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Abstract: In recent years, magnetic nanoparticles (MNPs) have been widely used in many fields due
to their advantageous properties, such as biocompatibility, easy modifiability, and high chemical
stability. One of these areas is the detection of cancer. It is essential to use existing biomarkers, such as
microRNAs (miRNAs), for the early diagnosis of this disease. miRNAs are challenging to distinguish
and detect in biological samples because they are small, circulating molecules. It is necessary to use
more sensitive and feature-rich systems. Thanks to their large surface areas and magnetic moments,
MNPs allow easy separation of miRNA at low concentrations from complex samples (urine and
blood) and rapid and specific detection in biosensing systems. Here, we discussed the synthesis and
characterization methods of MNPs, their stabilization, and MNP-based biosensors in terms of miRNA
detection. We considered the challenges and prospects of these biosensor systems in evaluating the
development stages, sensitivity, and selectivity.

Keywords: magnetic nanoparticles (MNPs); magnetic sensing; biosensors; cancer biomarker; microRNA
(miRNA)

1. Introduction

Magnetic nanoparticles (MNPs) can be manipulated by a magnetic field [1]. They can
generate responses in magnetism, and their small size is related to this response. They
have many superior properties to large-scale materials with the same features because
they have the chemical, mechanical, and magnetic capabilities that both nanomaterials and
magnetism offer. These capabilities, which vary depending on their properties, have paved
the way for them to attract attention and be used for various purposes in many fields [2].

MNPs can help isolate biomolecules that are difficult to separate from biological materi-
als due to their complex matrices. They can also be used in water purification by increasing
the sensitivity of existing systems, enabling the development of diagnostic support systems,
and even improving and targeting treatments [3]. Especially in biomedical processes, they
can immobilize biomolecules such as antibodies, proteins, enzymes, and DNA by binding
to them, enabling their separation from complex mixtures with high efficiency. In this
way, they can differentiate and determine biomolecules that can potentially be biomarkers
but not easily detected in various biological samples [1,4]. One of these biomolecules is
microRNA (miRNA).

After the Human Genome Project, findings on the non-coding part of the genome and
the acceleration of studies in this field led to the discovery of miRNAs in 1993. miRNAs
are small non-coding RNAs [5,6]. The evidence of their involvement in physiological and
pathological processes is increasing day by day. Hence, their potential as biomarkers of
various diseases indicates that we can also evaluate them as diagnostic molecules [7,8].
The main challenge is getting standardized and pure miRNA from biological samples,
which could be obtained by non-invasive or minimally invasive methods [1,9]. The ability
of MNPs to bind these nucleic acid fragments and release them in a reusable form can
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be used for this purpose. The content of miRNA in these biological samples is relatively
low [3,10,11]. It is possible to use the superior capabilities of MNPs to overcome the
difficulties in isolating total miRNA, which is scarce anyway, from the existing sample
and to detect miRNA with biomarker potential from this total miRNA. There are methods
such as quantitative real-time polymerase chain reaction (qRT-PCR), microarray, northern
blot, and modified invader test that we still use to detect miRNA today [12]. Besides these
methods, biosensing systems are also being developed to detect specific miRNAs. MNPs
can also be used in biosensor systems developed for miRNA detection. MNPs, along with
other electrochemical, optical, plasmonic, and fluorescent sensing technologies, enable the
development of systems for miRNA detection. Their adaptation to these systems is also
related to the simple functionalization properties of MNPs. MNP-based sensing systems
for miRNA detection are prevalent [1,4,13].

In this review, we have attempted to present the current literature from the last
five years on magnetic nanoparticles, especially for detecting miRNAs. In addition to
the properties and applications of magnetic nanoparticles, the biological significance of
miRNAs and the applications mentioned above of magnetic nanoparticles in biosensing
systems for miRNA detection were mentioned.

2. MNPs

One of the most critical nanomaterials is MNPs. They can be prepared on a large scale
between 1 and 100 nm from pure metals such as iron, cobalt, nickel, or their metal oxides,
as well as from mixtures of metals and polymers [14]. They consist of two parts: the core
and the shell. The magnetic properties are associated with the core and shell, which is
active in biomolecule recognition, binding, and catalytic processes [15]. Small particle sizes
and a large surface area-to-volume ratio are the characteristics of MNPs. They are easy to
synthesize and can be functionalized as desired during the production of the shell parts.

The motion of particles with mass and electric charge causes magnetism. MNPs exhibit
superparamagnetic properties at high temperatures. Superparamagnetism occurs when
the net magnetic dipoles are zero. A dipole is induced when an electromagnetic field is
applied above a specific temperature. This situation causes the magnetic moments to align.
However, when this field is removed, the magnetic moments become random again. The
crystallinity and size of the structures, the type of the material, and the number of spins
determine the superparamagnetism [16,17]. In addition, MNPs have a magneto-caloric
effect defined as an adiabatic temperature change caused by the change in entropy of the
material under a magnetic field [18]. Thanks to these exclusive properties, MNPs have
a wide range of applications.

2.1. Synthesis

For MNP synthesis, different methods are used for the desired properties, such as size,
morphological structure, compatibility, and stability. There are three main routes: chemical,
physical and biological synthesis, and each method has advantages and disadvantages [19].
The methods used for MNP synthesis are summarized in Table 1.

Table 1. There are some studies about the methods used for MNP synthesis.

Target MNP Method Advantage Disadvantage Ref.

Carbon-encapsulated
MNP Ball milling

• Easy method
• Suitable for large-scale

production

• High energy
• Amorphous carbon

encapsulation
[20]

ε-Fe2O3 nanoparticles Ball milling
• Easy method
• Suitable for large-scale

production
• Extend time for process [21]

MNP Laser ablation
• High purity
• Economic
• Short reaction time

• Wide-range particles
• Device requirement [22]
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Table 1. Cont.

Target MNP Method Advantage Disadvantage Ref.

