I (a), II (b), III (c), and VI (d) measured at T = 295 K.
Vertical tick patterns represent Bragg peak positions of the NiCr2O4 (green), Cr2O3 (blue), and nickel
(purple) constituents. Insets show the XRD pattern in the 2θ angle range corresponding to the (440)
maximum of the cubic spinel phase (see text).

The diffractogram of sample III (Figure 1c) synthesized in a flow of argon, at room
temperature, reveals four crystalline phases: two spinel phases—one with the cubic and
another with the tetragonal symmetry (in total 65%), metallic nickel (27%), and a residue of
α-Cr2O3 (8%). Evidently, an exposure of NiO to the high temperature of 1200 ◦C results in
a chemical reduction of nickel to the metallic state that cannot participate in the reaction
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with Cr2O3. A presence of the tetragonal-structure spinel fraction is expected as at ~ 310 K
an orbital ordering in the Ni-ion sublattice sets in.

Sample VI was synthesized with the oven chamber filled with nitrogen without its
flow. Its diffractogram contains the patterns of three crystalline phases: two spinel-structure
ones similar to sample III (in total 99.5%), and a vanishingly small amount of α-Cr2O3
(0.5%).

Temperature transformation of the XRD pattern of sample VI was studied in a limited
2θ-range from 61 to 66 degrees (Figure 2). In this range, the (440) diffraction maximum of
the cubic NiCr2O4 phase is located, which splits into the (224) and (400) peaks below the
structural phase transition temperature. The symmetry lowering is due to the cooperative
Jahn-Teller effect within the A-ion (Ni2+) sublattice. At T = 323 K and above, a single
(404) diffraction maximum is observed which corresponds to the cubic Fd3m phase of
NiCr2O4. On cooling (Figure 2), new components start to manifest themselves on the
left and right wings of the cubic-phase (404) peak while the last gradually vanishes. The
development of the diffraction pattern indicates a coexistence of the cubic and tetragonal
phases in the temperature range of 288–313 K; below 288 K, the sample reveals only
the tetragonal I41/amd phase. Such an observation shows that the actual sample is not
perfectly homogeneous and is characterized by a distribution of the critical orbital ordering
temperatures.
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Figure 2. (a) Temperature dependence XRD pattern of the powder NiCr2O4 sample VI in the course of
the structural phase transition associated with an orbital ordering within the Ni2+ A-site sublattice, (b)
Temperature dependence of the cubic- (squares) and tetragonal-symmetry (triangles) phase fractions.

The patterns in the 2θ-range of 61–66 degrees measured at T = 295 K for samples I,
II, III, and VI are shown in the insets to panels (a)–(d) of Figure 1, respectively. Clearly,
samples I and II are found fully within the whole volume in the cubic phase while samples
III and VI represent the mixtures of the cubic and tetragonal-symmetry phases. Thus, we
can conclude that samples I and II have TOO < 295 K. This indicates that samples I and II,
on one hand, and III and VI, on the other, are different.

4. Morphology and Chemical Composition

In Figure 3a–d, the SEM images of the NiCr2O4 powder samples I, II, III, and VI are
presented. Samples I and II synthesized in the air evidently have larger mean grain size than
samples III and VI obtained in a flow of argon and in a steady N2 atmosphere, respectively.
Most of the grains in the obtained powders have a characteristic for spinels octahedron-like
shape. Grain images for samples I, II, and VI are very clear and high-contrast, however, an
image of sample III is notably worse. This is a consequence of a multi-phase composition
of sample III with comparable fractions of a spinel, Cr2O3, and metallic nickel (Table 1).
Definitely, the grains of sample III have a developed surface and probably are covered with
the impurity phases.



Magnetochemistry 2023, 9, 13 6 of 11

Magnetochemistry 2023, 9, x FOR PEER REVIEW 6 of 11 
 

 

octahedron-like shape. Grain images for samples I, II, and VI are very clear and high-

contrast, however, an image of sample III is notably worse. This is a consequence of a 

multi-phase composition of sample III with comparable fractions of a spinel, Cr2O3, and 

metallic nickel (Table 1). Definitely, the grains of sample III have a developed surface and 

probably are covered with the impurity phases. 

A typical EDX spectrum (sample II) of the obtained materials is shown in Figure 3e. 

We have extracted from these spectra a ratio of Ni:Cr concentrations (Table 2). For sam-

ples, I, II, and VI, these ratios are well-defined regardless of a chosen grain/spot. The con-

centration of chromium in all three samples is less than twice the concentration of nickel. 

The Ni:Cr ratio of sample III varies in a broad range from 1:2.2 to 1:9 depending on a spot. 

