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Abstract: A mononuclear Ni(II) complex, [Ni(HL1)2], (1) and a novel tetranuclear heterometal Mn-
Ni complex, [Mn3Ni(L1)4Cl2(EtOH)2], (2) [H2L1 = N-(2-hydroxymethylphenyl)salicylideneimine],
have been synthesized and characterized via X-ray crystal structure analyses, infrared spectra, and
elemental analyses. The structure analyses revealed that the tridentate ligand, H2L1, coordinates in a
facial mode for Ni and a mer mode for Mn, respectively. Complex 2 includes Mn(II)Mn(III)2Ni(II)
tetranuclear metal core bridged by µ-phenoxo and µ-alkoxo oxygens. Magnetic measurements for 2
indicate that weak ferromagnetic interactions (JMn(III)Ni(II) = 2.23, JMn(III)Mn(II) = 0.46, JMn(II)Ni(II) = 1.78,
and JMn(III)Mn(III) = 0.58 cm−1) dominate in the tetranuclear core. Additionally, in alternating current
(AC) magnetic measurements, frequency-dependent out-of-phase responses were observed.

Keywords: heterometal complex; manganese; nickel; crystal structure; Schiff base ligand; magnetic
property

1. Introduction

The field of molecular magnetism in discrete polynuclear complexes has seen signifi-
cant research over the last few decades [1–6]. This research covers a wide range of objectives,
from a fundamental understanding of the correlation between spin-exchange interactions
and molecular structure [1,2,7–10] to the development of functional magnetic materials like
single-molecule magnets (SMMs) [3–6,11,12]. While the study of homometallic complexes
is well-established, the exploration of heterometallic complexes remains relatively limited.
This is due to the complexities associated with synthesizing new compounds, even though
such complexes can significantly impact the spin ground state, magnetic anisotropy, and
magnetic exchange interactions, leading to the development of low-dimensional magnets,
SMMs and SCMs (single-chain magnets) [5,13–17].

Three primary synthetic strategies have been employed for the synthesis of het-
erometallic complexes: (i) one-pot reactions, such as hydrothermal synthesis [18];
(ii) the design of ligands with multiple coordination sites that selectively bind specific metal
ions [13,19]; and (iii) the reaction of complex ligands or bridging metal complexes with other
metal ions [20,21]. While method (i) is suitable for synthesizing metal–organic frameworks
(MOFs), it can be challenging to produce discrete complexes. Method (ii) offers opportuni-
ties for molecular design but can encounter obstacles in ligand synthesis. On the other hand,
method (iii) holds an advantage as it allows for a relatively straightforward stepwise syn-
thetic approach. In this method, tri- or tetradentate Schiff base ligands with bridgeable oxy-
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gen atoms at their terminals, similar to the Salen-type ligands in {[Cu(Mesalen)]2VO)}(ClO4)2
(Mesalen = N,N′-bis(2-hydroxyacetophenone)ethylenediamine) [22], have often been used.

The tridentate ligand N-(2-hydroxymethylphenyl)salicylideneimine (H2L1), which
possesses bridgeable oxygen atoms (phenolic and alcoholic) at both terminals, has been
employed to synthesize various polynuclear complexes with distinct bridging structures,
such as tetranuclear Ni(II) complexes [23,24] and trinuclear Mn(III) complexes [25]. In
our research, we have focused on leveraging the unique properties of the phenolic and
alcoholic oxygen atoms at each end of this ligand. Through this feature, we have suc-
cessfully synthesized heterometallic Mn(III)2Ni(II)2 complexes [24,26] and mixed-valence
Co(II)2Co(III)2 complexes [27] and reported their crystal structures and unique magnetic
properties. While these complexes were synthesized via one-pot reactions, we achieved
a controlled structure due to the distinct properties of the bridging oxygen sites in the
ligand. However, to attain even finer control over the structures, it is desirable to develop
synthetic methods involving the isolation of mononuclear and/or binuclear complexes as
complex ligands for reactions with other metal ions. In this study, we report the synthesis
of a mononuclear Ni(II) complex using H2L1, and the structure and magnetic properties
of a novel heterometallic mixed-valence Mn(II)Mn(III)2Ni(II) tetranuclear complex, which
was obtained by utilizing the mononuclear Ni complex as a complex ligand.