Fe3O4 nanoparticle Co-precipitation • Easy method
• Short reaction time

• Depending on reaction
condition [23]

Zinc- and
manganese-co-doped

magnetic nanoparticles
Co-precipitation

• High reproducibility
• Simple reaction

condition

• Requirement of
stabilization agents

• Large particle size
distribution

[24]

FeCO3 Thermal decomposition • Simple, economical,
environmental-friendly

• Dependence on reaction
conditions [25]

CoFe2O4 Thermal decomposition • Simple method
• Dependence on reaction

conditions [26]

Fe3O4 Hydrothermal method
• Economic
• Simple
• Scalable method

• Dependence on reaction
conditions [27]

Iron oxide nanoparticle Hydrothermal method
and biological synthesis

• Low-costly
• Eco-friendly • Long procedure [28]

Silica-Coated Fe3O4
Nanoparticles Microemulsion • Controllable size

nanoparticles • Using solvent [29]

Fe3O4 Sol-gel
• Well-crystallized, pure,

spherical, and
monodispersed MNP

• Dependence on reaction
condition [30]

Mg0.5Zn0.5FeMnO4
magnetic nanoparticles Green Sol-gel • Eco-friendly

• Long procedure
• High temperature [31]

The two main approaches to physical synthesis are bottom-up and top-down. In bottom-
up synthesis, large bulky materials are reduced to nanometer size, while in top-down synthesis,
the atoms that form MNPs are combined into a nucleus and grow. The ball milling process is
an example of top-down synthesis. Ball milling, developed by John Benjamin, is a mechanical
synthesis method based on the dislocation of large materials by the impact of a ball and the
fusion of the resulting particles to obtain magnetic particles in the nanostructure [32]. The pro-
duction of carbon-coated MNP was achieved by ball milling in the study by Zhang et al. [20].
MNP was synthesized from Fe(NO3)3 and dopamine in stainless steel grinding tanks. The
method provides MNP synthesis with an average diameter of ten nanometers and is helpful
for industrial-scale production. However, it is not economical due to the high temperature
and long period of 6 h required for production. Ball milling was used to synthesize ε-Fe2O3
nanoparticles [21]. The particles were obtained after milling at room temperature for 5 h,
drying under pressure, and subsequent annealing for 4 h. ε-Fe2O3 with an average size of
15 nm was synthesized after this long processing time. The main drawback of the ball milling
method is the large-scale particle size of MNP and contamination [33].

The laser ablation method is an example of a physical synthesis method. The solid
raw material used for MNP synthesis is irradiated by laser light. Compared to ball milling,
the size and shape of the particles can be controlled. As a disadvantage of the method, it
is reported that, when the laser is used for a long time, the path of the laser is blocked by
particles [34]. In the study by Svetlichni et al. [35], MNP was synthesized using two different
laser ablation methods: water-pulse laser ablation and air-pulse laser ablation. It was found
that the surface composition and electrokinetic properties were different. While it is said
that the particles were spherical and dispersed in the range of 2–80 nm in the water-based
method, particles with a larger scale of up to 2–120 nm and even 1 µm were obtained in the
air-based method. In the other study [22], the laser ablation method synthesized MNPs
from samarium-cobalt as a target material. The obtained MNPs had an evaluation of their
antibacterial effect. Compared to the ball milling method, although it is possible to obtain
MNP in a short time (30 min), MNPs were obtained in a wide range of 10–60 nm.
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Biological synthesis has an advantage in the field of application due to its biocompat-
ible properties [36]. Plants and living organisms (bacteria, viruses, fungi, etc.) are used
for the synthesis of MNP (Figure 1). The mechanism of this method is not precise. The
biological synthesis method is cleaner and environmentally friendly compared to chemical
synthesis methods. It can be explained as chemical synthesis methods use toxic substances,
while biological synthesis uses enzymes present in living organisms. This method obtains
the raw materials for MNP synthesis from living organisms. Therefore, it is more challeng-
ing to obtain MNP with this method. It is necessary to clarify the mechanism of synthesis to
control the size and shape. Moreover, it is necessary to overcome the problem of yield [37].
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The chemical synthesis methods are based on bottom-up approaches. The preferred
methods are co-precipitation, thermal decomposition, hydrothermal synthesis, micro-
emulsion, and the sol-gel method [19]. Co-precipitation is a method based on mixing salt
solutions of metal ions at room or high temperature, followed by the slow addition of
a precipitant such as ammonia, hydroxide, or sodium carbonate solution to the solution to
obtain MNP [38]. For example, the co-precipitation synthesis of Fe3O4 was carried out at
room temperature using different bases (NaOH, KOH, or (C2H5)4NOH) [39]. The reaction
mechanism is explained as follows:

2FeCl3 + FeCl2 + 8BOH→ Fe3O4 (s) + 4H2O + 8BCl, (BOH: different bases)

The synthesis method based on the mechanism of nucleation and growth is easy to
implement. The disadvantage of the co-precipitation method is the difficulty in controlling
the shape of the MNP. The size and composition of the MNP can be controlled by adjusting
parameters such as pH, salt concentration, and temperature of the reaction medium [40].
In a study conducted to investigate the effect of differentiation of reaction conditions [23],
MNP was synthesized by the co-precipitation method under two different conditions. The
synthesis was done by changing the reaction temperature (25 and 80 ◦C) with or without
adding nitrogen gas. While the size of MNP (MNP1) was 86.01 nm at 25 ◦C and N2 gas
environment, the size of MNP (MNP2) was 74.14 nm as a result of the reaction carried out
at 80 ◦C without N2 gas. It was also found that MNP2 was more stable than MNP1. The
large particle size distribution and the difficulty of morphology control in co-precipitation
synthesis were mentioned in another study [24]. For this reason, it is mentioned that the
use of stabilizers is required as well as the synthesis of 10–15 nm Fe3O4 using polyethylene
glycol (PEG), a cheap and biocompatible polymer.
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Compared to co-precipitation, thermal decomposition, which is one of the most
efficient chemical syntheses, allows the synthesis of monodisperse MNP with narrow
size distribution and high crystallinity at higher temperatures [41]. The method uses
organometallic precursors decomposed into organic surfactants at high temperatures. In
addition, stabilizers such as fatty acid and oleic acid are used, which allow controlling the
size and shape of MNP by slowing down the decomposition phase. The thermal decompo-
sition of Fe3O4 nanocrystals at 245 ◦C in 2-pyrrolidone was discussed by Li et al. [42]. The
formation mechanism is explained:

2− pyrroIidon ∆→ CO + Azetidine

FeCl3. 6H2O

∆
Azetidine
→ FeOOH + 3HCl + 4H2O

6FeOOH + CO ∆→ 2Fe3O4 + CO + 3H2

One disadvantage of the method is that the range of application of the obtained MNP
is limited due to the use of organic solvents [43]. Moreover, the shape and size of MNP can
be controlled by many parameters, such as the reaction time and the type of solvent and
surfactant for the thermal decomposition method [44]. Wang et al. [25] studied the effect of
reaction conditions on particle size through thermal decomposition. The size and shape of
FeCO3 were studied concerning the amount of oleic acid used and the reaction temperature.
As the temperature increased, the dissolution of nuclei in the reaction medium decreased,
and fewer were formed. The nanoparticles were more prominent due to the fact that there
was more monomer in the medium. More stable metal complexes were formed when the
amount of oleic acid increased. In this case, the activity of the intermediate decreased, and
the nucleation rate and number decreased. In another thermal decomposition study [26],
the structures of the particles obtained by increasing the synthesis temperature from 160 ◦C
to 220 ◦C in the synthesis of cobalt ferrite nanoparticles are converted from rod shape to
hexagonal shape. Furthermore, when the amount of ethylene glycol used as a surfactant is
increased, a transformation from a hexagonal to an octahedral structure was observed.

