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Abstract: In this article, a microstructural model of the Heusler alloy with the shape memory ef-
fect caused by the application of an external magnetic field is constructed. The dynamics of the
magnetization process are described using the Landau–Lifshitz–Gilbert equation. For the numerical
implementation of the model using the finite element method, the variational equations correspond-
ing to the differential formulation of the magnetic problem are used. Such an approach makes
it possible to reduce (weaken) the requirements for the smoothness of the sought solution. The
problem of magnetization of single crystals of the Ni2MnGa alloy, which has a “herringbone”-type
martensitic structure (a twinned variant of martensite), is considered. In each element of the twin,
the magnetic domains with walls of a certain thickness are formed. The motion and interaction of
these walls and the rotation of magnetization vector in the walls and domains under the action of
the external differently directed magnetic fields are studied. These processes in the Heusler alloy are
also accompanied by the detwinning process. A condition for the detwinning of a ferromagnetic
shape memory alloy in a magnetic field is proposed, and the effect of the reorientation (detwinning)
of martensitic variants forming a twin on the magnetization of the material and the occurrence of
structural (detwinning) deformation in it are taken into account. First, the processes of magnetization
and structural deformation in a single grain are considered at different angles between the anisotropy
axes of twinned variants and the external magnetic field. For these cases, the magnetization curves
are constructed, and the deformed states are identified. The model described such experimental facts
as the detwinning process and the jump in magnetization on these curves as a result of this process.
It was shown that the jump occurred at a certain magnitude of the strength of the applied external
magnetic field and a certain direction of its action relative to the twinning system. Then, based on
the obtained results, deformed states arising due to the detwinning process were determined for
various (isotropic and texture-oriented) polycrystalline samples, and magnetization curves taking
into account this process were constructed for these materials.

Keywords: micromagnetism; magnetic domains; variational formulation; finite element method;
detwinning condition; polytwin crystals; magnetization curves; deformed state

1. Introduction

Recently, much attention has been paid to both the practical and theoretical aspects of
smart materials; that is, the materials that significantly change their physical, mechanical,
or geometric characteristics under the influence of external factors of various physical
natures. Such intelligent materials include the Heusler Ni2MnGa alloy, which can change
its size and shape when exposed to an external magnetic field (see, for example, [1–3]).
Such behavior of smart materials is associated with a phase transition of the first kind that
occurs (in the absence of fields of different physical nature—force, magnetic, etc.) during
the cooling (heating) of the material. When the Ni2MnGa alloy is cooled during a direct
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phase transition, a cubic crystal lattice of its high-temperature phase (austenitic state) is
transformed into a tetragonal crystal lattice of the low-temperature phase (martensitic
state). In the above-mentioned Heusler alloy, this process is realized via a simple shift of
one part of the martensitic plate relative to the other, which results in the twin formation.
When a stress and/or an external magnetic field is applied to such structure, the material
undergoes structural deformation of about 6–10%.

The Heusler alloys in the martensitic state at temperatures below the Curie point
(376 K for Ni2MnGa) are ferromagnets. Such materials exhibit spontaneous magnetization
even in the absence of an external magnetic field. Each variant of martensite forming a
twin has an easy magnetization axis, along which the spontaneous magnetization vector
is directed. The interrelated variants of martensite, the magnetization vectors of which
have the same direction, form the magnetic domains. It is energetically advantageous for
the magnetic domains with differently directed magnetization vectors to be positioned in
such a way that the alloy becomes non-magnetic in the absence of an external magnetic
field. In a magnetic field, the walls of magnetic domains move, the magnetization vectors
rotate, and the martensitic variants are reoriented (detwinned). All these processes occur
at the material structure level. Therefore, in order to describe them, it is necessary to
involve the microstructural modeling approach [4–7]. In contrast to the phenomenological
approach, which has been the focus of many earlier publications (see, for example, [8–10]),
the above-mentioned strategy allows us to construct equations that describe the process
without additional assumptions.

Within the framework of the theory of micromagnetism [11], there are two approaches
to describe the evolution of the magnetization vector. The first approach is based on the
minimization of the magnetic energy density functional with additional restrictions on the
parameters. In this case, we solve the Euler–Ostrogradsky equation, which corresponds
to the minimum of this functional, or this functional is minimized directly. This approach
was implemented in [12] to describe the evolution of the magnetization and to perform a
numerical simulation of the motion and interaction of the Neel domain walls in a Ni2MnGa
single crystal under the action of a magnetic field. The second approach uses the Landau–
Lifshitz–Gilbert equation and is implemented in [13] to describe the behavior of the twinned
variant of martensite, which has a more complex structure compared to the one considered
in [12]. In this article, the variational equations corresponding to the Landau–Lifshitz–
Gilbert differential equation and the equation for the scalar magnetic potential are written
using the standard Galerkin procedure, which made it possible to reduce (weaken) the
requirements for the smoothness of the solution compared to the original differential
formulation (for this reason such a formulation of the problem is called weak). The
capabilities of these two approaches (minimization of the magnetic energy functional and
solution of the Landau–Lifshitz–Gilbert equation) to describe the magnetic processes were
analyzed in work [14], and preference was given to the approach that uses the Landau–
Lifshitz–Gilbert equation.

In a ferromagnetic material, purely magnetic Maxwellian stresses and mass (pondero-
motive) and purely magnetic forces and moments arise due to the action of the external
magnetic field. These forces and moments, which are supplements to the Maxwellian
forces, cause normal elastic tension in the body. It is believed that twinning or detwinning
of the martensitic structure in a ferromagnetic shape memory material occurs when the
above-mentioned forces and moments reach critical values, which results in significant
structural deformation (6–10%). This deformation is not magnetostrictive, which is usually
neglected due to its smallness. The critical values are reached when the walls of the mag-
netic domains cease to move (the magnetic domains favorably located with respect to the
external field grow at the expense of the domains, which have a less favorable location),
and the local magnetization vectors begin to rotate in the direction preferable to the external
magnetic field.

All the above processes occur in a single ferromagnetic alloy crystal with the shape
memory effect. However, most of the real materials are polycrystalline materials since,
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unlike single crystals, they are easier to manufacture. For example, polycrystalline films
are used in spintronics, actuator, and sensor applications. However, such materials can be
not only isotropic but also textured. The structures of polycrystals, which originate from
single twin crystals of Ni-Mn-Ga alloys and correspond to different textures, are described
in many works (see, for example, [15–19]. We will use this information while modeling the
behavior of polycrystalline material based on the behavior of single crystals.

In our study, which is a continuation of our previous works [20,21], a mesostructural
model of the behavior of the Heusler alloy single-twin crystal with the shape memory
effect in the magnetic field has been constructed to describe such processes as the motion
of magnetic domain walls, the rotation of magnetization vectors, and the reorientation
(detwinning) of martensitic variants. Using this model, the magnetization curves for both
the single twin crystal and polytwin crystals are constructed, and the deformation behavior
of these structures is described.

The transformation of a crystal cell of one symmetry into another, the formation of
twins and magnetic domains, the movement of the walls of these domains and their inter-
action, the rotation of magnetization vectors and the reorientation of martensite variants
forming a twin, or, in other words, the detwinning process, the mechanics of the twinning
and detwinning processes, and approaches to the description of magnetic and mechanical
processes in these materials are those the problems of physics, mechanics, crystallography
and mathematics that need to be solved to build a model that adequately describes the
behavior of a ferromagnetic alloy with shape memory. Such a model is constructed and
verified in this article on the basis of the results obtained earlier in the above areas by other
researchers and on the authors’ own results. The novelty of the approach to this study
can be outlined as follows: (a) the use of the variational equations corresponding to the
differential formulation of the problem of magnetization of Heusler alloys in a magnetic
field, (b) the formulation of the detwinning condition for a ferromagnetic shape memory
alloy under the action of the magnetic field only, (c) getting results within the framework
of the approach, which is based on the variational equations and the description of the
behavior of a twin martensite variant of Ni-Mn-Ga alloys in the magnetic field, taking
into account the detwinning process, and (d) the construction of magnetization curves for
polytwinned crystals consisting of single-twin crystals and detection of deformed states of
such structures.

2. The Main Relations
2.1. The Relations of Micromagnetism

As noted in the Introduction, a direct phase transition of the first kind realized in a
ferromagnetic Ni2Mn Ga alloy due only to its cooling leads to the fact that the martensitic
plates form a twinned structure, which consists of cells having a tetragonal lattice. The
boundaries of these cells may or may not coincide with the boundaries of martensitic
plates, which will be discussed in more detail later. At temperatures below the Curie
point, each tetragonal cell is spontaneously magnetized even in the absence of an external
magnetic field. The vector of spontaneous magnetization M (|M| = Ms, Ms is the saturation
magnetization) is directed along or against the short axis of the tetragonal lattice c, which
is called the axis of easy magnetization. The neighboring cells, which belong to the same
element as the twin and have the same directions of spontaneous magnetization vectors,
form the magnetic domains. These domains are so arranged with respect to each other
that the material is non-magnetized in the absence of an external magnetic field. The
neighboring domains with differently oriented magnetization vectors are separated by a
wall, in which the magnetization vector rotates in the direction from one domain toward
the other domain. If the vector rotates in the plane of the wall, this wall is called the Bloch
wall. If the vector rotates in a plane perpendicular to the plane of the wall, this wall is
called the Neel wall.