2. Materials and Methods
2.1. Preparation

All chemicals were purchased and used as received, unless otherwise noted. Methanol
and ethanol were purified by distillation over magnesium turnings. The ligand H2L1 was
obtained by the literature method [28]. The IR spectrum of H2L1 is shown in Figure S1.

2.1.1. [Ni(HL1)2] (1)

A methanol solution (10 mL) containing nickel(II) acetate tetrahydrate (0.124 g, 0.5 mmol)
and H2L1 (0.224 g, 1.0 mmol) was stirred with the addition of triethylamine (0.010 g,
0.10 mmol) for 90 min. The resulting pale yellowish-green solution was filtered and
allowed to stand at room temperature. After 4 days, green single crystals suitable for
X-ray analysis were obtained. The IR and PXRD spectra are shown in Figures S2 and S3,
respectively. [Ni(HL1)2]·0.5MeOH; yield: 88 mg, 34.0%. Anal. Calc. for C28.5H26N2NiO4.5:
C, 64.93; H, 4.97; N, 5.31%. Found: C, 65.18; H, 4.81; N, 5.31%. IR data [

∼
ν/cm−1]: 3041 (w),

2912 (w), 1612 (s), 1595 (s), 1517 (m), 1448 (s), 1269 (m), 1178 (s), 1149 (s), 1001 (m), 916 (m),
849 (m), 748 (s), 725 (m), and 509 (m).

2.1.2. [Mn3Ni(HL1)4Cl2(EtOH)2] (2)

To an ethanol/dichloromethane mixed solution (1:3 in volume, 6 mL) of 1 (0.256 g,
0.5 mmol), an ethanol solution (1 mL) of manganese(II) chloride tetrahydrate (0.049 g,
0.25 mmol) was added. The resulting dark-brown solution was stirred for 90 min and then
filtered. After allowing the filtrate to stand at room temperature for 2 days, dark brown
single crystals suitable for X-ray analysis were obtained. The IR and PXRD spectra are
shown in Figures S4 and S5, respectively. [Mn3Ni(L1)4Cl2(EtOH)2]; yield: 17 mg, 15.8%.
Anal. Calc. for C60H56Cl2Mn3NiN4O10: C, 55.97; H, 4.38; N, 4.35%. Found: C, 55.86; H,
4.47; N, 4.36%. IR data [

∼
ν/cm−1]: 3198 (s), 2930 (w), 1605 (s), 1574 (m), 1533 (s), 1435 (s),

1315 (s), 1182 (s), 1149 (s), 1016 (s), 983 (m), 860 (m), 748 (s), 634 (s), and 550 (s).

2.2. Measurements

Elemental analyses for C, H, and N were obtained at the Elemental Analysis Service
Center at Kyushu University. Fluorescent X-ray analysis was obtained on a Shimadzu
energy dispersive X-ray spectrometer Rayny EDX-700HS (Shimadzu Co., Ltd., Kyoto,
Japan). PXRD measurements were conducted on a Shimadzu X-ray diffractometer XRD-
7000 (Shimadzu Co., Ltd., Kyoto, Japan). Infrared spectra were recorded on a Bruker
VERTEX70-S FT-IR Spectrometer on the ATR (Attenuated Total Reflection) method. Reflec-
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tion spectra were recorded on a PERKIN ELMER Lambda900Z UV/VIS/NIR Spectrometer
(PerkinElmer, Inc., Waltham, MA, USA) and Ocean Optics USB2000+ Fiber Optic Spectrom-
eter (Ocean Optics, Inc., Dunedin, FL, USA). The magnetic susceptibilities were measured
on a Quantum Design MPMS-XL5R SQUID susceptometer (Quantum Design, Inc., San
Diego, CA, USA) under an applied magnetic field of 0.1 T at room temperature for 1 and
in the temperature range 2–300 K for 2 and 3. The susceptibilities were corrected for the
diamagnetism of the constituent atoms using Pascal’s constant [29]. The DC-magnetic data
were fitted using the PHI program 3.1.6 [30].