The hydrolysis and oxidation reactions are carried out in high-pressure reactors or
autoclaves in the hydrothermal method, which is another chemical synthesis method [45,46].
In this method, using aqueous or non-aqueous solutions, crystalline MNPs are formed,
which are strongly dependent on the reaction time, the amount of pressure, and the
temperature. Fe3O4 rod-shaped nanocrystals were synthesized using the hydrothermal
synthesis method by Xi et al. [47]. The related reaction formation mechanism is explained
as follows:

Fe2+ + 2OH− → Fe(OH)2
1
2 H2O + Fe(OH)2 + 12 NO−3 → Fe(OH)3 + 12NO2

Fe(OH)2 + 2 Fe(OH)3 → Fe3O4 + 4H2O

3Fe(OH)2 + NO−3 → Fe2O4 + NO−2 + 3 H2O

The advantage of this method can be sorted in that during the development of mag-
netic properties under high temperatures, evaporation is reduced for occurring under
pressure, and particles with high crystallinity and similar size are obtained [48]. Hydrother-
mal synthesis is used as a simple and efficient method for Fe3O4 production [27]. The
influence of the reaction conditions on the morphological structure is discussed. As a result
of the reaction carried out at different temperatures, different structures such as cubes,
octahedral structures, and hemispherical structures were obtained. The cytotoxicity of the
obtained MNPs was studied, and it was found that the cytotoxicity changes depending on
the morphological structure. Moreover, the need for unique materials for high pressure and
high temperature can be considered a disadvantage. In recent years, with the definition
of biological synthesis as eco-friendly, hydrothermal synthesis and biological synthesis
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have been discussed in a study by Tovar et al. [28]. A hydrothermal MNP synthesis was
performed with Moringa oleifera leaves and FeCl3·6H2O and the obtained MNPs were used
to examine the growth parameters of the corn plant. However, it cannot be said to be
economical and simple because the leaves are dried for 12 h as pretreatment and then
autoclaved at 250 ◦C for 15 h during hydrothermal synthesis.

A thermodynamically stable and clear mixture of two immiscible liquids (water and
oil) is formed in the microemulsion method. Here, water and oil stabilized the surface
film property of the surfactants. The final size of MNPs depends on the concentration of
the surfactant [49]. A solvent is required to extract the obtained MNPs. The disadvantage
of this method is that it is not suitable for large-scale production due to the low yield of
MNPs and the use of solvents [50]. Fe3O4 nanoparticles were synthesized by the water-in-
oil microemulsion method [29]. The antimicrobial effect of MNPs coated with silica and
controllable in size was investigated. However, a large amount of butan-1-ol/n-heptane
mixture is noticeable. This situation can cause a problem for large industrial amounts of
MNP production due to the requirement of butan-1-ol/n-heptane mixture.

The sol-gel method is composed of two reactions: hydrolysis and condensation. This
method obtains a colloidal solution by dissolving the metal salt in water or solvents [51].
The high temperature in the reaction medium enhances the interaction between the parti-
cles. This leads to the removal of the solvents from the medium. MNPs form a gel after
complete drying [52]. The disadvantage is that the reaction is affected by the temperature,
pH, salt content, and solvent, while the advantage of the method is that the structure and
size distribution of MNPs are simple [53]. For example, the effect of temperature changes
on magnetic behavior was studied [30]. Pure, good crystal structure and one-dimensional
Fe3O4 were synthesized, and the magnetic properties decreased with increasing temper-
ature. This is an indication that the synthesis conditions should be adjusted depending
on the application range of MNP. While MNP with high magnetic properties is suitable
for removing heavy metals and dyes, its decreasing magnetic properties have been found
unsuitable for this use. In recent years, the green sol-gel method has been used to avoid
solvents in sol-gel synthesis. In one study [31], Mg0.5Zn0.5FeMnO4 MNP, which can be
used as a catalyst for the decolorization of RB21 dye, was prepared using sol-gel. The use
of solvents was avoided by using tragacanth gum as a natural gel. Although the use of
solvents can be avoided, the method is not economical due to the high temperature (4 h,
600 ◦C) requirements.

In summary, in chemical methods, it is possible to adjust the size and shape and
to obtain nanoscale magnetic particles by adjusting the reaction conditions compared to
physical methods. Although the synthesis is time-consuming and the mechanism is not
yet fully elucidated compared to physical and chemical synthesis, biological synthesis
is promising due to its eco-friendly, reproducibility, and high efficiency. It cannot be
concluded that there is only one correct method. Particle size, shape, yield, and cost are
some of the parameters that should be considered when selecting the appropriate method.

2.2. Coating/Stabilization and Functionalization Strategies

As mentioned above, MNPs can be synthesized from pure metals such as iron, nickel,
etc., and their alloys by various synthesis methods. One of the main challenges of MNPs
synthesis is pure metals or their alloys’ instability to oxidation. In addition, decreased
diameter is related to this instability. The stabilization of MNP is essential for the develop-
ment of strategies. The basis of these strategies is to consider the synthesized MNPs as core
and to provide them with a shell to protect them from environmental factors [45,50].

Generally, suitable surfactants, polymers, inorganic metals, non-metals or oxides, or lipid
structures are used as coating processes. Surfactants and polymers are some of the most
common stabilizers used to prevent the aggregation of MNPs by increasing electrostatic repul-
sion. They are chemically or physically placed as a layer over the MNP cores to balance the
magnetic attraction and van Der Waals forces between the particles [54]. Commonly, surface
stabilizers with carboxylic acid, phosphate, sulfate groups, and polymer-based stabilizers
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(PEG, polyvinyl alcohol (PVA), polyacrylic acid (PAA), starch, chitosan, etc.) can be used [55].
Here are some parameters to consider when stabilizing with surfactants and polymers. The
crystal structure, molecular weight, and conformation of MNPs can be adjusted with the help
of the monomer ratio structure in a polymer coating. The metallic magnetic nanoparticles
coated with polymers or surfactants are unstable in air and in acidic solutions. Among their
disadvantages is that the polymer coating is not temperature stable [56].