In the case when the wall thickness is more than 5–10% of the domain thickness, it
seems reasonable to take into account the processes occurring in the domain walls. It is
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exactly this structure that is considered in our work. In the external magnetic field, the
walls of these magnetic domains begin to move and interact, and the magnetization vectors
in the walls and domains begin to rotate: first, the domains most favorably oriented in
the direction of the applied external field increase due to less favorably oriented domains,
and then the magnetization vectors in the domains try to rotate along the applied field.
To describe such ferromagnetic material behavior, it is necessary to use microstructural
modeling [6,11–13]. Within the framework of this simulation, the dynamics of vector M in
a magnetic field are described using the Landau–Lifshitz–Gilbert equation

∂m
∂t

= −γ(m× He f f ) + α

(
m× ∂m

∂t

)
, (1)

where γ is the gyromagnetic ratio, α is the damping (dissipation) parameter, m = M/Ms is
the unit magnetization vector, and He f f is the vector of the effective field strength:

He f f = H0 −∇ϕ +
2 Aexch
µ0Ms

∆m +
2 Kanis
µ0Ms

(m · pα) pα. (2)

In the last expression H0 is the external field strength vector, which in our case does not
depend on the coordinates (constant in space), µ0 is the magnetic constant, Aexch is the
exchange constant, Kanis is the anisotropy constant, and pα is the direction of the easy axis
of the variant α (in the case of the existence of several easy axes in the crystal; it is further
assumed that there is only one easy axis in the crystal). ϕ is the scalar depending on the
vector coordinate x, which determines the strength vector of the internal demagnetization
field caused by the applied external field. This function satisfies the Poisson and the
Laplace equations:

∇ · ∇ϕ = Ms∇ ·m ∀x ∈ Ω(in), (3)

∇ · ∇ϕ = 0 ∀x ∈ Ω(ex), (4)

where Ω(in) is the region occupied by the body and Ω(ex) is the region occupied by the
medium surrounding the body. The function ϕ → 0 for x → ∞, and on the surface Γ,
which separates the body from its environment and has the external normal to the body
unit vector in the actual configuration N, the following equality is fulfilled:

2 Aexch
[
m× (N · ∇m)

]∣∣
Γ = 000, (5)

or, taking into account that vector (N · ∇m) is perpendicular to vector m and m 6= 000,

(N · ∇m)
∣∣
Γ = 000;

ϕ(in)|Γ = ϕ(ex)|Γ, (∇ϕ(in) −∇ϕ(ex))|Γ · TTT = 0, (∇ϕ(in) −∇ϕ(ex))|Γ · N = Ms m · N, (6)

whereTTT is the unit tangent vector to the surface of the body Γ in the actual configuration and
the superscript (in) corresponds to the body, and superscript (ex) denotes its environment.

The above differential formulation of the problem requires the existence of, at least,
a second derivative in the coordinates of the functions ϕ and m. Applying the Galerkin
procedure to the Equations (1), (3) and (4) and the boundary conditions (5) and (6) de-
scribed above, we have constructed the variational equations equivalent to the differential
formulation of the problem (see [13,20,21]). This made it possible to reduce (weaken) the
requirements for the smoothness of the sought solution (therefore, this formulation is called
weak) and to use the widespread and well-proven finite element method for numerical
implementation. Such a variational statement is also used in this work.
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2.2. Twin Structure

In this subsection, we give a short explanation of the process of twin formation in
order to use the constructed relations for describing the detwinning process. A detailed
consideration of this process can be found in our earlier article [21]. In the phase transition of
the first kind (during cooling), a cubic cell of austenite in the Ni2MnGa alloy is transformed
to the three tetragonal cells of martensite with pure strain tensors Ui, i = 1, 2, 3 (the Bain
strains), which take the following forms in the orthonormal basis ek, k = 1, 2, 3, with vectors
parallel to the edges of the cubic cell [22,23]

U1 = β e1e1 + α (e2e2 + e3e3), U2 = α (e1e1 + e3e3) + β e2e2,

U3 = α (e1e1 + e2e2) + β e3e3. (7)

These tensors enter in the polar decompositions of the deformation gradients Fi = Ri · Ui
(Ri is the proper orthogonal tensor), which satisfy the Hadamard compatibility condition
that must be met for the plane separating the two variants of martensite i and j with the
Bain strain tensors Ui and Uj [23,24]

Rij · Ui = f · Uj, f = g + s δ1 δ2. (8)

Here f is the deformation gradient describing the process of a simple shift (not to be
confused with a pure shift) by the amount s (by angle γ, s = tan γ) in the plane with
the unit normal δ2 in the direction of the unit vector δ1, g is the unit tensor and Rij is
the combination of orthogonal tensors Ri and Rj: Rij = RT

j · Ri. The fulfillment of this
condition leads to the fact that the axes of the plates of two variants of martensite with the
Bain strain, for example, U1 and U2 are located at a certain angle to each other, forming a
twin. Such a structure for the material under consideration can be obtained with a simple
shift of a part of one of the martensite plates in the direction of the δ1 axis, as shown in
Figure 1.

c1

c2

∆2

∆1

¿

A

B

C

C’

D

D’

E

F

U1

U2
Γ

Φ

Figure 1. The process of twin formation with a simple shift of part of one of the martensite plate in
the direction of the δ1 axis.

Here, according to the Hadamard compatibility condition, plate ABCDEF with axis c1
coinciding with the short axis of the tetragonal martensite cell with Bain strain U1 turns into
a twin ABC ′D ′EF by shifting any cross-section of part BCDE of plate ABCDEF parallel
to the plane, to which vector δ2 is normal in the direction of vector δ1 proportional to the
distance of this cross-section from the cross-section BE. The transformation of part BCDE
into part BC ′D ′E is shown in Figure 1 by the dashed line. This corresponds to a simple shift
in the direction of vector δ1 relative to vector δ2 by angle γ or the rotation of plane BC (ED)
by angle φ to position BC ′ (ED ′). Angle χ is the angle between vectors c1 and δ1. Again, in
accordance with the Hadamard compatibility condition, the tetragonal martensite cell in
plate BC ′D ′E with Bain strain U2 has a short axis c2, which is directed at a certain angle ψ
to vector c1. This vector does not coincide with the axis of plate BC ′D ′E, and angle ψ is not,
in general, equal to 90◦. Thus, for the ferromagnetic shape memory alloy, it is necessary
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to clearly differentiate between the direction of the main axes of plates forming a twin
and the direction of the short axes of the tetragonal martensite cells with the Bain strains
Ui. These tetragonal martensite cells are formed in each of the two structural elements
forming the twin [25], and the vectors of local spontaneous magnetization M of the cells in a
ferromagnetic material are directed along or against the short axes of tetragonal martensite
cells ci.

In Figure 1, the tetragonal martensite cells are shown as gray areas. Each tetragonal
cell has two identical edges a = b and one short edge, which is denoted by c. Therefore,
the unit normal to the largest plane of the tetragonal cell is denoted by c and this vector
coincides with the vector of easy magnetization p in the relation (2).

For Ni2MnGa, the parameters of a cubic and tetragonal cell are known [26,27]: in a
cubic cell, all edges are of equal length a = 0.5852 nm, and in a tetragonal cell, the lengths of
edges are a = b = 0.5920 nm, c = 0.5566 nm, and c/a = 0.94. As a result, in the Bain tensors
α = 0.5920/0.5852 = 1.01162, β = 0.5566/0.5852 = 0.951128. For these parameters, it was
found (see [21]) that χ = 46.8◦, γ ≈ 7◦, and φ ≈ 4◦ and the deformation gradient, which
describes a simple shift, in basis δ1, δ2 shown in Figure 1 takes the form f = g + s δ1δ2
(see (8)), where s = tan γ = 0.123398, from which it follows that γ ≈ 7◦, in basis e1, e2,
coinciding with vectors c1, c2, takes the following form

f = g− 0.061582 (e1e1 − e2e2) + 0.057899 e1e2 − 0.065498 e2e1 (9)

(regarding the relations between basis vectors δ1, δ2 and e1, e2 see Appendix B in [21]).
For our material, the short axes c of two tetragonal martensite cells, forming a twin and
being also the axes of easy magnetization, are located at an angle 90◦ to each other, ψ = 90◦,
which is in full accordance with the experimental results [28–30]. (In [6], it was noted that
the short axes of two tetragonal martensite cells forming a twin in the Ni2MnGa alloy are
at an angle of 86.5◦ to each other, and the reference was made to the experimental work
of Solomon et al. [31]. However, in this publication the Ni51Mn29Ga20 alloy is considered.
We suppose that the difference in angles is due to this fact). Then, in basis ek, for which
the expressions (7) are written, vectors c1 and c2 in Figure 1 coincide with vectors e1 and
e2, respectively (at U1 the short axis is directed along vector e1 and at U2 along vector e2),
and this basis is convenient to use for describing the twin structure of the material under
consideration. Axis e1 of the cell triggering the twinning process (here it is a tetragonal cell
with deformation U1) is parallel to the boundary of the twin, and axis e2 of the other cell is
not parallel.

3. Detwinning Process

As noted in the previous section, twinning in the Ni2MnGa alloy occurs as a result of
a simple shift. This suggests that detwinning as a reverse process should also be realized
via a simple shift, which requires that certain forces must be applied on a certain surface.
In the general case, these forces result from the mechanical, electrical, magnetic, and some
other actions so that the detwinning process can be described in no other way than to solve
the problem of the anisotropic moment theory of elasticity (see [21]). However, in the case
when only a magnetic field is applied, there is an easier way to simulate the detwinning
process, which is based on the calculation of the mass magnetic moment. This section is
devoted to the description of such an approach.