2.3. Single Crystal X-ray Diffraction

Single crystals suitable for X-ray analysis were obtained by slow evaporation of
methanol for 1 and ethanol for 2, respectively. Diffraction data were measured on a Rigaku
Vari-Max Saturn CCD 724 diffractometer (Rigaku Corp., Tokyo, Japan) with graphite
monochromated Mo Ka radiation (λ = 0.71069 Å) at the Analytical Research Center for Ex-
perimental Sciences, Saga University. Data were collected and processed using CrystalClear-
SM 2.0 r16 [31]. The crystal was kept at 113 K during data collection. Multi-scan correction
for absorption was applied. The crystal data and experimental parameters are summarized
in Table 1. The structures were solved by direct methods (ShelXT-2016/6) and expanded us-
ing Fourier techniques [32]. Non-hydrogen atoms were refined anisotropically. Hydrogen
atoms were placed geometrically in calculated positions and refined with a riding model.
The final cycle of full-matrix least-squares refinement on F2 using ShelXL-2016/6 [33] was
based on observed reflections and variable parameters and converged with unweighted
and weighted agreement factors of R and Rw. Olex2-1.5 [34] was used as an interface to
the ShelX program package. The structure drawing of the molecules was performed using
Mercury-2022.1.0 [35]. The Hirshfeld surface was generated using Crystal Explorer 3.1 [36].

Table 1. Crystallographic data and refinement parameters.

1 2

Empirical formula C30H32N2NiO6 C60H56Cl2Mn3N4NiO10
Formula weight 575.28 1287.51
Temperature/K 113.15 113.00
Crystal system monoclinic orthorhombic

Space group P21/c Aea2
a/Å 10.716(5) 12.180(6)
b/Å 20.271(8) 22.558(11)
c/Å 13.487(6) 19.913(11)
α/◦ 90 90
β/◦ 112.614(6) 90
γ/◦ 90 90

V/Å3 2704(2) 5471(5)
Z 4 4

Dcalc/g cm−3 1.413 1.563
µ(MoKα)/mm−1 0.765 1.178

F(0 0 0) 1208.0 2644.0
Crystal dimensions/mm3 0.29 × 0.19 × 0.18 0.20 × 0.20 × 0.20

Radiation MoKα (λ = 0.71075) MoKα (λ = 0.71075)
2θ range for data collection/◦ 6.25 to 54.974 6.402 to 55.02

No. of reflections collected 22,107 22,017
No. of independent reflections 6058 6184

Data/restraints/params 6058/6/363 6184/1/365
Goodness-of-fit indicator 1.071 1.077

R indices [I > 2.00σ(I)] R1 = 0.0404 R1 = 0.0218
wR2 = 0.1056 wR2 = 0.0546

R indices (all data) R1 = 0.0476 R1 = 0.0220
wR2 = 0.1123 wR2 = 0.0548

Largest diff. peak, hole/e Å−3 0.65, −0.55 0.30, −0.29
Flack parameter ---- 0.010(4)

CCDC deposition number 2284205 2284228
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3. Results and Discussion
3.1. Synthetic Outcomes and Characterization

The elemental analysis results for 1 were consistent with the calculated composition of
[Ni(HL1)2]·0.5MeOH. According to the molecular formula obtained from the single-crystal
X-ray structural analysis (SCXRD), two methanols were initially included. However, crys-
talline decomposition was observed during the vacuum drying process, indicating that
the loss and evaporation of methanol were responsible for this observation. The powder
X-ray diffraction (PXRD) pattern of the dried sample does not match well with the sim-
ulated pattern obtained from SCXRD, further suggesting the loss of the crystal solvents
(Figure S3). So far, crystal structures of Ni(II) complexes with H2L1 have only been reported
for tetranuclear complexes, [{Ni(L1)(EtOH)}4] [23] and [{Ni2(L1)(HL1)Cl}2] [24], which
have a cubane-like structure. This can be attributed to the strong bridging capability of de-
protonated alkoxo-oxygen donors. In this study, our goal was to synthesize a mononuclear
Ni(II) complex by carefully controlling the pH conditions, employing nickel(II) acetate as
the metal source to prevent the dissociation of protons from benzyl alcohol. Remarkably,
we successfully isolated complex 1 as a mononuclear Ni(II) complex (Scheme 1). The
FT-IR spectrum revealed intense and characteristic bands corresponding to the azomethine
∼
ν(C=N), phenolic