The core of MNP can be coated with various metals such as gold, cobalt, etc. They
are suitable for coating due to their low reactivity and stability in the air. Moreover,
especially in the case of gold, they facilitate the binding of MNPs to thiolate compounds
with different groups (carboxyl, amino, biotin, etc.) due to their natural reactivity towards
-SH groups [57]. One of the shells developed to protect MNP cores is silica. Silica is
hydrophilic, and it facilitates modification. The contact of the core with other groups is
protected by this shell [58]. However, it is not a suitable coating for primary pH conditions
because it is unstable under alkaline conditions. Another coating material is carbon-
based materials, such as graphene, which attracts attention due to its biocompatibility and
stability. Carbon-coated MNPs have been reported to have higher magnetic moments than
oxides [59]. Coating MNPs with lipid structures such as liposomes is one of the stabilization
options, primarily to facilitate their use in application areas such as drug distribution and
imaging [60].

2.3. Characterization

Characterization studies are critical to determining the accuracy of MNP synthesis
and very critical properties, such as size, surface modification, composition, structural
configuration, and magnetism. All characterization techniques of MNP are summarized
in Figure 2.
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Nowadays, transmission electron microscopy (TEM) and scanning electron microscopy
(SEM) are most commonly used to determine the size and surface morphology of MNPs [61].
These techniques can provide information about their shape and size. In particular, the ratio
between the core and shell size of MNPs are critical parameters as they affect the magnetic
properties and behavior. SEM only provides information about the external structure of
the particles, while TEM is a widely used method to study the core structure [62]. Due
to the aggregation tendency of MNPs, sample preparation is critical for TEM and SEM.
These methods are suitable for working with dry samples and are operator-dependent.
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For this reason, these methods are quite open to personal mistakes as a disadvantage.
Secondary methods are used to overcome these disadvantages. High-resolution TEM [63]
and cryogenic TEM [64], which can analyze in aqueous or biological media, are examples.
In addition, dynamic light scattering (DLS) is used for information on size, dispersion,
and surface area [19]. DLS is one of the most popular methods for measuring colloidal
dispersions because it is simple and easy to perform. In this method, the scattered light
waves are measured as a function of a particle’s hydrodynamic radius and Brownian motion.
The measurement provides information on stability, interparticle interactions, aggregation
and surface modification, and size measurement [65]. Zeta potential measurement, based on
the electrostatic repulsion between particles from the charge potential of the particles, is also
performed with DLS to determine particle stability. The parameters for DLS measurement
are the MNP concentration, the solution chosen for particle distribution, and the pH. These
parameters are crucial for an accurate measurement, especially for the measurement of
zeta potential, since the surface charge and the suspended state of the particles are very
important [66]. X-ray diffraction (XRD) can provide information about crystal structure.
It affects the magnetic property of the crystal structure of the atoms in the core structure.
Therefore, it is crucial to know the crystal structure, size, and lattice spacing. This technique,
used for powdered samples, is unsuitable for amorphous materials and particles smaller
than 3 nm because of the wide of obtained peaks [67].

Chemical characterization, such as elemental mapping, is essential for understanding the
interactions of MNPs with each other and the environment. For elemental analysis of MNPs,
UV-Vis spectroscopy, mass spectroscopy (MS), inductively coupled plasma mass spectroscopy
(ICP-MS), atomic absorption spectrophotometry (AAS), and X-ray photoelectron spectroscopy
(XPS) are common techniques. UV-Vis spectroscopy can determine the concentration of
elements contained in MNPs and characterize their various conjugates [68]. However, MS is
more appropriate for analyzing MNPs with lower elemental concentrations. For elemental
analysis of MNPs, ICP-MS and AAS containing more than one element are also used. With
a lower detection limit than AAS, ICP-MS enables the characterization of the elemental with
high selectivity and sensitivity [67]. On the other hand, XPS is one of the common methods
for the chemical analysis of surfaces. In general, it provides information about elemental
composition, the electronic structure of elements, and oxidation. In addition, this method
can be used to analyze the core and shell structure and obtain information about surface
functionality. The advantage of XPS is that the sample is not damaged. The disadvantage is
that a solid sample is needed, making the result difficult to interpret [67].

In addition to XPS, Fourier transform infrared spectroscopy (FT-IR), X-ray absorption
spectroscopy (XAS), thermogravimetric analysis (TGA), and Raman spectroscopy (RS) are
used to characterize the binding structures in MNPs [19]. FT-IR is used to identify the
binding energy, functional groups, and oxidation states of the bound structures. The XAS
method, on the other hand, provides information about the electronic configuration in
addition to the oxidation state [45]. TGA is used to elucidate the formation of surfactants
and polymer structures used in the coating as well as the binding activity on the MNP
surface by providing information about the mass of the particles [69].

Magnetism, the most remarkable property of MNPs, is one of the most critical parameters
for characterization. Vibrating sample magnetometer (VSM) and superconducting quantum
interference device magnetometry (SQUID) measurements are used to determine this fea-
ture [70]. The VSM method is a simple and inexpensive measurement of a magnetic moment
that is voltage-dependent and uses temperature, field, and crystal direction as functions [71].
The SQUID measurement system allows the measurement of magnetism in samples in pow-
der, liquid, gas, thin film, and crystal forms. This method, which is more sensitive than VSM,
provides information about the magnetic properties of the material [66].

In summary, there are many methods for characterization, but more than a single
method is required. Therefore, it is necessary to synthesize MNPs by focusing on their ap-
plications and desired properties and then conduct characterization studies using different
methods simultaneously.
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2.4. Application Area

MNPs are multifunctional and have magnetic and plasmonic properties, and these fea-
tures have given rise to a wide range of applications for MNPs. Some of these applications
of MNPs have been summarized in Figure 3.
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Magnetic resonance imaging (MRI) uses MNPs as contrast agents and allows 3D
imaging of cells or organs. Conventional contrast agents (gadolinium, etc.) have some
problems, such as rapid elimination, low sensitivity, and specificity [72]. They are a potential
candidate instead of contrast agents due to the strong magnetization, easy functionalization,
and biocompatibility of MNPs. In the MR images, the molecules’ relaxation times in the
transverse and longitudinal directions are important; accordingly, tissues and organs
are distinguished. Due to the magnetic moments of MNPs, they shorten this time and
provide brighter and sharper images [73,74]. MNPs are also used in gene therapy with
the magnetofection method. The desired gene is bound to the MNP surface thanks to its
simple functionalization. They are delivered to the site determined as a target due to their
magnetic properties. This process is called magnetofection and refers to magnetic field-
based gene transfer. After the gene bound to the MNPs is transferred to the appropriate
site by the external field, it is released into the environment using appropriate methods [75].
Targeted cell killing with specific drug delivery is another approach to targeted therapy
using MNPs. Chemotherapeutics and radiotherapeutics are the primary tools used for
targeted drug distribution. The basis of these treatments is to destroy cancer cells without
harming healthy cells. Thanks to the conjugation property of MNPs, functionalization with
biocompatible materials and the desired drug design can be achieved. In addition, MNPs
functionalized with drugs can destroy cancer cells, not healthy ones. MNPs functionalized
with drugs can destroy cancer cells by the effects of magnetic field and temperature due to
their hyperthermia property [76–78]. In contrast to targeted cell death, the use of MNPs is
very promising in the regeneration of damaged tissue or organs. Due to their large surface
area and physicochemical properties, they can be used in stem cell therapy. With MNPs that
can be manipulated with a magnetic field gradient, it is possible to direct cells to a region
under a magnetic field, provide for tissue formation, and control their functions. Therefore,
the use of MNPs in tissue engineering is on the agenda [79,80].
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Recently, MNPs have been used to develop nano-based types of equipment, such as
face masks and disinfectants, to protect from the COVID-19 pandemic [81]. In addition
to this equipment, the COVID-19 pandemic has also brought to light the lack of rapid
diagnostic systems at the bedside, called point-of-care (POC). One of the advantages of
biosensors is that they are designed as point-of-care systems [82]. They give specific
and sensitive measurements. MNP is used in the surface functionalization of biosensor
systems [16]. Due to its sensitivity to magnets, surface modification with MNP can be
performed quickly and cheaply. MNP-based biosensor systems are attracting attention not
only for the detection of COVID-19 but also for many other areas, such as the detection of
pathogens, illicit drugs, pesticides, and cancer [83–86].