As it follows from Figure 1, to transpose element BC ′D ′E of twin ABC ′D ′EF to its
original position ABCDEF, a certain moment must be applied to it. When the external
force is the magnetic field only, the mass magnetic moment Lmag = µ0 M × H, which acts
in the body and in which H = H0 −∇ϕ, is just such a moment. If the average value of
vector Lmag in the volume of element BC ′D ′E reaches a certain critical value and is oriented
in a certain direction, the detwinning process takes place and the element transforms into
element BCDE becoming a continuation of element ABEF. The disappearance of the twin
structure, which complements the processes of movement and interaction of the magnetic
domain walls and rotation of the magnetization vectors, takes place only in a shape memory
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ferromagnetic alloy as opposed to the last two processes. To define this average critical
value Lcr

mag, we used data from experimental works [32–35], in which the Ni-Mn-Ga alloys
close to stoichiometric Ni2MnGa are studied. A single-crystal prismatic sample was cut in
the martensitic state from a material that experienced a direct phase transition of the first
kind caused by cooling in the absence of the magnetic and force fields. The martensitic
variants, which form the twin, have easy magnetization axes c parallel to the sides of the
sample. A magnetic field was applied along one of these short axes, and the magnetization
curves were plotted for these experiments. For the magnetic field µ0 |H0| = 0.3÷ 0.5 T,
these curves demonstrate a sharp jump in the magnetization. Such a jump is attributed to
the reorientation of the martensitic variants that form the twin, or, in other words, to the
detwinning process. Solving the magnetic problem corresponding to the experiment, it is
possible to determine the average critical value of Lcr

mag.
Twins of the same shape can be formed in two ways. In the first case, the structure

arises from element 1− 2− 3′ (see Figure 2 on the left) by shifting its part 2− 3′ in the
direction of vector δ1 to position 2− 3. This process was discussed in the previous subsec-
tion where, for the specific parameters of cubic and tetragonal cells for Ni2MnGa, the links
between the quantities present in the Hadamard compatibility equation were established.

e1 e2
∆1

∆2

1

2

3

3’

¿

45
0

45
0

e1 e2
∆1

∆2

1

2

3

1’

¿

45
0

45
0

Figure 2. The formation of twin, χ = 46.8◦; twin occurs from element 1− 2− 3′ by shifting its part
2− 3′ in direction of vector δ1 to position 2− 3 (on the left), twin occurs from element 1′ − 2− 3 by
shifting its part 1′ − 2 in the direction of vector δ1 to position 1− 2 (on the right).

As a result, the deformation gradient, describing the kinematics of the process, is
constructed both for basis δi, i = 1, 2, in which it is convenient to represent the deformation
of a simple shear, and for basis ei, i = 1, 2, which coincides with the axes of magnetic
anisotropy of the material and also with the axes of easy magnetization. This gradient in
the basis δi shown in Figure 2 on the left is defined, as we know, by f = g + s δ1δ2, where s
is the magnitude of the shift. As it follows from this figure,

δ1 = e1 cos χ + e2 sin χ, δ2 = − e1 sin χ + e2 cos χ, (10)

and then tensors f in basis ei, which in the following will be denoted by f1 indicating the
belonging of this tensor to the first case can be written as

f1 = g− a (e1e1 − e2e2) + b e1e2 − c e2e1. (11)

Here, for the specific values of s and χ given above,

a = s sin χ cos χ = 0.061582, b = s cos2 χ = 0.057899, c = s sin2 χ = 0.065498 (12)

and f1 is represented as (see (9))

f1 = g− 0.061582 (e1e1 − e2e2) + 0.057899 e1e2 − 0.065498 e2e1. (13)
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The second way of twin formation is shown in Figure 2 on the right. Here, the twin is
formed from element 1′ − 2− 3 by shifting its part 1′ − 2 in the direction of vector δ1 to
position 1− 2. Note that vectors δ1 and δ2 on the right and left of Figure 2 have different
positions relative to vectors e1 and e2. As follows from the solution of the Hadamard
compatibility equation, the position of vector δ1, in the direction in which the shift occurs,
is determined by angle χ relative to the element along which the twin is formed. In the first
case, this is element 1− 2− 3′, while in the second case, this is element 1′ − 2− 3. So, the
formation of twins in the second case is described by the same expression as in the first
case, but for vectors δi shown in Figure 2 on the right, f = g + s δ1δ2. As it follows from
this figure,

δ1 = e1 sin χ + e2 cos χ, δ2 = e1 cos χ− e2 sin χ, (14)

and then tensors f in basis ei, which in the following will be denoted by f2 indicating the
belonging to the second case takes the following form

f2 = g + a (e1e1 − e2e2)− c e1e2 + b e2e1 (15)

and with account of (12) is represented as

f2 = g + 0.061582 (e1e1 − e2e2)− 0.065498 e1e2 + 0.057899 e2e1. (16)

In accordance with these two scenarios of twin formation, the detwinning process
is also realized in two ways: when element 2 − 3 rotates in the plane of the drawing
counterclockwise relative to point 2 and takes position 2− 3′ and when element 1− 2
rotates in the plane of the drawing clockwise relative to point 2 and takes position 1′ − 2.
In the first case, the positive mass magnetic moment, which is perpendicular to the plane
of Figure 2 and has the required value, should be applied to element 2− 3, and in the
second case, the negative mass magnetic moment, which is perpendicular to the plane of
Figure 2 and has the required value, must be applied to element 1− 2. The third case, when
these necessary conditions are fulfilled simultaneously for the 1− 2 and 2− 3 elements,
is improbable due to all kinds of fluctuations associated with the magnetic, force, and
temperature processes occurring in the body.

As mentioned above, for the external magnetic field applied along the easy magne-
tization axis, reorientation (detwinning) in the Heusler Ni2MnGa alloy occurs according
to the experiments, when µ0 |H0| = 0.3÷ 0.5 T. The calculations presented in [20] show
that at this point, the 180-degree walls that separate the magnetic domains disappear,
but the strength of the external magnetic field is still insufficient to rotate vectors of local
magnetization in the elements of the twin, mainly along the field. This situation produces a
mass magnetic moment Lmag = µ0 M× H, which acts on the elements of twin 1− 2 and/or
2− 3 in Figure 2 and is mainly perpendicular to the plane of this figure. The critical value
of the external field, at which the detwinning process begins, is brought into accordance
with this moment.

To realize the above scenarios, a magnetic problem is solved for the twinned state of
the Ni2MnGa Heusler alloy when the external magnetic field is applied along or against
element 1 − 2 (easy axis c1, problem C1), or along or against element 2 − 3 (easy axis
c2, problem C2) in Figure 2, which is in exact accordance with the experiment described
above. The obtained magnetization distribution allows us to determine the average value
of mass magnetic moment Lmag in the regions occupied by elements 1− 2 and 2− 3 of
the twin. In problem C1, due to the motion of the magnetic domain walls, magnetization
vector M almost coincides with the magnetic field vector H in element 1− 2. For this
reason, mass magnetic moment Lmag in this element of the twin is of a rather small value.
In the element 2 − 3, vector M, due to the motion of the magnetic domain walls and
rotation of this vector, occupies such a position with respect to vector H that the mass
magnetic moment is directed perpendicular to the plane of the drawing when viewed from
the reader (the counterclockwise rotation is realized), and its value is considered critical
and denoted by Lcr

mag for the above critical value of the applied external magnetic field
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µ0 |H0| = 0.3÷ 0.5 T. This situation has a simple interpretation: the positive magnetic
moment acting counterclockwise on element 2− 3 of the twin (see Figure 2) causes the
rotation of this element with respect to point 2, which is also counterclockwise in the plane
of the drawing. As a result, element 2− 3 becomes a linear extension of element 1− 2 (the
reorientation of martensite variants occurs in accordance with the first case considered
above when discussing Figure 2). In problem C2, due to the motion of magnetic domain
walls, magnetization vector M almost coincides with magnetic field vector H in element
2− 3. For this reason, mass magnetic moment Lmag in this element of the twin is of a rather
small value. In element 1− 2, vector M, due to the motion of the magnetic domain walls
and rotation of this vector, occupies such a position with respect to vector H, that the mass
magnetic moment is directed perpendicular to the plane of the drawing when viewed from
the reader and rotates in a clockwise direction when |L|mag = |L|cr

mag. This situation has a
simple interpretation: the negative magnetic moment acting in a clockwise direction on
element 1− 2 of the twin (see Figure 2) causes the rotation of this element with respect
to point 2, which is also clockwise in the plane of the drawing. As a result, element 1− 2
becomes a linear extension of element 2− 3 (the reorientation of the martensitic variants
occurs in accordance with the second case considered above when discussing Figure 2).

In the next section, following any of these algorithms, we will find a specific value
of |L|cr

mag corresponding to the above-mentioned experiments [32–35]. This critical value
is used to determine the beginning of the detwinning process in the same material, but
when the external magnetic field is applied in different directions relative to the c axis of
each variant of martensite forming the twin. As noted above, detwinning occurs when the
module of mass magnetic moment |L|mag reaches value |L|cr

mag and is positive in element
2− 3 of the twin with the easy axis c2 or negative in element 1− 2 of the twin with the
easy axis c1. In the first case, element 2− 3 occupies position 2− 3′ and is an extension of
element 1− 2. In the second case, element 1− 2 occupies position 1′ − 2 (see Figure 2) and
is an extension of element 2− 3. In any other cases, the detwinning process does not occur.

Kinematics corresponding to the detwinning process is described by the relations
inverse of (13), (16). The latter can be easily constructed based on the expression for the
deformation gradient written in basis δi, corresponding to the left-hand and right-hand
part of Figure 2, f = g+ s δ1δ2. It is easily checked that the tensor inverse to f is represented
as f = g− s δ1δ2. Substituting the Expressions (10) and (14) into this form we get

f−1
1 = g + a (e1e1 − e2e2)− b e1e2 + c e2e1 for the first case,

f−1
2 = g− a (e1e1 − e2e2) + c e1e2 − b e2e1 for the second case (17)

and taking into account (12), we obtain the following specific expressions:

f−1
1 = g + 0.061582 (e1e1 − e2e2)− 0.057899 e1e2 + 0.065498 e2e1 for the first case,

f−1
2 = g− 0.061582 (e1e1 − e2e2) + 0.065498 e1e2 − 0.057899 e2e1 for the second case. (18)

Using direct multiplication, we can easily show that tensors (17) are the inverse of
tensors (11) and (15) and tensors (18) are the inverse of tensors (13) and (16).