This shows that the Cr2O3 dominates at the surface of the spinel grains in this multi-phase 

sample. The knowledge of the Ni:Cr ratio allows us to calculate the substitution degree x 

of the Cr3+-sites by nickel-ions assuming the composition of the spinel phase as Ni(Cr1-

xNix)2O4. 

 

Figure 3. Scanning electron microscopy images of NiCr2O4 powder samples I (a), II (b), III (c), and 

VI (d). Energy dispersion spectrum of sample II (e). 

Table 2. Cationic composition Ni:Cr and a substitution degree x of the Cr3+ sites by nickel ions in 

Ni(Cr1-xNix)2O4 and magnetic critical temperatures TN and Ts determined from VSM data. 

Sample Ni:Cr Ratio x, at.% TN, K TS, K 

I 1:1.98 0.3 68.5 25.7 

II 1:1.85 2.6 73.1 22.3 

III 1:(2.18 to 9) 0 * 63.0 27.2 

VI 1:1.97 0.5 67.7 25.8 

*an assumed value, see the text. 

Figure 3. Scanning electron microscopy images of NiCr2O4 powder samples I (a), II (b), III (c), and
VI (d). Energy dispersion spectrum of sample II (e).

A typical EDX spectrum (sample II) of the obtained materials is shown in Figure 3e. We
have extracted from these spectra a ratio of Ni:Cr concentrations (Table 2). For samples, I, II,
and VI, these ratios are well-defined regardless of a chosen grain/spot. The concentration
of chromium in all three samples is less than twice the concentration of nickel. The Ni:Cr
ratio of sample III varies in a broad range from 1:2.2 to 1:9 depending on a spot. This shows
that the Cr2O3 dominates at the surface of the spinel grains in this multi-phase sample.
The knowledge of the Ni:Cr ratio allows us to calculate the substitution degree x of the
Cr3+-sites by nickel-ions assuming the composition of the spinel phase as Ni(Cr1-xNix)2O4.

Table 2. Cationic composition Ni:Cr and a substitution degree x of the Cr3+ sites by nickel ions in
Ni(Cr1-xNix)2O4 and magnetic critical temperatures TN and Ts determined from VSM data.

Sample Ni:Cr Ratio x, at.% TN, K TS, K

I 1:1.98 0.3 68.5 25.7

II 1:1.85 2.6 73.1 22.3

III 1:(2.18 to 9) 0 * 63.0 27.2

VI 1:1.97 0.5 67.7 25.8
* an assumed value, see the text.

5. Magnetic Properties of NiCr2O4 Powder Samples

Figure 4 shows the temperature dependences of the magnetization of samples I, II,
III, and VI measured on cooling in the field of 10 mT. For sample III, ferromagnetic nickel
particles have been extracted from the powder with the permanent NdFeB magnet prior
to measurements. M(T) curves of every sample reveal two anomalies. The first anomaly



Magnetochemistry 2023, 9, 13 7 of 11

corresponds to the transition from the paramagnetic to the ferrimagnetic state at TN. Nèel
temperature for samples I, II, III, and VI has the value of 68.5 K, 73.1 K, 63.0 K, and
67.7 K, respectively (Table 2). On further cooling, a rise of magnetization is observed at
Ts associated with the antiferromagnetic counterpart of the magnetic structure due to
a long-range ordering in the transverse spin arrangement [23–27]. This anomaly takes
place at 25.7 K, 22.3 K, 27.2 K, and 25.8 K for samples I, II, III, and VI, respectively. Note
an obvious correlation between the trends for two magnetic transitions: the lower the
Nèel temperature the higher the Ts. Thus, we find that the magnetic ordering in the four
representatives of our series that differ in the synthesis conditions takes place at different
temperatures again indicating some differences in these samples.
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Figure 4. Temperature dependences of the magnetization of samples I, II, III, and VI of the NiCr2O4

powders measured with an applied magnetic field of 10 mT on cooling.

Magnetization curves were also studied to compare the coercivities and saturation
magnetizations of NiCr2O4 powders. Figure 5 shows hysteresis loops measured at 40 K
(Ts < T < TN) and at 10 K (T < Ts) for samples II, III, and VI. For each sample, the coercive
field value is ~0.25 T at 40 K and ~0.54 T at 10 K. The loops of all samples are near identical,
only the saturated magnetic moment for sample II is ~ 10% less than that of samples III and
VI. Moreover, a non-monotonous variation of the magnetization is found for sample II on
changing the sign of an applied field revealing the presence of another magnetic fraction.
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6. Discussion

Four representatives of a series of nominal NiCr2O4 powders with the spinel structure
that were produced by the high-temperature solid-state synthesis from the same NiO
and Cr2O3 oxides differ in values of three critical temperatures characteristic for the target
compound. What can serve as a source for these differences? A clue, in our opinion, lies in (i)
a need for an extra 10 mol.% of NiO to obtain a phase-pure spinel-structure product (sample
II, Table 1) and (ii) a non-stoichiometric ratio of Cr:Ni < 2 for samples I, II, and VI (Table 2).
This clearly indicates a partial substitution of the octahedral Cr3+-sites by nickel ions.