3. MNPs for Detection of miRNA
3.1. miRNA

miRNAs are non-coding RNAs of 18–24 nucleotides in length and play essential
roles in gene expression. miRNA biogenesis mainly follows the canonical biogenesis
pathway [87]. Briefly, miRNA is transcribed by RNA polymerase II, and a microprocessor
complex processes the primary transcript (pri-miRNAs). The resulting precursor-miRNA
(pre-miRNA) is exported to the cytoplasm, where the ribonuclease Dicer processes it to
generate an miRNA duplex. The miRNA duplex is then unwound, and the RNA strand
that remains on the AGO protein acts as the mature miRNA [88].

Since their first discovery [89] thousands of miRNAs have been identified in differ-
ent organisms, ranging from viruses [90] to fungi [91], and to higher eukaryotes [92,93].
With the advances in next-generation sequencing technologies, novel miRNAs could be
identified [94,95].

miRNAs were found to be linked to several biological mechanisms, such as ther-
mal stress response [96], regulation of immune cells in sepsis [97], atherosclerosis [98],
and B cell receptor signaling [99]. The expression levels of miRNAs are usually changed
in several pathological conditions such as multiple myeloma [100], non-small cell lung
cancer [101], leukemia [102], Parkinson’s disease [103], and diabetes-induced cardiomyopa-
thy [104]. For instance, miRNA-937 was found to be overexpressed in colon cancer [105]
and hepatocellular carcinoma [106]. The decrease in the level of miRNA-149-3p was
shown to be associated with poor prognosis in oral squamous cell carcinoma [107]. Con-
sidering the correlation between changes in miRNA levels and diseases, miRNAs hold
great promise as novel biomarkers. Thereby, miRNAs offer opportunities for early detec-
tion [108–110]. In particular, circulating miRNAs in biological fluids are significant for
non-invasive diagnosis. The intracellularly produced miRNAs were found to be released
in the extracellular environment through incorporation into the exosomes or by forming
a complex with proteins [111,112]. Moreover, miRNA content in the extracellular vesi-
cles was found to be affected by the disease state [113]. Thus, it was proposed that the
miRNA derived from the extracellular vesicles could be used as a biomarker [114,115].
Interestingly, miRNA was found to be more stable than messenger RNA (mRNA) [116,117].
As stable biomarkers, miRNAs were detected in different types of extracellular fluids,
such as urine [118], plasma [119], serum [120], cerebrospinal fluid [121], and saliva [122].
As a non-invasive approach, miRNA-based liquid biopsy was proven to be successful at
detecting melanoma [123] and urothelial carcinoma of the bladder [124]. Given that the
disease regulation mechanisms of miRNAs continue to be discovered [125–129], miRNAs
attract much interest as non-invasive diagnostic and prognostic biomarkers.

3.2. Traditional Methods for miRNA Detection

Specificity and sensitivity are the two critical parameters for miRNA detection. Se-
quence similarity among miRNAs [130], and the need for detection at very low concen-
trations [131] are the challenging issues that should be considered. Northern blotting,
RT-qPCR, and microarrays are the conventional methods with distinct advantages and
disadvantages in terms of those two parameters [10,101,132].
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3.2.1. Northern Blotting

Northern blotting, which is also known as Northern hybridization, is a classical
technique to analyze RNA molecules [133,134]. RNA is first subjected to denaturing gel
electrophoresis and then transferred onto a positively charged nylon membrane. RNA
is fixed on the membrane by UV-mediated cross-linking. Then, it can be visualized after
hybridization with a probe, which could be either radioactive or non-radioactive. Northern
blotting is advantageous due to the fact that it is simple and reliable due to the sample being
directly used after the isolation step. It also allows discrimination between miRNAs and
their precursors [135]. However, it is time-consuming and not suitable for the analysis of
different miRNAs having the same molecular weight. Low sensitivity and the requirement
for large amounts of RNA are the other disadvantages.

Regarding miRNA analysis, several modifications to the original method were adopted
to overcome those limitations. As an alternative to UV, 1-ethyl-3-(3-dimethylaminopropyl)
carbodiimide hydrochloride (EDC) was proposed to cross-link RNA to the nylon membrane,
which resulted in improved sensitivity [136]. Locked nucleic acid (LNA) modified oligonu-
cleotide probes were successfully used against the sensitivity and specificity problems of DNA
oligonucleotides [137]. In order to avoid the safety problems of radioactively labeled probes,
digoxigenin (DIG)-labeled oligonucleotide probes containing locked nucleic acids [138], and
biotin-labeled probes [138] were proposed. The protocol was also optimized for the detection
of viral miRNAs [139]. In another study, liquid hybridization consisting of pre-hybridization
of target RNA with oligonucleotide probes, Exo-1 digestion, and non-denaturing gel elec-
trophoresis achieved greater sensitivity than Northern blot [140].

3.2.2. RT-qPCR

RT-qPCR is a gold standard for miRNA detection, enabling specific, sensitive, and
quantitative results. For RT-qPCR analysis, target miRNAs are reverse-transcribed to
complementary DNA (cDNA), which is then amplified by qPCR. Using intercalating dye or
hydrolysis-based probes allows real-time fluorescence detection of the amplified products.
Quantification is then achieved by using the relationship between the threshold value and
the starting copy number of miRNA [141].