Remark 1. As noted earlier, element 2− 3 of twin 1− 2− 3 (see Figure 2) passes into element
2− 3′ and becomes an extension of element 1− 2 for the first case of the detwinning process. The
result of this is the elongation of the material in the direction of vector e1 and its shortening in
the direction of vector e2. element 1− 2 of the twin 1− 2− 3 passes into element 1′ − 2− 3
and becomes a continuation of element 2− 3 for the second case of the detwinning process. The
result of this is the elongation of the material in the direction of vector e2 and its shortening in the
direction of vector e1. As a result, the deformation process becomes most evident on this basis, and
the convenience of such representation will be demonstrated below.
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4. Statement of the Problem and Procedure for Its Numerical Implementation
4.1. Computational Domain and Material Parameters

Figure 3 shows the computational domain (blue square), which is duplicated along
the x and y axes. This domain has the “herringbone” structure consisting of a twinned
variant of martensite. The short axes or axes of easy magnetization, or the anisotropy axes,
are represented as c1 and c2. The arrows show the magnetization vectors directed along or
against these axes when the external magnetic field is absent. The magnetic domains inside
each martensitic variant are located at an angle of 180-degrees, while the magnetic domains
belonging to the two variants of martensitic plates forming the twin are located at an angle
of 90-degrees to each other. We apply the external magnetic field at different angles φ and
determine the magnetic and deformation behavior of a material cell representing a grain
(a monotwin crystal, single crystal) in such a field. Placing the single crystals at different
angles in the plane of Figure 3, and using the results obtained, we plot magnetization
curves for different polycrystalline samples and describe the deformation behavior of these
materials during detwinning.

�

�

��

��

��
�

Figure 3. The structure of the twinned variant of martensite (on the left) and the computational
domain in this crystal (on the right).

The martensitic plates in the Heusler alloy have a characteristic size of about 100–200 nm.
So the size L of the square computational domain L× L (blue square in Figure 3) is chosen
as L = 380 nm. The parameters of Ni2MnGa alloy are given in Table 1. For the numerical
implementation of the problem, we make all the relations dimensionless by introducing
the characteristic size l0 = 3.8 nm and energy ψ0 = µ0Ms

2 = 4.55 · 105 J/m3. We estimate
the thickness of the domain wall to determine the characteristic size of the finite element in
the numerical calculation of the magnetization process. This size should be such that at
least four to five elements fall on the domain wall. A large number of elements significantly
increases the counting time; a smaller number significantly reduces the accuracy of the re-
sult. We determine the order of domain wall thickness using the relation ∆ ≈ √Aexch/Kanis
given in Brown’s monograph [11] and for the Ni2MnGa ∆ ≈ 9 nm. The thickness by itself,
∆, is determined for a 180-degree wall in two ways: using the Lilly method ∆L = π δ and
using the Landau–Lifshitz method ∆L−L = 2 δ, which, taking into account the above value
of δ, give ∆L ≈ 28 nm ≈ 7.4 l0 and ∆L−L ≈ 18 nm ≈ 4.7l0. As a result, we obtain the
following dimensionless parameters:

M̃s = 1; K̃anis =
Kanis

ψ0
≈ 0.54; Ãexch =

Aexch

ψ0 l2
0
≈ 3.



Magnetochemistry 2023, 9, 40 11 of 27

Table 1. Material Parameters

Parameter Value Dimension Source

Ms 6.015 · 105 A/m [6,36]
Kanis 2.5 · 105 J/m3 [6,36]
Aexch 2 · 10−11 J/m [6,7]

γ 2.21 · 105 m/(A·s) [6]
α 0.5 - [6]

We also make dimensionless external magnetic field H̃0 = H0/Ms and introduce the
notation H̃0 = |H̃0|.

4.2. Problem Formulation and Procedure for Its Numerical Implementation

For the twinning structure, presented in Figure 3, and the shape memory ferromagnetic
Ni2MnGa Heusler alloy with such parameters, we formulate the problem of magnetic and
deformation behavior of a monotwin and a polytwin crystal in a magnetic field.

First, the behavior of a monotwin crystal is modeled. The periodicity conditions of
the solution are imposed [12]. To implement these conditions, it is necessary to consider
the 2 L× 2 L domain, in the middle of which the domain L× L (blue square in Figure 3)
is located.

As noted earlier, using the initial distribution of the magnetization m and the coupled
variational equations, we establish the initial boundaries of the magnetic domains and
determine the distribution of the magnetization vectors in them in the absence of an external
magnetic field (Problem 1). The obtained magnetic structure is the initial structure to which
the magnetic field is applied. Then, applying an external magnetic field in the direction
of sector c1 (see Figure 3) in accordance with the experiments described in the previous
section [32–35], we determine the critical value of mass magnetic moment Lcr

mag at which
the detwinning process is realized (Problem 2). By solving this problem we will be able to
describe the movement of the domain walls, the rotation of the magnetization vector, and
the detwinning process that will allow us to construct the magnetization curves and define
the deformation states under the action of external magnetic field H0, which is applied to
the computational domain shown in Figure 3 at different angles to the y axis in the (x, y)
plane (Problem 3).

We solved the variational equation using the finite element method (FEM) using the
open source computing platform FEniCS (https://fenicsproject.org, accessed on 11 January
2023). A regular grid of 5184 finite elements was used. The blue square in Figure 3 was
divided into 1296 equal squares, and each of the resulting squares was divided diagonally
into four equal triangles. Each element was triangle with sides 7.5 nm, 7.5 nm, and 10.6 nm.
As a result, there were from three to four finite elements per domain wall, which is quite
enough to ensure the necessary accuracy of the solution. The periodicity conditions of
the solution, which were specified above, are imposed. A quadratic approximation was
used for vector v, and a linear approximation for ϕ and λ. H̃0 increased from 0 to 1.5 with
increments of h̃0 = 0.01. The θ-scheme was used for time stepping [13]: m(t) at the current
time t is represented as m∗ + θ τ v, where m∗ = m(t∗) is the magnetization at the previous
time t∗, τ = t− t∗ is the time step, θ ∈ [0, 1], v = ∂m/∂t. The stability of the numerical
solution is provided by the choice of the parameter θ: if θ > 0.5, the scheme will be stable
for any steps in time and space. Within each step of the applied magnetic field, 3000 time
steps with the values τ = γ Ms t = 0.05 and θ = 0.6 were realized to fulfill the condition of
convergence of the solution.

Having a sufficient set of magnetization curves and deformed states of a single crystal
at different directions of the external magnetic field application (the justification for the
necessary sufficiency will be given in the following section), we describe the behavior
of a polycrystal, each grain of which is a single crystal oriented in the plane of Figure 3
in a certain manner specifying the isotropic and anisotropic behavior of the polycrystal.
As a result, we construct the magnetization curves and determine the deformed states

https://fenicsproject.org
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in a polycrystal, which is a representative volume of the material under consideration
(Problem 4).

The results obtained by solving Problems 1–4 are given in the next section.

5. Results of Numerical Simulation
5.1. A Monotwin Crystal

As noted earlier, this work is a direct continuation of work [20]. In the last publication,
the results of the calculation of the evolution of magnetization vector m were presented for
the material and the computational domain considered in this article. Firstly, the coupled
variational equations corresponding to the differential formulation of the magnetic problem
(see Section 2.1) were solved for the initial distribution of magnetization vector m, shown
in Figure 3, in the absence of an external magnetic field. This is a solution to Problem 1
posed in Section 4.2. Such a magnetic structure is considered to be initial for the subsequent
application of the external magnetic field at different angles φ to the y axis (see Figure 3). In
our case, 0◦ ≤ φ ≤ 90◦ and, as will be shown below, such a change in the angle is enough to
describe the magnetic and deformation behavior of various polytwin crystals. The obtained
results demonstrate that at the initial stage, the magnetization occurs due to the motion of
the magnetic domain walls and also due to the rotation of the magnetization vectors.

In work [20] discussed above, the detwinning process was not taken into account.
However, knowing the distribution of the magnetization vector in the computational
domain for angles 0◦ ≤ φ ≤ 90◦, we can construct the dimensionless mass magnetic
moments L̃mag = Lmag/ψ0 corresponding to these angles, where Lmag = µ0 M × H. L̃mag
is defined as the average value of the mass magnetic moment in elements 1− 2 (see Figure 2)
corresponding to the center of the computational domain in Figure 3, for this domain, and
in elements 2− 3 corresponding to the periphery of this computational domain, for this
domain. The key results applicable for further explanation and use are shown in Figure 4
depending on H̃0. The blue color shows the moment for element 1− 2 (the middle area in
Figure 3), and red for element 2− 3 (the periphery area in Figure 3). φ is the angle to the y
axis in degrees.
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Figure 4. Mass magnetic moments at different angles φ to the y axis, the blue color shows the moment
for element 1− 2 (the middle area in Figure 3), red for element 2− 3 (the periphery area in Figure 3).