∼
ν(C–O), and alcoholic

∼
ν(C–O) stretching vibrations of free H2L1, which

were observed at 1615, 1279, and 1030 cm−1, respectively. Upon complexation in 1, these
bands were downshifted to 1612, 1178–1149, and 1001 cm−1, respectively. The heterometal
complex 2 was obtained by reacting the nickel complex 1 with manganese(II) chloride in
ethanol. Initially, our aim was to produce a linear Ni(II)-Mn(II)-Ni(II) complex; therefore, 1
was reacted with Mn(II) in a 2:1 ratio. However, based on EDX measurements, the compo-
sition of 2 was determined to be in a 3:1:2 ratio of Mn, Ni, and Cl, respectively. Taking into
account the EDX results and charge balance considerations, the oxidation states of the four
metal ions in 2 are presumed to be Mn(II)Mn(III)2Ni(II). Analytical data of 2 showed good
agreement with its molecular formula obtained by single-crystal X-ray analysis. In previous
studies, we have reported several heterometallic tetranuclear Mn(III)–Ni(II) complexes
with H2L1 and its homologs [24,26]. Complex 2 is a novel complex that exhibits charac-
teristics of a mixed-valence electronic state in addition to being a heterometallic complex.
In the FT-IR spectrum, a strong and sharp

∼
ν(O–H) band was observed at 3196 cm−1. This

characteristic band likely originates from coordinated ethanol molecules, indicating the
presence of strong intramolecular hydrogen bonds. The three IR bands stemming from the
tridentate ligand were shifted to 1604 [

∼
ν(C=N)], 1182—1149 [

∼
ν(C–O)phenolic], and 1016—983

[
∼
ν(C–O)alcoholic] cm−1, respectively.

Scheme 1. Synthetic route of complexes.

3.2. Structural Studies
3.2.1. Complex 1: [Ni(HL1)2]·2MeOH

The molecular structure and packing diagram of 1 are shown in Figures 1a and S6,
respectively. The selected bond lengths and angles are listed in Table 2. The coordination
environment surrounding the Ni(II) ion adopts an octahedral geometry, with a N2O4
donor set originating from the tridentate ligand (HL1)−. Previously reported mononuclear
complexes with (HL1)−, such as [Co(HL1)2]NO3·2H2O, has a mer-coordination mode [37].
However, due to the larger ionic radius of Ni(II) in comparison to trivalent transition metal
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ions, the tridentate ligands in this complex coordinate to the Ni atom in a fac mode. All three
types of coordination atoms from the two ligands adopt a cis configuration. Consequently,
complex 1 exhibits chirality around Ni.

Figure 1. (a) X-ray crystal structure of 1 showing thermal ellipsoids drawn at a 50% probability level.
Hydrogen atoms, except for benzyl alcohols, have been omitted for clarity. (b) Enantiomeric pair
formed by intermolecular hydrogen bonds with the Hirshfeld surface.

Table 2. Selected bond distances and angles of 1.

Bond Distance/Å Angle Angle/◦

Ni1–O1 2.1064(15) O1–Ni1–O2 95.38(6)
Ni1–O2 2.0113(15) O1–Ni1–N1 87.89(6)
Ni1–O3 2.1103(16) O1–Ni1–O4 89.93(6)
Ni1–O4 2.0319(15) N1–Ni1–N2 97.12(7)
Ni1–N1 2.0531(17) O2–Ni1–O4 89.90(7)
Ni1–N2 2.0486(17) O2–Ni1–O3 173.67(6)

Ni1· · ·Ni1 i 4.5896(17)

Symmetry code (i): 1 − x, 1 − y, 1 − z.