Although RT-qPCR is a well-established method, primer design and reaction conditions
may need optimization for every new miRNA analysis [142,143]. Regarding the primer
design issue in miRNA analysis, the tools such as miRprimer [144] and miPrimer [145]
were proposed. A modified form of RT-qPCR was named the stem-loop RT-qPCR, which
consisted of two steps [146]. The stem-loop primer was first hybridized in this technique to
the miRNA molecule. Then, it was reverse-transcribed and used as a template in conven-
tional qPCR, including the fluorescent-based probe. In a further study [147], a universal
stem-loop primer was designed and shown to save 75% of the cost of primers and 60% of
the test time compared to the stem-loop primer. Later, a universal hairpin primer system
was proposed to eliminate the need for designing miRNA-specific hairpin primers, thereby
reducing the cost [148]. RT-qPCR was used for the analysis of miRNA profile in embryonic
stem cell differentiation [149] and detection of extracellular vesicle miRNAs [150], as well
as to distinguish miRNA editing isoforms [151]. As RT-qPCR is sensitive and specific, it is
still widely used for miRNA detection despite the challenges with optimization. In recent
years, compared to conventional RT-qPCR, droplet digital PCR [152–154] has also been
popular due to its better sensitivity and diagnostic potential.

3.2.3. Microarrays

Microarray technology relies on hybridization between the oligonucleotide probe im-
mobilized on a solid surface and the target miRNA. Before hybridization, the target miRNA
is reverse-transcribed to cDNA and simultaneously labeled. Then, the arrays are scanned
for the hybridization signal, depending on the labeling strategy. Labeling can be achieved
by the incorporation of fluorescence dyes [155,156] or radioisotopes [157]. Alternatively,
miRNAs can be directly labeled with biotin, and the hybridization can be monitored by



Magnetochemistry 2023, 9, 23 12 of 25

a fluorescent signal that results from the binding between biotin-labeled miRNAs and
streptavidin-conjugated quantum dots [158]. The protocols differ in terms of probe design,
probe immobilization strategy, sample labeling, and signal detection [159]. For instance,
instead of oligonucleotides, peptide nucleic acids (PNA) can be used as probes [160]. Fur-
thermore, miRNA microarray data analysis [161] and data submission [162] issues need to
be considered.

The major advantage of microarrays is that they enable a high-throughput screen
for comparing miRNA expression profiles in different organs or tissues. For instance,
miRNA microarray profiling allowed the identification of miRNAs that could be associated
with liver cancer [163], attention deficit hyperactivity disorder in children [164], epithelial
ovarian cancer [165], and rheumatoid arthritis [166]. Although miRNA microarray analysis
is very useful for comparing miRNA expression levels between two states (e.g., control
tissue and cancer tissue), it suffers from low sensitivity and low specificity. Similar to
Northern blot analysis, it is not a suitable method for the discovery of novel miRNAs.

3.3. MNP-Based Biosensors for miRNA Detection

As described above, there are many conventional methods for detecting miRNA.
These complex techniques require specially trained personnel and can give false positive
results [10]. Therefore, new methods are needed to detect abnormal miRNA expression,
which is critical for early diagnosis. With this approach, biosensor studies based on
nanomaterials can be an alternative to conventional analytical devices due to their small
sample size, low cost, fast response time, and ease of use. Biosensors provide measurable
signals depending on the concentration of the target analyte. They are defined as analytical
devices consisting of two main parts, a detection element and a transducer [57]. According
to the type of signal generation (electrochemical, optical, thermal, etc.), it is possible to
classify biosensors [167]. In recent years, MNP-based biosensor systems have been used
for the detection of miRNA. The systems developed in the last five years are summarized
in Table S1.

3.3.1. Optical Biosensor Systems

There are advantages to using optical biosensor systems in terms of noise-free, stable,
and sensitive properties compared to other biosensor systems [168]. These biosensors are
a good alternative for the detection of cancer markers, as they provide a non-invasive
approach [169]. The optical sensing systems based on different signal conversion prin-
ciples such as colorimetry, fluorescence, chemo/bioluminescence, and scattering-based
biosensing, can be used to detect microRNA from biological samples such as plasma, serum,
and blood [170].

The colorimetric optical sensor is an analytical system that measures the emitted
or absorbed light intensity resulting from the recognition of the target molecule by the
bioreceptor [171]. The biosensing that occurs in these systems is converted into a color
change. Nanomaterials such as magnetic nanoparticles and gold nanoparticles have been
widely used for this purpose. These systems can be described as simple, practical, and
cheap because they can be read visually and without any tools [172]. In MNP-based
colorimetric biosensor systems developed for miRNA detection, hemin chemistry [173],
colorimetric TMB-H2O2 systems [174], and aggregation of gold nanoparticles [175] in
salt were used and the color changes were monitored with UV-Vis absorption spectrum.
Colorimetric sensor platforms were achieved by converting a colorless substrate to a green
product in the plate for the detection of miR-21 (Figure 4a) [173]. Gold decorated MNPs
(GMNP) were used in the sensor platform based on the catalytic hairpin assembly (CHA)
reaction. In the presence of the cofactor hemin, oligonucleotides were labeled with GMNP
to form a colored product. As a result of the reaction in the presence of H2O2, the LOD
was determined to be 1 aM and the reaction time was reduced to less than four hours.
Another colorimetric sensor system was developed for the detection of Lethal-7 (let-7a)
miRNAs in gastric cancer [174]. In this system, Fe3O4 nanosheets were functionalized
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with target miRNA (let-7a), and hairpins H1 and H2. Thanks to the hybridization chain
reaction, a double-stranded DNA (dsDNA) structure was formed on the nanosheet. After
removing the excess Fe3O4/dsDNAs in the medium with a magnet, H2O2 and TMB were
added. LOD was determined to be 13 aM as a result of the isothermal process without
enzyme. In the colorimetric sensing system developed by Wang et al. [175], the ability of
MNPs to isolate the target analyte from the sample with a single magnet was exploited.
Subsequently, the miRNA-155 functionalized with AuNP was precipitated by the salt-
induced aggregation method. A two-part colorimetric sensor system was developed.
First, Fe3O4 nanoparticles were coated with gold, then functionalized with DNAzyme.
Single-stranded DNAs (ssDNAs) were formed in the presence of miRNA-155. ssDNAs
were separated with a magnet and quantified by precipitation with NaCl in AuNP. It was
possible to detect miRNA within 2 h at room temperature using the LOD in the fM level.