The dependence of L̃mag on H̃0, shown in Figure 3 for angle φ = 45.84◦, allows us to
solve Problem 2 formulated in Section 4.2 and determine the critical value of mass magnetic
moment L̃cr

mag, at which the detwinning process is realized. Here, the vector of external
magnetic field H0 acts along the axis of easy magnetization c1 of one of the elements of the
twin, located in the central region of Figure 3, the same as in experiments [32–35], in which
the magnetization curve is constructed taking into account the detwinning process.
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As follows from Figure 6 d of article [20], 180-degree walls separating the magnetic
domains disappear at angle φ = 45.84◦ already for H̃0 = 0.17, which corresponds to
µ0 |H0| = 0.13 T, and vector m lies completely in the plane of this figure. For this reason,
the vector of mass magnetic moment L̃mag in Figure 4 (its average value) at angle φ = 45.84◦

is directed perpendicular to the plane of this figure when viewed from the reader (red
line, counterclockwise rotation, positive moment L̃mag) in the peripheral region of Figure 3,
where the vector of easy magnetization is c2, or is also perpendicular to the plane of this
figure (blue line, clockwise rotation, negative moment L̃mag) in the middle area of Figure 3,
where the vector of easy magnetization is c1. The directions of these moments in these
areas correspond to all detwinning cases discussed in Section 3. However, due to a very
small value of L̃mag in the central region, detwinning will occur in accordance with the
first case, when the mass magnetic moment in the peripheral area reaches a critical value
|L̃|cr

mag. As follows from the experiments presented in works [32–35], detwinning begins
when the external magnetic field reaches value µ0 |H0| = 0.3÷ 0.5 T. For the smallest
value µ0 |H0| = 0.3, to which H̃cr

0 = 0.41 corresponds, from Figure 4 we find that for angle
φ = 45.84◦, |L̃|cr

mag = 0.35, |L|cr
mag = 0.16 · 106 N ·m/m3 and this is the solution to Problem

2 posed in subsection 4.2. The distributions of L̃mag, including those shown in Figure 4,
and the obtained critical value of the mass magnetic moment allow us to conclude that
there is no detwinning until φ is less than ≈ 40◦. In the area of (≈ 40◦) ≤ φ ≤ (≈ 89◦),
detwinning occurs in accordance with the first case. At the same time, H̃cr

0 , at which the
critical value |L̃|cr

mag is reached, varies from 0.40 at φ ≈ 40◦ to 0.72 at φ ≈ 89◦. At the angle
of 90◦, the curves of the dependence of L̃mag on H̃0 for element 1− 2 (the mid-area of the
calculated domain in Figure 3) and for element 2− 3 (the periphery of the computational
domain in Figure 3) differ only by a sign (see Figure 4). This means that in this case,
detwinning can occur both in accordance with the first and the second case but only when
the external magnetic field reaches value H̃cr

0 = 0.72. Physically, the probability of any
of these cases is the same due to all kinds of fluctuations accompanying the magnetic,
force, and temperature processes occurring in the medium. However, as shown below,
at φ = 90◦ + γ, 0◦ < γ < 90◦, detwinning occurs in accordance with the second case.
Therefore, from the viewpoint of mathematics, when approaching the angle of 90◦ from the
side 90◦−, then detwinning occurs in accordance with the first case, but when approaching
it from the side 90◦+, detwinning occurs in accordance with the second case. Without
having specific physical data, we will continue to adhere to this viewpoint.

To construct models of polytwin crystal behavior, the dependencies of L̃mag on H̃0
were calculated for 17 values of angles φ, including 8 shown in Figure 4. The segment
along angle φ from 0 to 1.5 radians was passed in increments of 0.1 radians, 1.5708 radians
corresponding to 90◦. Table 2 shows the values of H̃cr

0 , at which the first or the second case
of the detwinning process occurs for the corresponding φ. As noted earlier, detwinning
does not occur for angles φ less than 40◦. Therefore, the table shows the results only for the
angles greater than 40◦.

Table 2. The values, at which the detwinning process occurs

φ, radians 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.5708

φ, degrees 40.11 45.84 51.57 57.30 63.03 68.75 74.48 80.21 85.94 90.00

H̃cr
0 0.40 0.41 0.42 0.43 0.45 0.48 0.52 0.57 0.65 0.72

Detwinning 1 case 1 or 2 case

Such a change in angle φ is sufficient to describe the magnetic and deformation
reaction of the material to the application of an external magnetic field at the angles from
0◦ to 360◦ completely, provided that we take into account the following. Figure 3 shows
the computational domain, which is duplicated in the horizontal and vertical directions.
Such a choice of the computational domain allows us to set the periodicity condition of
the solution.
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However, the above choice of domain duplication in space is not the only one. In
Figure 5, in addition to the computational domain, another domain containing a twin
and having a certain symmetry is presented (let’s denote it as DS). Further analysis
will be carried out based on the symmetry. In Figure 6, the magnetic structure of this
symmetrical domain DS is shown. Here, the k2 axis is the vertical axis y of symmetry for the
domain DS and axis k1 is axis x in Figure 5. All angles between axes k1, 01′, k2, 02′, − k1,
01, − k2, 02, k1 are equal to 45◦. The vectors of spontaneous magnetization m are directed
from point 0 to points 1 and 2′ for one group of magnetic domains and from point 0 to
points 2 and 1′ for another group (see Figures 5 and 6).

�

�

��
�

Figure 5. The structure of the twinned variant of martensite (on the left) and domain DS containing
a twin and having a certain symmetry (on the right).

k2

1

2’

0

2

1’

k1

H0

Φ

Figure 6. The magnetic structure of symmetrical domain DS. H0 is a strength vector of the external
magnetic field applied to the domain at an angle φ.

The magnetic structure presented in Figure 6 has four 180-degree axes of symmetry:
k1, k2 and two diagonals 1− 1′ and 2− 2′. The symmetry with respect to diagonals replaces
vectors k1 and k2 with vectors k2 and k1 or − k2, and − k1, respectively. The symmetry
with respect to vector k1 replaces vector k2 with vector − k2 and symmetry with respect to
vector k2 replaces vector k1 with vector − k1. We use symmetries with respect to vectors
k1 and k2 based on the fact that mutual positions of vectors m and H0 correspond to the
conditions of such symmetry. We describe the symmetry using an orthogonal tensor [37].

O(ϕ, e) = g cos ϕ + ee (1− cos ϕ) + (e× g) sin ϕ. (19)

This tensor rotates any vector a with respect to vector e by an angle ϕ counterclockwise,
leaving its length unchanged: a′ = O(ϕ, e) · a, |a′| = |a|. Moreover, for this transforma-
tion, the angle between the two vectors a and b remains unchanged: a · b = a′ · b′.

Using Expression (19), a 180-degree rotation relative to the k1 axis can be described by
the orthogonal tensor O(k1) = k1k1 − k2k2 − k3k3. As noted earlier, although the problem
under consideration is a plane, when solving the Landau–Lifshitz–Gilbert equation, we deal
with vector m that has three components, m = m1 k1 + m2 k2 + m3 k3. However, there is
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no reason to take into account m3 when calculating the magnetization curves and the mass
magnetic moment for which we carry out this analysis. m3 does not affect the magnetization
curves, as will be shown below, and the magnitude of the mass magnetic moment required
to determine its critical value is calculated when m3 is already zero. Therefore, in the
following, the components of any vector or tensor associated with vector k3 are not taken
into account. Bearing in mind the above consideration, O(k1) = k1k1 − k2k2 and vectors

m = m1 k1 + m2 k2, H0 = H1
0 k1 + H2

0 k2, H = H1 k1 + H2 k2 (20)

are transformed by such rotation into vectors m′ = O · m = m1 k1−m2 k2, H ′0 = O · H0 =
H1

0 k1 − H2
0 k2, and H ′ = O · H = H1 k1 − H2 k2 (vectors m′, H ′0, and H ′ are a mirror

image relative to axis k1 of vectors m, H0 and H). The magnetization curves, which
are described by the relation m̃ = m · (H0/H0) remain unchanged in this case since
m · (H0/H0) = m′ · (H ′0/H′0), but vector Lmag = µ0 Ms m× H changes its sign because
m× H = −m′ × H ′ (both can be easily verified using a simple substitution. Note that m3

does not affect m · (H0/H0) at all). Due to such rotation, angle φ between vector H ′0 and
the fixed vertical axis y (see Figure 5), which is equal to β for vector H0, becomes equal
to π − β, 0 ≤ β ≤ π/2 (mathematically, this follows from the analysis of scalar products
k2 · H0 and k2 · H ′0). Bearing this in mind and considering the results of Section 3, we
conclude that the detwinning process for π− β begins at the same H̃cr

0 as is given in Table 2
for angle φ = β but unlike the first case it will be carried out in accordance with the second
case discussed in Section 3. The magnetization curves will be exactly the same as for angle
φ = β.

Now, let us perform a 180-degree rotation around vector k2, O(k2) = − k1k1 + k2k2,
in addition to the previous rotation: O = O(k2) · O(k1) = − k1k1 − k2k2. It is to be noted
that this product is commutative, in contrast to the general case. As a result, vectors m, H0
and H (20) are transformed by such rotation into vectors m′ = O · m = − (m1 k1 + m2 k2),
H ′0 = O · H0 = − (H1

0 k1 + H2
0 k2) and H ′ = O · H = − (H1 k1 + H2 k2) that leads to

the equalities m̃ = m̃′ and Lmag = L′mag. Given that angle φ between vector H ′0 and the
fixed vertical axis y shown in Figure 5, which is equal to β for vector H0, becomes equal to
π + β, 0 ≤ β ≤ π/2, we conclude that detwinning process for π + β begins at the same
H̃cr

0 as is given in Table 2 for angle φ = β and is carried out in accordance with the first
case indicated in this table. The magnetization curves will be exactly the same as for angle
φ = β.

Finally, we will perform a 180-degree rotation only around the k2 axis:
O(k2) = − k1k1 + k2k2. Of course, this rotation is a 180-degree rotation around vec-
tor k1 in addition to the previous rotation O = O(k2) · O(k1). vectors m, H0 and
H (20) are transformed by such rotation into vectors m′ = O · m = −m1 k1 + m2 k2,
H ′0 = O · H0 = −H1

0 k1 + H2
0 k2, and H ′ = O · H = −H1 k1 + H2 k2 that leads to the

equalities m̃ = m̃′ and Lmag = − L′mag. Due to such rotation, angle φ between vector H ′0
and fixed vertical axis y shown in Figure 5, which is equal to β for vector H0, becomes
equal to 2 π − β, 0 ≤ β ≤ π/2. With this in mind and considering the results of Section 3,
we conclude that the detwinning process for 2 π − β begins at the same H̃cr

0 as is given in
Table 2 for angle φ = β, but, unlike the first case, it will be carried out in accordance with
the second case discussed in Section 3. The magnetization curves will be exactly the same
as for angle φ = β.