The bond lengths of Ni–Ophenolic and Ni–N are closely comparable, falling within the
range of 2.0113(15)–2.0531(17) Å. In contrast, the Ni1–O1 and Ni1–O3 distances, which
involve protonated O atoms, are 2.1064(15) and 2.1103(16) Å, respectively, approximately
0.1 Å longer than the other coordination bonds (refer to Table 2). According to SHAPE
analysis [38] score of 1, OC-6 = 0.501, indicating minimal distortion of the octahedral
structure surrounding Ni. The benzyl alcohol moiety and the deprotonated phenolate
group engage in intermolecular hydrogen bonds, specifically O1–H1D· · ·O4i = 2.686(2)
and O–H3D· · ·O4i = 2.641(2) Å [symmetry code: (i) 1 − x, 1 − y, 1 − z], respectively. This
interaction results in the formation of an enantiomeric pair, as illustrated in Figure 1b.
The red-colored regions on the Hirshfeld surface clearly indicate the presence of these
intermolecular hydrogen bonds.

3.2.2. Complex 2: [Mn3Ni(L1)4Cl2(EtOH)2]

Complex 2 is a heterometallic tetranuclear complex featuring a double cubane-like
metal core structure comprising three Mn and one Ni ions. It crystallizes in the orthorhom-
bic polar space group Aea2. The molecular structure and packing diagram of 2 are illustrated
in Figure 2a and Figure S7, respectively. The selected bond lengths and angles are provided
in Table 3.
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Figure 2. (a) X-ray crystal structure of complex 2 showing thermal ellipsoids drawn at a 50%
probability level. Hydrogen atoms, except for hydroxy group of the coordinated ethanol, have been
omitted for clarity. Symmetry code (*): 1 − x, 1 − y, +z. (b) Metal core structure comprised of 4 metal
ions and 6 bridging oxygen atoms.

Table 3. Selected bond distances and angles of 2.

Bond Bond Length/Å Angle Bond Angle/◦

Ni1–O1 2.0937(18) O1–Ni1–N1 85.24(8)
Ni1–O2 2.0454(18) O2–Ni1–N1 85.91(7)
Ni1–N1 2.022(2) O1–Ni1–N1 * 172.41(7)
Mn1–O1 1.9756(16) O2–Ni1–O2 * 179.32(9)
Mn1–O2 2.1820(17) O3–Mn1–N2 173.69(5)
Mn1–O3 1.8761(17) O4–Mn1–N2 90.12(7)
Mn1–O4 1.8604(17) O1–Mn1–N2 175.19(7)
Mn1–O5 2.2587(18) O3–Mn1–O4 171.21(7)
Mn1–N2 2.0431(19) O1–Mn2–O3 71.05(5)
Mn2–O1 2.3145(18) O1–Mn2–O1 * 77.94(9)
Mn2–O3 2.1765(18) Cl1–Mn2–Cl1 * 103.66(5)
Mn2–Cl1 2.4560(10) O1–Mn2–Cl * 162.96(4)

Mn1· · ·Mn2 3.223(1) O3–Mn2–O3 * 153.32(9)
Mn1· · ·Ni1 3.1004(10) Mn1–O1–Mn2 97.09(6)

Mn1· · ·Mn1 * 5.388(2) Mn1–O1–Ni1 99.22(7)
Mn2· · ·Ni1 3.3044(19) Mn2–O1–Ni1 96.98(7)

Mn1–O2–Ni1 94.29(6)
Mn1–O3–Mn2 105.13(7)

Symmetry code (*): 1 − x, 1 − y, +z.