Fluorescence-based optical sensors are widely used for the detection of small biomark-
ers such as DNA due to their advantageous properties, such as low cost, high efficiency,
and easy processing steps. In these platforms, the light emitted from the target sample
is measured as a result of the excitation. In fluorescence-based biosensor systems devel-
oped with MNPs for miRNA detection, dyes (fluorescein (FAM) [176–178]) and substrate
(tyramine) [179] are used for fluorescent labeling. Measurements are simplified with fluores-
cence resonance energy transfer (FRET) [178] or quenching [180]. Two different fluorescence
systems have been developed for the potential prostate cancer biomarker miRNA-141. One
study by Sun et al. [176] was based on duplex-specific nuclease (DSN), while the other
study by Wang et al. [179] was based on the toehold-mediated strand displacement reaction
(TSDR) using the horseradish peroxidase (HRP) enzyme. In the study by Sun et al., Fe3O4
was used as the MNP, and the surfaces of the MNPs were coated with polydopamine [176].
In the presence of the target miRNA, it hybridized with 6-carboxy fluorescence (FAM)-
labeled single-stranded DNAs. Due to duplex-specific nuclease (DSN) in the medium, the
FAM-labeled DNA was separated from the RNA and fragmented into small fragments.
When the remaining DNA was absorbed on the Ca2+ surface of the MNPs, a new cycle
began in which the miRNA hybridized with a new DNA. The released small particles
FAM-DNA caused strong fluorescence intensity, and the miRNA could be quantified based
on the changes in fluorescence. For this method, LOD was determined as 0.42 pM. It is quite
remarkable that it is used for the detection of miRNA from human cell lines. According
to the study by Wang et al. [179], the LOD of exosomal miRNA-141 could be reduced to
fM by detecting it with MNP-based HRP-catalyzed TSDR (Figure 4b). For this purpose,
4 different probes were immobilized on the surface of carboxyl terminated MNPs. The
miRNA-141 sequence recognized the toehold domain complementary part of the probe1,
and as a result of the TSDR reaction, P2 was removed from the environment while a new
toehold part was formed. Upon the addition of biotin-tipped probe 4, probe 4 and probe
1 formed a double chain. miRNA-141 released thus initiated a new cyclic amplification.
After the addition of streptavidin-HRP (SA-HRP), MNP was collected from the medium
with a magnet. Then, tyramine, one of the fluorescent substrates, was added to the MNP.
The color change that occurred under H2O2 catalysis was used to calculate the miRNA
concentration. In addition, a fluorescence biosensor using MNP and Clustered Regularly
Spaced Short Palindromic Repeats (CRISPR)/CRISPR-associated proteins system family
(Cas12a) was developed for the first time to detect exosomal miRNA [180]. In this study,
Cas12 increased target specificity because it could bind ssDNA or double-stranded DNA
(dsDNA) without the contiguous protospacer motif, and thanks to MNPs, the trans-splicing
activity of CRISPR/Cas12a was abolished in the absence of the target miRNA. This is
a remarkable study in terms of the detectability of exosomal miR-21 from lung cancer
plasma with high sensitivity and specificity.
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Electrogenerated chemiluminescence sensing is a detection method that originated
from a combination of electrochemical and chemiluminescent sensors. Basically, an electron
transfer reaction takes place on the electrode surface [181]. This strategy could be used for
clinical detection of miRNA [182–184] because of its rapid response, high sensitivity, and
low cost. Wang et al. [182] designed a multichannel paper-based electrochemiluminescence
microfluidic platform that focused on the detection of two different miRNAs 155 and 126.
After subjecting the paper to a wax printing process to enable the fabrication of bipolar
electrodes, the electrode sites were prepared with AuNP. Two different surfaces were
designed for miRNA detection. Signal probes with CdTe quantum dots (QD) and Au@g-
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C3N4 nanosheets were used for the detection of miRNA-155 and miRNA-126, respectively.
In this system, K2S2O8 was used as a co-reactant, while Fe3O4 MNP was assigned as
a carrier. It is important to note that the luminescent light on both platforms is stronger
than the single electroluminescent signal. In addition, the use of K2S2O8 was found to
improve the selectivity, sensitivity, response speed, and signal intensity of the sensor. The
use of nanosheets in electrochemiluminescence systems also attracts attention. These
structures were used in a sensor system for miRNA-210, a breast cancer marker. Due to
their optoelectronic properties, ease of synthesis, biocompatibility, and ability to absorb
ssDNA structures, analysis from serum was achieved [183]. In addition, SiO2-coated Fe3O4-
NPs were functionalized with cholesterol-linked aptamers and were immobilized on the
surface of the magnetic carbon electrode. The MoS2 nanosheet-DNA probe was attached to
the surface. The LOD value was determined as 0.3 fM using the luminescence change.

Another interesting system in the development of MNP-based optical platforms is the
surface-enhanced Raman spectroscopy (SERS) based sensor system. This is a surface-sensitive
technique used for specific detection that measures the interaction between nanostructures
and light by Raman scattering [185]. Recently, the method has also been used for the detection
of miRNA [186–189]. SERS tags are used for optical measurement. With these tags, a single
target can be analyzed in a single system, while it can be prepared in multiplexed systems. By
Zhang et al., two different systems have been developed for miRNA-141 alone [189] as well
as a multiplex system for simultaneous analysis of miRNA-141, -429, and -200b [188] sing
the same SERS-nanotag and its substrate. In both systems, silica-coated, analyte-embedded
Au nanoparticles (SA@GNPs) and Au-coated paramagnetic nanoparticles (Au@MNPs) were
used as SERS-nanotag and substrate, respectively. For the detection of miRNA-141 alone,
5,5′-dithiobis(succinimidyl-2-nitrobenzoate) (DSNB) was used as SERS-tag, whereas DSNB,
methylene blue, and Nile blue were used as SERS-tag for the determination of miRNA-141,
-429, and -200b in the multiplex system, respectively.

In addition to all these optical sensors, optomagnetic sensor systems were developed
for the detection of miRNA. These systems consist of a photodetector, a light source, and
a magnetic actuator to generate a magnetic field. It is a system that has become a trend
in recent years due to advantages such as the suppression of noise, low cost, and the
increase in the reaction rate to the molecules colliding with the action of the magnetic
force [190]. Several optomagnetic sensing systems have been developed for let-7b miRNA,
a member of the let7 family [191,192]. In both systems, MNPs released as a result of the
recognition of the target miRNA by the designed surface could be measured by a laser-
based optomagnetic sensor. By analyzing serum in both systems, it offers potential for use
in clinical applications.

3.3.2. Electrochemical Biosensor Systems

Electrochemical systems are one of the most commonly used sensors for the detection
of miRNA. A reaction between the target analyte and the biological recognition element
is converted into an electrical signal in these systems. Since this reaction and the flow of
electrodes occur in the electrode system, the electrode is one of the essential components
in these systems [169]. The counter, reference, and working electrodes are used. Gener-
ally, Ag/AgCl is used as the reference electrode, and Pt is used as the counter electrode.
The working electrode can be made of materials such as gold, carbon, or graphene and
can be used specifically [193]. Electrochemical platforms categorized according to the
measurement principles of amperometric, potentiometric, voltammetric, and impedimet-
ric are in great demand due to their advantageous properties such as ease of operation,
miniaturization and fabrication, and low cost [194].