Let us construct the average value of the projection of the magnetization on the axis
along which the external magnetic field is directed:

m̃ =< m|| >
1
S

∫
Ω(in)

(
m · H̃0

H̃0

)
dΩ(in), (21)

where S is the area of the considered domain.
Figure 7 demonstrates the dependencies of m̃ on the modulus H̃0 for different direc-

tions (angles φ) of the external magnetic field application, taking into account possible
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detwinning. Five stages of the magnetization process are distinguished on each of the
plotted curves. In the first stage, the 180-degree walls of the magnetic domains move
proportionally to the applied magnetic field, and the magnetization depends linearly on
this field. In the second stage, a jump in magnetization occurs due to a significant increase
in the speed of the movement of these walls. At the third stage, these walls are annihilated
in a critical field, the magnitude of which, H̃0, is approximately 0.32 for an external field
applied at angle φ = 0, or 0.17 at angle φ = 45.84◦, or 0.13 at angle φ = 90◦ (see Figures 5–7
in [20]), and the magnetization vectors begin to turn gradually, tending to align with the
applied external magnetic field. At the fourth stage, which is observed only for φ greater
than 40◦, detwinning occurs, and the magnetization increases sharply again as a jump.
For the curves presented in Figure 7, this takes place at the values of H̃0 given in Table 2.
At the last fifth stage, the magnetization reaches saturation. The magnetization curves
obtained show essentially anisotropic magnetic properties in the twinned martensite of
the Ni2MnGa alloy. Thus, we have solved the magnetic part of Problem 3, formulated in
Section 4.2.

Figure 7. The magnetization curves for different directions of application of external magnetic field φ

(in degrees), taking into account possible detwinning.

The detwinning process, which accompanies the magnetization process at certain
values of angle φ, leads to the occurrence of the structural deformation and can be realized
as it has been shown, in accordance with two cases. Let us construct a deformed state for
these cases. For detwinning process the strain tensor is given as e = (f−T · f−1 − g)/2,
where f−1 = f−1

1 or f−1 = f−1
2 is defined in basis e1, e2 by the relations (17) or (18). Using

Expressions (17), this form can be concretized into an expression e = e11 e1e1 + e22 e2e2 +
e12 (e1e2 + e2e1), where

e11 = (a2 + c2 + 2 a)/2, e22 = (a2 + b2 − 2 a)/2, e12 = [(1− a) c− (1 + a) b ]/2, the first case;

e11 = (a2 + b2 − 2 a)/2, e22 = (a2 + c2 + 2 a)/2, e12 = [(1− a) c− (1 + a) b ]/2, the second case.

By taking a = 0.061582, b = 0.057899, c = 0.065498 (see (12)), we obtain

e11 ≈ 0.06, e22 ≈ − 0.06, e12 ≈ 0.00 for the first case;

e11 ≈ − 0.06, e22 ≈ 0.06, e12 ≈ 0.00 for the second case. (22)

These results correspond to the actual behavior of the sample. Indeed, for the detwin-
ning process corresponding to the first case, element 2− 3 of twin 1− 2− 3 in Figure 2
is converted to an element 2− 3′, which is an extension of element 1− 2. As a result, the
sample increases its size in the direction of element 1− 2− 3′ (in the direction of vector e1)
and decreases in the normal direction (in the direction of element 1′ − 2− 3 or vector e2).
Therefore, the component e11 of the strain tensor is positive, and e22 is negative (see the first
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line in (22)). For the detwinning process of the second case, element 1− 2 of twin 1− 2− 3
in Figure 2 is converted to element 1′ − 2, which is an extension of element 2− 3. As a
result, the sample increases in size in the direction of element 1′ − 2− 3 (in the direction of
vector e2) and decreases in the normal direction (in the direction of element 1− 2− 3′ or
vector e1). Therefore, the component e22 of the strain tensor is positive, and e11 is negative
(see the second line in (22)), unlike the previous case. The values of these strains fully agree
with the experimental data (see [33,34]) both in the first and second cases.

Since the detwinning in these two cases is realized with a simple shift, this process
should take place without changing the volume. The obtained values of the strain tensors
components fully correspond to this statement. In addition, it turned out that the vectors
e1, e2, coinciding with both the axes of easy magnetization c1, c2 of the crystal and the
axes of its anisotropy p1, p2, were the principal axes of the twinning and detwinning
deformation processes.

It should be emphasized that deformation (22) occurs only if the conditions given in
Table 2 are fulfilled: each angle φ, which determines the direction of the external magnetic
field application on the calculated area, corresponds to the intensity of this field. If this
intensity is less than that given in Table 2, detwinning does not occur. With an account of
the above-said, and based on the analysis performed immediately after Table 2 for angle φ
varying from 90◦ to 360◦, we rewrite (22) as

e11 = 0.06 Γ(φ, H̃0), e22 = − 0.06 Γ(φ, H̃0), e12 = 0.00,

Γ(φ, H̃0) =


H(H̃0 − H̃cr

0 (φ)) if 0 ≤ φ ≤ π/2
−H(H̃0 − H̃cr

0 (π − φ)) if π/2 ≤ φ ≤ π
H(H̃0 − H̃cr

0 (φ− π)) if π ≤ φ ≤ 3 π/2
−H(H̃0 − H̃cr

0 (2 π − φ)) if 3 π/2 ≤ φ ≤ 2 π

, (23)

where H̃cr
0 (ζ) = ∞, if 0◦ ≤ ζ ≤ 40◦ and H(x) is the Heaviside’s function,

H(x) =
{

1 if x ≥ 0
0 if x < 0

. Having summarized the above, we can assert that the deforma-

tion part of Problem 3, formulated in Section 4.2, has been solved.

5.2. A Polytwin Crystal

In the previous subsection, we have considered a monotwin crystal under the action
of the external magnetic field applied at different angles in the xy plane. Now fixing the
direction of the external magnetic field and placing the computational domain shown
in Figure 3 at different angles to it, we will describe, using the curves in Figure 7, the
magnetization of this representative composite region, which models a polycrystal with a
different arrangement of twins in the plane, and deformed state of a polycrystal arising as
a result of the detwinning processes in single crystals. This will be the solution to Problem
4 formulated in Section 4.2. With this approach, the commonly used structural models do
not take into account the magnetic interaction, as well as the deformation interaction of
these regions, and the question of these effects remains open.

In order to specify the location of single crystals in a polycrystal, we introduce, in
addition to the orthonormal coordinate systems (q1, q2) associated with single crystals,
the general orthonormal coordinate system (k1, k2) associated with the polycrystal (see
Figure 8). The location of each single crystal in the polycrystal is determined by angle ϕ
between axis q2 of this single crystal and vector k1 of the coordinate system associated with
the polycrystal common to all single crystals. The arcs between the black dots in Figure 8
span equal angles of 45◦.
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Figure 8. The position of a single crystal in a polycrystal; the orthonormal coordinate systems (q1, q2)

are associated with single crystals, the general orthonormal coordinate system (k1, k2) are associated
with the polycrystal.

To construct the magnetization curves for isotropic and anisotropic polycrystals, we
use the following relation

m(H̃0) =

(∫ φ2

φ1

m̃(φ, H̃0) dφ

)/(∫ φ2

φ1

dφ

)
, (24)

where m̃(φ, H̃0) is the values of magnetization that correspond to angle φ, shown in Figure 3
for the single crystal, at point H̃0. angle φ shown in Figure 3 is defined through angle ϕ
shown in Figure 8 using the relation φ = ϕ− ϕH , where ϕ is the angle between vector k1
and vector q2 and ϕH is the angle between vector H0 and vector k1. Angle ϕ defines the
position of the single crystal in a polycrystal, and ϕH defines the direction of the vector
of external magnetic field H0 with respect to the polycrystal. The relation (24) describes
the effect of the magnetization of single crystals for the angles φ belonging to the segment
[φ1, φ2] on the magnetization of a polycrystal, which corresponds to the unit of angle φ.

For an isotropic polycrystal relation (24) takes the following form

m(H̃0) =

(∫ 2 π

0
m̃(φ, H̃0) dφ

)/(∫ 2 π

0
dφ

)
. (25)

It is easy to see that this expression remains valid for any choice of ϕH . Let us choose any
ϕH from the closed segment [0, 2 π] and make it fixed. Assuming that 0 ≤ ϕ ≤ 2 π, we get:

if ϕH ≥ ϕ, then 0 ≤ ϕ ≤ ϕH and − ϕH ≤ φ ≤ 0,

if ϕH ≤ ϕ, then ϕH ≤ ϕ ≤ 2 π and 0 ≤ φ ≤ 2 π − ϕH ,

and as a result − ϕH ≤ φ ≤ 2 π − ϕH .

In this case, the Expression (24) for an isotropic material is written as

m(H̃0) =

(∫ 2 π−ϕH

− ϕH

m̃(φ, H̃0) dφ

)/(∫ 2 π−ϕH

− ϕH

dφ

)
(26)

and is a complete analog of equation (25). Since the established relation between (25) and (26)
is valid for any ϕH , relation (25) does not depend on ϕH .

Let us go back to Expression (24). Dividing the segment [φ1, φ2] into n equal parts and
supposing that m̃ is constant on each of the parts, we obtain from (24)

m(H̃0) =
1
n

n

∑
j=1

m̃(ϕj − ϕH , H̃0). (27)

We consider three types of polycrystalline samples: isotropic polycrystal, texture-
oriented polycrystal—structure 1 and texture-oriented polycrystal—structure 2.
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It is assumed that an isotropic polycrystal consists of 17 twinned single crystals of
the same volume located at angles ϕj = 0◦, . . . , 90◦ between axis q2 of the single crystals
and vector k1 of the general coordinate system (see Figure 8). The magnetization curves
corresponding to these 17 positions are shown in Figure 7 and are used to construct the
magnetization curve for the isotropic polycrystal. Let us show that such a change in angle
ϕ is quite sufficient.