This molecule exhibits C2 symmetry with the axis along the line connecting Ni1 and
Mn2. Ni1 forms an octahedral [Ni(L1)2]2− unit, coordinated by two (L1)2− ligands in a
fac mode. However, unlike complex 1 where all three kinds of coordinating atoms were
in cis positions, in this Ni unit, the phenolic oxygens adopt trans positions, introducing a
rotational symmetry axis that was absent in complex 1. The coordination bond distances
around Ni are Ni1–O1 = 2.0937(18), Ni1–O2 = 2.0454(18), and Ni1–N1 = 2.022(2) Å, respec-
tively. The Ni1–O1 distance, corresponding to the benzyl alcohol oxygen, is approximately
0.15 Å shorter in complex 2 compared to 1 due to the dissociation of the alcohol proton.
This benzyl alcohol oxygen, O1, acts as a µ3-alkoxo bridge, connecting Ni1, Mn1, and Mn2.
Mn1 is linked to Ni1 through this µ3-alkoxo oxygen (O1) and a µ2-phenoxo oxygen (O2).
It forms an octahedral arrangement with another tridentate ligand’s donor set (O3, N2,
O4) and the alcohol oxygen (O5) from the coordinating ethanol. The coordination bond
distances within the square plane formed by the tridentate ligand and the µ3-oxygen atom
are 1.8761(17), 2.0431(19), 1.8607(17), and 1.9756(16) Å. In contrast, the Mn1–O2 distance
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for the µ2-bridging oxygen is 2.1820(17) Å, and the Mn1–O5 distance for the coordinating
ethanol moiety is 2.2587(18) Å, indicating elongation. This suggests that Mn1 is a Mn(III)
ion with the O2–Mn1–O5 axis corresponding to the Jahn–Teller axis. On the other hand,
Mn2 lacks chelating coordination from the tridentate ligand and exhibits a highly distorted
six-coordinate structure formed by two µ3-bridging alcoholic oxygens, two µ2-bridging
alcoholic oxygens, and two monodentate chloride ions. The bond distances around Mn2
are Mn2–O1 = 2.3145(18), Mn2–O3 = 2.1765(18), and Mn1–Cl1 = 2.4560(10) Å, which are
longer than the bond distances around Mn1, indicating that Mn2 is in the Mn(II) oxidation
state. To further confirm the oxidation state assignments of Mn1 and Mn2, bond valence
sum (BVS) calculations were conducted for each manganese atom [39,40]. The calculated
BVS values of 3.01 and 1.95 for Mn1 and Mn2, respectively, support the valence assignment
based on the bond lengths [41]. To the best of our knowledge, only one Mn3Ni complex
has been reported [42], and in that complex, all Mn ions are in the trivalent state. Therefore,
complex 2 represents the first report of a complex in which three Mn ions are in a mixed
valence state.

The four metal ions are located on the same plane, forming a rhombus shape,
as depicted in Figure 2b. The intramolecular metal-to-metal distances are as follows:
Mn1· · ·Ni1 = 3.1004(10), Mn1· · ·Mn2 = 3.223(1), Ni1· · ·Mn2 = 3.3044(19) Å, and
Mn1· · ·Mn1* = 5.388(2) Å (symmetry code: (*) 1 − x, 1 − y, +z), respectively. Due to
the slight difference in length between the Mn1· · ·Ni and Mn1· · ·Mn2 sides, the rhombus
shape is distorted towards Mn2. Comparing the bond angles around Ni1 and Mn2, the
O2–N1–O2* angle corresponding to the longer side of the double-cubane framework is
179.32(9)◦, while the O3–Mn2–O3* angle is 153.32(9)◦, indicating significant distortion
at Mn2. Consequently, the defective double-cubane metal core, comprising four metal
ions and six bridging oxygen atoms, exhibits a distorted structure with Mn2 protruding
from the double-cubane framework. This distortion can be attributed to the larger ionic
radius of Mn2 and the steric repulsion of the coordinated two chloride ions. The SHAPE
calculation results (OCT-6) further confirm the substantial distortion at Mn2, with values
of 0.594 for Ni1, 0.964 for Mn1, and 2.459 for Mn2. Complex 2 exhibits hydrogen bonds
between the O–H proton of the coordinated ethanol and the chloride ion, with a distance of
O5–H5· · ·Cl1 = 3.0745(19) Å. Additionally, weak π-π stacking interactions occur between
the two phenyl rings defined by C9–C14 and C24–C28, with a centroid-to-centroid distance
of 3.688(2) Å. These interactions are believed to stabilize the molecular structure.