Voltammetric systems based on measuring the change in current with a change in
potential are common electrochemical sensors. These techniques in various forms, such
as chronoamperometry [91], cyclic voltammetry (CV) [195,196], square wave voltammetry
(SWV) [197–199], and differential pulse voltammetry (DPV) [196,200–202], are also com-
monly used for miRNA detection due to their sensitivity and wide linear range. In addition,
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electrochemical biosensors are functionalized or combined with MNPs because they are
easy to functionalize, inexpensive, and have the ability to specifically detect target miRNAs
from the sample under the magnetic field. In this regard, MNPs can also play a role in
the sensing system by capturing miRNAs from body fluids such as serum and plasma
and simply connecting them to the electrode surface using a magnet. By Shen et al. [197],
MNPs were functionalized with gold nanoparticles and gold stir bars in the electrochemical
sensing system designed for the simultaneous detection of miRNA-21 and miRNA-155
(Figure 5). They were both used to capture miRNAs from serum samples and electro-
chemical measurements. In this system, Fe3O4 nanoparticles were functionalized with
electrochemical labeled and complementary DNAs after gold plating and immobilized on
the SPCE surface with magnets. SWN measurements were performed on target miRNAs
captured by DNA/RNA hybridization. The method has the advantage of being easy to use
and increasing amplification efficiency, not requiring enzymes. Using a similar strategy,
another electrochemical sensor system was developed by Tavallay et al. [198]. It is also
reported to be the first system that can detect miRNA from unprocessed blood samples.
For the analysis of miR-21, gold-coated magnetic nanoparticles were used and immobi-
lized on the surface of the gold microelectrode using a magnet. Direct analysis of miR-21
in untreated blood from a lung cancer mouse model was achieved. The sensitivity was
reported to be better than other sensors with a LOD of 10 aM. It was also much faster than
conventional PCR, providing the analysis result in less than 30 min.
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Figure 5. MNP-based electrochemical biosensor platform for miRNA-21 and miRNA-155. [Repro-
duced with the permission of [197] Copyright 2019 Published by Elsevier B.V.].

4. Conclusions and Future Perspective

In this review, we focus on the use of MNPs for the detection of miRNAs in biological
samples. Thanks to their many advantages, magnetic nanoparticles are widely used in
fields such as food, environmental, biomedical, and clinical research. In recent years, the
research and development of magnetic nanoparticles have increased. MNPs are among
the most highlighted nanoparticles in a variety of biomedical applications for screening,
diagnosis, monitoring, and treatment of serious diseases, such as cancer. In particular, they
have been used in drug release studies, therapeutic applications, and as contrast agents
for imaging. The main challenge in these studies is the toxicity of MNPs, which has not
been fully understood. To avoid potential toxicity, MNPs are coated and functionalized.
Sometimes, the size of MNPs can also be a challenge. The success of promising results from
in vitro and in vivo studies is not fully transferred to clinical applications. Similarly, the
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size and shape of MNPs have major implications for their productivity. There are numerous
approaches to improve the efficacy of MNPs. These include smaller sizes and biocompatible
polymer or metal sheaths to improve blood circulation and shorten the time required to
reach the target tissue. Basically, the solution of all MNP-related problems requires the
development of appropriate synthesis procedures and the study of the obtained materials
to determine the optimal behavior. From a clinical perspective, the dark spots regarding
their safe use will not be resolved until the problems metabolizing from the body and
toxicity are resolved.

Despite these limitations, MNPs are preferred in biosensing systems because they can
separate the analyte from complex samples (urine and blood) and pre-concentrate it on the
electrode surface, increasing signal and selectivity. They are very important to the field of
life sciences, especially in separating complex biological samples by using the magnetic field
to bind and then release the samples. The most critical problem in biosensing systems using
MNPs is also finding the most suitable size, shape, and coating for surface modification.
Coating magnetic nanoparticles makes it possible to produce biosensing systems targeting
cancer cells or cancer-associated biomolecules. One of the cancer-associated biomolecules
is miRNAs. miRNAs can act as oncogenes or tumor suppressors under certain conditions.
Deregulated miRNAs have been shown to affect hallmarks of cancer, including mainte-
nance of proliferative signaling, evasion of growth suppressors, resistance to cell death,
activation of invasion and metastasis, and induction of angiogenesis. A growing number
of studies have identified miRNAs as potential biomarkers for human cancer diagnosis
and prognosis, as well as therapeutic targets or tools that require further investigation and
validation. Therefore, extracellular/circulating miRNAs can be used for disease detection.
The development of detection systems using magnetic nanoparticles is an essential area
of research for the sensitive and specific detection of miRNAs present at low levels in bio-
logical samples and have stability issues. The use of magnetic nanoparticles in systems to
discriminate the amount and presence of these exogenous miRNAs aims to concentrate the
analyte by specific surface conjugation. Even at very low levels, miRNA can be specifically
and sensitively detected. MNPs are currently used in electrochemical or optical sensor
systems for the detection of miRNA, which has already been developed. However, these
systems need to be further developed considering the complex structures of the samples
used and the conditions affecting the measurement, such as pH, viscosity, and matrix effect.
It is clear that in the future, the existing systems will be combined with machine learning
and used not only for actual diseases but also for predicting diseases in screening studies.
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Abbreviations

MNPs magnetic nanoparticles
miRNA microRNA
qRT-PCR quantitative real-time polymerase chain reaction
PEG polyethylene glycol
PVA polyvinyl alcohol
PAA polyacrylic acid
TEM transmission electron microscopy
SEM scanning electron microscopy
DLS dynamic light scattering
XRF X-ray fluorescence
XRD X-ray diffraction
ICP-MS inductively coupled plasma mass spectroscopy
AAS atomic absorption spectrophotometry
XPS X-ray photoelectron spectroscopy
FT-IR Fourier transform infrared spectroscopy
XAS X-ray absorption spectroscopy
TGA thermogravimetric analysis
RS Raman spectroscopy
VSM magnetometer
SQUID superconducting quantum interference device magnetometry
pri-miRNAs primary transcript
pre-miRNA precursor-miRNA
EDC 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride
LNA locked nucleic acid
cDNA complementary DNA
PNA peptide nucleic acids
SERS surface-enhanced Raman spectroscopy
ssDNA double-stranded DNA
LOD limit of detection
SWV square wave voltammetry
CV cyclic voltammetry
DPV differential pulse voltammetry
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