To our knowledge, no cationic disorder was reported for the NiCr2O4 compound.
Such substitution could happen if NiO contains Ni3+ ions. An easy transformation of NiO
to Ni2O3 is well known and manifests itself in the color change of naturally green NiO
to black “nickel oxide”. Indeed, the starting NiO that we used for the synthesis had a
greyish-greenish color. Though the XRD test had not revealed any crystalline constituent
apart from the cubic NiO in it, X-ray photoemission indicates only Ni3+ ions at the surface
of the particles. Thus, at least a presence of Ni3+ ions has been established in the NiO
reagent. On the other hand, oxidation of NiO to Ni2O3 is not inhibited if the synthesis is
performed in the air, and the common high-temperature solid-state route in the air may
cause a departure of the nominal NiCr2O4 composition. The substitution of the Cr3+ sites
by Ni3+ ions looks favorable due to identical charges and similar ionic radii of these ions
(0.615 Å for Cr3+ and 0.600 Å for Ni3+ in six-fold coordination [34]).

The electronic configuration of Ni3+ ions (3d8, t5
2ge2

g in the cubic-symmetry crystal
field) is different from that of the substituted Cr3+ ions (3d8, t3

2g). Anyway, the incorporation
of the Ni3+ ions to the Cr3+ sites creates the local lattice distortions and therefore can easily
affect the temperature of the orbital ordering, most probably decreasing its value. The
pyrochlore-like structure of the B-site sublattice is the subject to magnetic frustration [35],
which undoubtedly is a part of the story of why the temperature of magnetic ordering in
NiCr2O4 is as low as ~65 K. A difference in electronic configurations between the Cr3+ and
Ni3+ ions disturbs the fine balance of exchange interactions within the B-sublattice which
will lead to an increase of the long-range spin ordering temperature. This indeed is the case
in our study: the lower the value of the cationic substitution degree x, the lower the Nèel
temperature (Table 2, Figure 6). It is not so easy to discuss in simple terms the trend for the
transverse antiferromagnetic transition temperature Ts. As a matter of fact, the lower the x
value, the higher the Ts (Table 2, Figure 6).
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For sample III, which was obtained in a flow of argon, a significant part of the product
was the metallic nickel (Table 1), and we expect a minimum of Ni3+ ions in its spinel fraction.
This sample reveals the lowest Nèel temperature among our series and, probably, it is the
lowest reported for this compound in the literature. Therefore, we suggest that the value of
TN = 63.0 K is most close to the intrinsic characteristic of the true NiCr2O4. We also propose
that the Nèel temperature can serve as an easily accessible measure of departure of the
composition of a compound obtained by whatever synthesis procedure from its nominal
NiCr2O4.

7. Conclusions

To summarize, a series of seven NiCr2O4 powder samples have been produced fol-
lowing a conventional high-temperature solid-state synthesis route from the same NiO and
Cr2O3 compounds. The influence of synthesis conditions, in particular the atmosphere
in an oven chamber, on the phase composition of a product and magnetic and structural
properties of the spinel fraction was studied. We find that all three critical temperatures
corresponding to the orbital ordering (TOO), onsets of the ferrimagnetic state (TN), and
transverse spin arrangement (Ts) vary with the changing atmosphere. We propose that
Ni3+ ions that either occur in initial NiO or form during synthesis substitute for the Cr3+

ions in the octahedral B-sites of the spinel. Such substitution disturbs crystal lattice and
dilutes the pyrochlore-like B-site magnetic sublattice and causes thus the shifts of the critical
temperatures. The sample produced under an inert flowing Ar-gas atmosphere reveals the
lowest Nèel temperature TN = 63.0 K and the highest Ts = 27.2 K. In our opinion, the value
of the Nèel temperature can serve as a measure of a departure of a sample composition from
the nominal NiCr2O4. A study of the structural phase transition associated with an orbital
ordering in the A-site Ni2+-ion sublattice revealed the coexistence of cubic and tetragonal
symmetry phases in the temperature range of 288–313 K, indicating a distribution of the
orbital ordering temperature over a sample volume.
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