3.3. Electronic Spectra

The electronic spectra of the present complexes were recorded using the diffuse
reflectance technique. The obtained spectra are displayed in Figure 3, and the respec-
tive wavenumbers of the absorption bands are listed in Table 4. In the reflection spec-
trum of 1, three distinct d-d transition bands were observed at approximately 9.92 × 103,
16.6 × 103, and ~22 × 103 (shoulder) cm−1. These transitions can be attributed to 3A2g →
3T2g, 3A2g → 3T1g, and 3A2g → 3T1g(P) transitions originating from the octahedral Ni(II)
center [43]. Additionally, there’s an intense band at around 26.0 × 103 cm−1, which is
attributed to ligand-to-metal charge transfer (LMCT) originating from either the phenolic
or alcoholic oxygen in the ligand to the Ni(II) center. For complex 2, in addition to the d-d
bands of Ni(II), three distinct d-d absorption bands are predicted. These bands arise from
the octahedral Mn(III) ion with Jahn–Teller distortion and are assigned as 5B1g → 5A1g,
5B1g → 5B2g, and 5B1g → 5Eg transitions [44]. In fact, more than six indistinct absorption
bands were observed as shoulders in the reflectance spectrum of 2. Since the coordination
environment of Ni(II) is not significantly different between 1 and 2, the three absorption
bands at ~10× 103, ~16× 103, and ~22× 103 cm−1 can be assigned to Ni(II) d-d transitions.
The other three bands observed at around ~13 × 103, ~19 × 103, and ~20 × 103 cm−1 are
likely associated with Mn(III) d-d transitions. The absorption peak at 26 × 103 cm−1 is
assigned to LMCT from the ligands to the metal ions.
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Figure 3. Reflectance spectra of powder samples for 1 (green), 2 (orange).

Table 4. Spectral data for d-d bands (
∼
ν/103 cm−1) of 1 and 2.

Complex
Ni(II) Mn(III)

3A2 → 3T2
3A2 → 3T1

3A2 → 3T1(P) 5B1 → 5A1
5B1 → 5B2

5B1 → 5E

1 9.92 16.6 ~22 a

2 ~10 a ~16 a ~22 a ~13 a ~19 a ~20 a

a Shoulder.

3.4. Magnetic Properties

Magnetic susceptibility measurements for 1 and 2 were performed with a SQUID
(superconducting quantum interference device) magnetometer. The effective magnetic
moment of 1 at 300 K is 1.26 cm3 mol−1 K (3.17 µB), which falls within the expected range
for mononuclear octahedral Ni(II) complexes.

For complex 2, the temperature dependence of magnetic susceptibility was measured
in the temperature range from 2 to 300 K. Figure 4a displays the temperature dependence of
direct-current (DC) molar magnetic susceptibilities (χM) and χMT vs. T plots of 2. At 300 K,
the χMT value measures 11.18 cm3 mol−1 K, slightly smaller than the expected spin-only
value of 11.38 cm3 mol−1 K for a magnetically uncoupled system comprising two high-spin
Mn(III) ions (S = 2), one Mn(II) ion (S = 5/2), and one Ni(II) ion (S = 1). As temperature
decreases, χMT values increase, reaching a maximum of 24.19 cm3 mol−1 K at 8.0 K before
decreasing rapidly to 15.27 cm3 mol−1 K at 2.0 K.

This magnetic behavior suggests the presence of ferromagnetic coupling between the
metal ions. The decline at low temperatures might arise from zero-field splitting (ZFS) or
intermolecular antiferromagnetic interaction. The behavior was analyzed using the PHI
program based on the magnetic coupling scheme shown in the inset of Figure 4a and spin
Hamiltonian (Equation (1)).

H = −2J1(S1S2 + S1S3) − 2J2(S2S4 + S3S4) − 2J3S1S4 − 2J4S2S3 (1)
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Figure 4. (a) Temperature dependence of χM (red circles) and χMT (blue triangles) vs. T plots of
2. Solid lines are drawn with the best-fitted parameter values described in the text. Inset figure is
magnetic coupling scheme. (b) M vs. H/T plots for 2. Solid lines are guides for the eye.