In connection with what has been said in the paragraphs following Table 2,

m̃(2 π − φj, H̃0) = m̃(− φj, H̃0) = m̃(φj, H̃0), m̃(π − φj, H̃0) = m̃(φj, H̃0),

m̃(π + φj, H̃0) = m̃(φj, H̃0), where φj = ϕj − ϕH , 0 ≤ φj ≤ π/2. (28)

We represent (27) for an isotropic material as

m(H̃0) =
1

4 n

[ n

∑
j=1

m̃(φj, H̃0) +
n

∑
j=1

m̃(π − φj, H̃0) +
n

∑
j=1

m̃(π + φj, H̃0) +
n

∑
j=1

m̃(2 π − φj, H̃0)

]
,

where φj in each sum varies from 0◦ to 90◦. This expression takes into account a uniform
distribution of the directions of the q2 vector of single crystals along a circle from 0◦ to
360◦, which must be performed for an isotropic polycrystal. Then, in accordance with (28),
we have four identical sums in square brackets, and this expression eventually takes the
following form for an isotropic material at value n = 17 given above:

m(H̃0) =
1

17

17

∑
j=1

m̃(φj, H̃0), where 0 ≤ φj ≤ π/2,

and is the simplest when ϕH = 0:

m(H̃0) =
1
17

17

∑
j=1

m̃(ϕj, H̃0). (29)

Here m̃(ϕj, H̃0) is the value of magnetization at the point H̃0 for the curve shown in Figure 7
that corresponds to angle φj, at which the external magnetic field acts on the calculated
domain for the single crystal. We use Expression (29) to construct the magnetization curve
for the isotropic polycrystal shown in Figure 9.

There is a predominant direction of the martensitic structure orientation for tex-
tured polycrystals. It is assumed that structure 1 consists of 3 twinned single crys-
tals, and structure 2 consists of 5 twinned single crystals of the same volume. These
twinned crystals are located at angles ϕj = 40.11◦, 45.84◦, 51.57◦ for structure 1 and
ϕj = 34.38◦, 40.11◦, 45.84◦, 51.57◦, 57.30◦ for structure 2 between vectors q2 of the twinned
single crystals and k1 of the general coordinate system.

Remark 2. This arrangement of twin crystals is not randomly chosen. The sets of single twin
crystals differently located in space for structure 1 and structure 2 are grouped around the crystal
whose angle ϕ is about 45◦. This means that for this crystal, one element of the twin has axis e1
directed against vector k1, and the other element of the twin has axis e2 directed against vector
k2 (see Figure 8). If the external magnetic field is applied along axis k1 and reaches the value
of H̃0 ≈ 0.4 (see Table 2), this crystal shows a detwinning behavior and the element, which was
directed along vector −k2, will be directed along vector k1. As a result, the magnetization in this
crystal in the direction of vector k1 will increase in a jumpwise manner. In addition, as was shown
above, the detwinning process causes in this crystal a structural strain, and in the direction of vector
k1, its value is e11 ≈ 0.06.

The values of H̃0 ≈ 0.4 and e11 ≈ 0.06 are the control values of the magnetic and deformed
behavior of structures 1 and 2 under the action of the external magnetic field in the direction of
vector k1. Detwinning of other crystals in these structures under the action of the field in the same
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direction causes the same elongation as in the above case but in a direction other than k1. This,
in accordance with (21), reduces the value of m̃ compared to the previous case, and the greater the
difference of angle ϕj from 45◦, the greater this decrease. As a result, the jump in the average value
of magnetization determined by relation (24) should be less for structure 2 compared to structure 1
since structure 2 is structure 1 extended using the two elements, which are the most distant from
the element defined by the angle of 45◦.

The magnetization curve for the above anisotropic structures is described using
the expression

m(H̃0) =
1
n

n

∑
j=1

m̃(ϕj − ϕH , H̃0),

where n = 3 for structure 1 and n = 5 for structure 2, ϕH is the angle in the xy plane
between vectors H0 and k1, and m̃(ϕj − ϕH , H̃0) is the values of magnetization at the point
H̃0 for the curve shown in Figure 7 that correspond to angle ϕj − ϕH , at which the external
magnetic field acts on the computational domain for the single crystal. By applying an
external magnetic field along the k1 vector (ϕH = 0) and in the direction of 45◦ to this axis
(ϕH = 45◦), we construct curves for an anisotropic polycrystalline material with structures
1 and 2 (see Figure 9).

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.0

0.2

0.4

0.6

0.8

1.0

isotropic

struct. 1

struct. 1

struct. 2

struct. 2
H̃0

m

Figure 9. Magnetization curves for different polycrystals: isotropic and texture-oriented (structure 1
and structure 2). The solid lines show the magnetization curves for polycrystals when an external
magnetic field is applied along the k1 vector of these polycrystals. The dashed lines show the
magnetization curves for textured polycrystals when a magnetic field is applied at an angle of 45◦ to
vector k1 of these polycrystals.

The solid lines in Figure 9 correspond to the magnetization curves for polycrystals
when an external magnetic field is applied along the k1 vector of these polycrystals. The
dashed lines correspond to the magnetization curves for textured polycrystals when a
magnetic field is applied at an angle of 45◦ to vector k1 of these polycrystals (for an isotropic
polycrystal, the magnetization curve completely coincides with the curve corresponding to
the field acting along the k1 vector).

When the external magnetic field is applied along vector k1 (the solid lines), the curves
for anisotropic structures 1 and 2 have jumps in the region H̃0 = 0.4. Note that the jump
for structure 1 is greater than the jump for structure 2. Such behavior is fully consistent
with what was stated above in the Remark given before Figure 9. If, for structures 1 and
2, detwinning occurs simultaneously in all single crystals which form these structures,
then in an isotropic material, detwinning occurs successively in single crystals with an
increase of the external magnetic field since the intensity of this field is not enough for
initiating simultaneous detwinning in all crystals. At a given time, detwinning occurs only
in those crystals, the position of which and the relevant field strength satisfy the conditions
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of Table 2. For this reason, the curve for an isotropic material in Figure 9 (solid blue line)
consists of a series of small jumps of magnetization in the interval 0.4 ≤ H̃0 ≤ 0.7.

If an external magnetic field is applied at an angle of 45◦ to vector k1, then, as will
be shown below, detwinning does not occur in structures 1 and 2, and there are no jumps
on the curves in Figure 9 (dashed lines). The magnetization curves for these textured
polycrystals differ depending on the direction of the applied magnetic field because such
polycrystals are anisotropic.

Let us now define the deformed state that occurs in isotropic and anisotropic (struc-
tures 1 and 2) polycrystalline materials as the result of the detwinning process. As it
has been stated at the end of the previous subsection, the deformations arising in the
detwinning process are represented in basis e1, e2 as

e = e11 e1e1 + e22 e2e2 + e12 (e1e2 + e2e1) (30)

and have the following components (see (23))

e11 = 0.06 Γ(φ, H̃0), e22 = − 0.06 Γ(φ, H̃0), e12 = 0.00. (31)

In the basis of polycrystal k1, k2 (see Figure 8), the tensor (30) is represented as

e = E11 k1k1 + E22 k2k2 + E12 (k1k2 + k2k1) (32)

and from the equality of tensors in (30) and (32) we conclude that Ekp = eij (ei · kk)(ej · kp)

or, given that e12 = 0 for any case of detwinning process (see (31)),

E11 = e11 (e1 · k1)(e1 · k1) + e22 (e2 · k1)(e2 · k1),

E22 = e11 (e1 · k2)(e1 · k2) + e22 (e2 · k2)(e2 · k2),

E12 = e11 (e1 · k1)(e1 · k2) + e22 (e2 · k1)(e2 · k2). (33)

From Figure 8 we have

e1 · k1 = − cos(ϕ− 45◦), e1 · k2 = − sin(ϕ− 45◦),

e2 · k1 = sin(ϕ− 45◦), e2 · k2 = − cos(ϕ− 45◦)

and then expressions in (33) take the following form

E11 = e11 cos2(ϕ− 45◦) + e22 sin2(ϕ− 45◦), E22 = e11 sin2(ϕ− 45◦) + e22 cos2(ϕ− 45◦),

E12 = e11 sin(ϕ− 45◦) cos(ϕ− 45◦)− e22 sin(ϕ− 45◦) cos(ϕ− 45◦)

or, allowing for that cos2 α = [1 + cos(2 α)]/2, sin2 α = [1− cos(2 α)]/2, sin α cos α =
(1/2) sin(2 α),

E11 =
1
2
(e11 + e22) +

1
2
(e11 − e22) sin(2 ϕ), E22 =

1
2
(e11 + e22)− 1

2
(e11 − e22) sin(2 ϕ),

E12 = − 1
2
(e11 − e22) cos(2 ϕ)

and considering (31), we obtain

E11(φ, ϕ, H̃0) = 0.06 Γ(φ, H̃0) sin(2 ϕ), E22(φ, ϕ, H̃0) = − 0.06 Γ(φ, H̃0) sin(2 ϕ),

E12(φ, ϕ, H̃0) = − 0.06 Γ(φ, H̃0) cos(2 ϕ). (34)

As explained earlier, φ = ϕ− ϕH (see the explanation after the Relation (24)).
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The Relations (34) allow us to construct the deformed state that occurs in an isotropic
or anisotropic polycrystal during detwinning in single crystals. To do this, we use a relation
similar to (24),

Êij(ϕH) =

(∫ ϕ2

ϕ1

Eij(φ, ϕ, H̃0) dϕ

)/(∫ ϕ2

ϕ1

dϕ

)
. (35)

Dividing the segment [ϕ1, ϕ2] into n equal parts, ∆ϕ = (ϕ2 − ϕ1)/n, supposing that
ϕj = ϕ1 + (j + 0.5)∆ϕ, calculating Eij at these points and assuming that it is constant on
each such part, we obtain