The obtained parameters are as follows: J1 = 2.23 cm−1, J2 = 0.46 cm−1, J3 = 1.78 cm−1,
J4 = 0.58 cm−1, gMn(III) = 2.00, gMn(II) = 1.98, gNi = 2.00, zJ′ = −0.0158 cm−1. Comparing
these four J values reveals that the interactions between Ni and Mn and J1 and J3 are the
main contributions to the magnetic behavior of 3. The average Mn–O–Ni angles, 96.76◦ for
Mn(III)–O–Ni(II) and 97.09◦ for Mn(II)–O–Ni(II), fall within the 95–98◦ range known as the
crossover angle, indicating ferromagnetic interaction [45,46].

Mn(III) and Ni(II) ions with distorted octahedral geometries often exhibit large ZFS
and negative anisotropic D parameters. Although the D parameter may influence the
decrease in the χT behavior, its value could not be satisfactorily analyzed with the χT vs. T
plots. Magnetization (M) measurements were performed for a more accurate determination
of the D parameter. Isothermal magnetization data were collected between 2 and 10 K at
applied fields ranging from 0.001 to 5 T. The magnetization approaches saturation at 2 K,
with a value of 14.8 NµB, slightly below the expected value of 15 NµB when g ~ 2.0 for
S = 15/2 ground state. The M vs. H/T plots for 2, 3, and 4 K largely overlap on a single
curve, while deviations are observed above 5 K, as shown in Figure 4b. These results
suggest that the magnetic anisotropy D in 2 is notably small. Finally, the D value could not
be precisely determined even through analysis of magnetization data (Figure S8).

Frequency-dependent alternating-current (AC) magnetization measurements were
performed at frequencies of 1, 10, 100, and 1000 Hz (Figure 5a,b). The measurements
without static DC field exhibited subtle out-of-phase (χ′′M) signals only. Using an applied
magnetic field of 2000 Oe, no alteration was observed in χ’M. However, a more prominent
frequency dependence was observed in χ′′M below 10 K, indicating field-induced slow
magnetic relaxation in magnetization. The energy barrier (Ea) and preexponential factor
(τ0) could be roughly estimated using the Debye model through Equation (2) [47].

ln
χ′′

χ′
= ln(ωτ0) +

Ea

kBT
(2)

The calculated results provide Ea values ranging from 6.13 to 9.45 cm−1 and τ0
values between 9.44 × 10−7 and 7.46 × 10−4 s for 2 under 2000 Oe DC field (Figure 6),
corresponding to relatively slow magnetic relaxation, similar to metal complexes reported
as weak SMMs [2,48].
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Figure 5. Variable temperature AC susceptibility data in a 3 Oe AC field oscillating at 1, 10, 100, and
1000 Hz with 2000 Oe DC static field for 2. (a) Plot of in-phase (χ’M) signal. (b) Plot of out-of-phase
(χ′′M) signal. Solid lines are guides for the eye.

Figure 6. Plots of ln(χ′′/χ′) versus 1/T for 2 under 2000 Oe DC field. Dotted lines represent linear
approximation.

4. Conclusions

The new mononuclear complex, [Ni(HL1)2] (1), was synthesized via simple reac-
tions between metal sources and the Schiff base ligand. The novel heteronuclear com-
plex, [Mn3Ni(L1)4Cl2(EtOH)2] (2), was obtained through a stepwise synthesis using 1 as
a complex ligand. The crystal structures of these complexes were elucidated through
single-crystal X-ray analysis. Complex 1 represents the first example of a mononuclear
complex with fac-coordinated H2L1 ligands. The tetranuclear complex 2 features a unique
Mn(II)Mn(III)2Ni(II) metal core connected by two µ3-alkoxo, two µ2-alkoxo, and two µ2-
phenoxo bridges. Investigations into the magnetic properties of 2 through DC magnetic
measurements revealed the presence of dominant ferromagnetic interactions among all
metal ions, resulting in an S = 15/2 ground state. Additionally, 2 exhibits frequency-
dependent out-of-phase signals below 10 K in AC studies, indicating relatively slow mag-
netic relaxation in magnetization.
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