Êij(ϕH) =
1
n

n−1

∑
j=0

Eij(ϕj − ϕH , ϕj, H̃0). (36)

The Expression (36) is found to be more suitable for an anisotropic material.
For the isotropic material, we use the relation (35). Consider the cases when the

external magnetic field of strength H̃0 = 0.46 and H̃0 = 1.0 is applied at the angles of
ϕH = 0◦ and ϕH > 0◦. Then, for ϕH = 0◦, φ = ϕ− ϕH = ϕ and in accordance with (23)
and the Table 2 we have for H̃0 = 0.46

Γ(ϕ) =


0 if 0 ≤ ϕ ≤ α1
1 if α1 ≤ ϕ ≤ α2
0 if α2 ≤ ϕ ≤ π/2

, Γ(ϕ) = −


0 if π/2 ≤ ϕ ≤ π − α2
1 if π − α2 ≤ ϕ ≤ π − α1
0 if π − α1 ≤ ϕ ≤ π

,

Γ(ϕ) =


0 if π ≤ ϕ ≤ π + α1

1 if π + α1 ≤ ϕ ≤ π + α2

0 if π + α2 ≤ ϕ ≤ 3 π/2
, Γ(ϕ) = −


0 if 3 π/2 ≤ ϕ ≤ 2 π − α2

1 if 2 π − α2 ≤ ϕ ≤ 2 π − α1

0 if 2 π − α1 ≤ ϕ ≤ 2 π

,

where, as it follows from Table 2, α1 = 40◦, α2 = 63.03◦. With this in mind and substituting
(34) into (35) we get

Ê11 =
0.06
2 π

(∫ α2

α1

sin(2 ϕ) dϕ−
∫ π−α1

π−α2

sin(2 ϕ) dϕ+

+
∫ π+α2

π+α1

sin(2 ϕ) dϕ−
∫ 2 π−α1

2 π−α2

sin(2 ϕ) dϕ

)
. (37)

It is easy to show that each of the last three integrals with their signs is equal to the first
integral. As a result,

Ê11 = 2
0.06

π

∫ α2

α1

sin(2 ϕ) dϕ =
0.06

π
[ cos(2 α1)− cos(2 α2)]. (38)

Substituting the above values of angles in this expression, we find that at ϕH = 0◦ and
H̃0 = 0.46, Ê11 = 0.015 and, as it follows from (34), Ê22 = − 0.015. It also follows from (34)
that Ê12 is represented in the case under consideration as (37), in which the sine is replaced
by cosine and the minus sign is placed in front of the whole expression. It can be easily
shown that the terms in the obtained expression are mutually eliminated at any α1 and α2
and, as a result, Ê12 = 0.

Now, if H̃0 = 1.0, then, in accordance with Table 2, we have for ϕH = 0◦ that α2 = π/2
in the Expression (37) for Ê11 and as a result, Ê11 = 0.022, Ê22 = − 0.022, Ê12 = 0. The
increase in the modulus of these components with increasing the external magnetic field is
explained by the involvement of additional regions in the detwinning process (see Table 2).
The expression for Γ(ϕ), which is not quite correct in this case, can be readily converted,
but due to the use of Relation (37), there is no need to do this.
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For ϕH > 0◦, φ = ϕ− ϕH and in accordance with (23) and the Table 2 we have for
H̃0 = 0.46 that

Γ(ϕ) =


1 if ϕH + α1 ≤ ϕ ≤ ϕH + α2
− 1 if π + ϕH − α2 ≤ ϕ ≤ π + ϕH − α1
1 if π + ϕH + α1 ≤ π + ϕH + α2
− 1 if π + ϕH − α2 ≤ π + ϕH − α1

,

and Γ(ϕ) = 0 for all other ϕ. Then, equation (35), in view of Relations (34), is written for
Ê11 as

Ê11 =
0.06
2 π

(∫ ϕH+α2

ϕH+α1

sin(2 ϕ) dϕ−
∫ π+ϕH−α1

π+ϕH−α2

sin(2 ϕ) dϕ +∫ π+ϕH+α2

π+ϕH+α1

sin(2 ϕ) dϕ −
∫ 2 π+ϕH−α1

2 π+ϕH−α2

sin(2 ϕ) dϕ

)
. (39)

It is easy to show that this equality can be represented as

Ê11 =
0.06

π

(∫ α2

α1

sin(2 ϕ + 2 ϕH) dϕ +
∫ α2

α1

sin(2 ϕ− 2 ϕH) dϕ

)
,

or as
Ê11 =

0.06
π

∫ α2

α1

[ sin(2 ϕ + 2 ϕH) + sin(2 ϕ− 2 ϕH)] dϕ,

or given at last that sin A + sin B = 2 sin
A + B

2
cos

A− B
2

, as

Ê11(ϕH) = 2
0.06

π
cos(2 ϕH)

∫ α2

α1

sin(2 ϕ) dϕ. (40)

As it follows from (34), Ê22 = − Ê11 and Ê12 is represented in the case under consideration
as (39) with the replacement of the sine by the cosine and the addition of the minus sign in
front of the whole expression

Ê12 = − 0.06
2 π

(∫ ϕH+α2

ϕH+α1

cos(2 ϕ) dϕ−
∫ π+ϕH−α1

π+ϕH−α2

cos(2 ϕ) dϕ +∫ π+ϕH+α2

π+ϕH+α1

cos(2 ϕ) dϕ −
∫ 2 π+ϕH−α1

2 π+ϕH−α2

cos(2 ϕ) dϕ

)
.

This equality is reduced to

Ê12 =
0.06

π

∫ α2

α1

[ cos(2 ϕ + 2 ϕH)− cos(2 ϕ− 2 ϕH)] dϕ,

or, given that cos A− cos B = 2 sin
A + B

2
sin

B− A
2

, to

Ê12(ϕH) = 2
0.06

π
sin(2 ϕH)

∫ α2

α1

sin(2 ϕ) dϕ. (41)

Relations (40) and (41) are the general expressions that define the components of the
strain tensor for an isotropic shape memory material during detwinning. The magnitudes
of these components depend both on the magnitude of the applied external magnetic field,
which in accordance with Table 2 determines the value of angle α2, and on the direction
of the field application (on angle ϕH). As it follows from Table 2, α2 = 63.03◦ when
H̃0 = 0.46 and α2 = 90◦ when H̃0 = 1.00. At the same time, angle α1 remains unchanged,
α1 = 40◦. When ϕH = 0 Expression (40) is similar to (38) and from the Expression (41) it



Magnetochemistry 2023, 9, 40 24 of 27

follows that Ê12 = 0 as was noted earlier. Although the components of the strain tensor
in the orthonormal basis ki (see Figure 8) depend on angle ϕH between vectors k1 and
H0, in the orthonormal basis γi, in which vector γ1 is directed along vector H0, these
components remain unchanged. This can be easily shown by analogy with establishing the
relationship between eij and Ekp in the Expressions (30) and (32). Therefore, such material
is called isotropic.

Let us now consider the deformed state of an anisotropic material with a shape
memory effect during its detwinning. We assume that twinned single crystals of the same
volume are continuously distributed in a polycrystal at ϕ1 ≤ ϕ ≤ ϕ2, and the external
magnetic field is applied at angle ϕH . We will consider two special cases of textured
polycrystals for which the magnetization curves have been already constructed: structure
1 for ϕ1 = 40.11◦ and ϕ2 = 51.57◦, and structure 2 for ϕ1 = 34.38◦ and ϕ2 = 57.30◦. For
these two cases, we present an algorithm for determining the deformed state during the
dissipation of twins (during detwinning) for the two angles ϕH of the application of an
external magnetic field: ϕH = 0 and ϕH = 45◦, and two H̃0: H̃0 = 0.46 and H̃0 = 1.00. The
deformed state during detwinning for any other case of anisotropy and the direction of
action of the external magnetic field can be determined using this algorithm.

Let us analyze the deformation behavior of structure 1 at ϕH = 0, H̃0 = 0.46 and
summarize the obtained findings. (1) Since φ = ϕ− ϕH then φ = ϕ and ϕ1 ≤ φ ≤ ϕ2
where ϕ1 = 40.11◦ and ϕ2 = 51.57◦. (2) Such a change in φ corresponds to the first line
in (23). As a result, we have Γ(φ, H̃0) = H(0.46− H̃cr

0 (φ)). (3) As it follows from Table 2,
Γ = 1 for H̃0 = 0.46 if φ = ϕ ∈ U where the set U = [40◦, 63.03◦]. Since for structure 1
ϕ ∈ U1 where the set U1 = [40.11◦, 51.57◦] then it follows from the intersection of the sets
U and U1, U ∩U1, that ϕ1 = 40.11◦ and ϕ2 = 51.57◦. (4) As a result, we find from the
Expressions (34) and (35) that

Ê11 = a S, Ê22 = − a S, Ê12 = − a C,

a = 0.06/(ϕ2 − ϕ1), S =
∫ ϕ2

ϕ1

sin(2 ϕ) dϕ, C =
∫ ϕ2

ϕ1

cos(2 ϕ) dϕ (42)

and for structure 1, ϕH = 0, H̃0 = 0.46 the detwinning strain tensor has the following
components in the basis ki (see Figure 8): Ê11 = 0.06, Ê = − 0.06, Ê12 = 0.0017.

Now, let us analyze the deformation behavior of structure 1 at ϕH = 0, H̃0 = 1.00.
Everything that is stated in item (1) of the previous case remains valid. In accordance
with item (2) Γ(φ, H̃0) = H(1.00− H̃cr

0 (φ)) and with item (3) the set U for H̃0 = 1.00 has
the form U = [40◦, 90◦]. Since the set U1 remains unchanged, then the set, which is the
intersection of sets U and U1, remains unchanged, too. As a result, the angles ϕ1 and ϕ2
are the same as in the previous case, and with reference to item (4), we have the same
components of the detwinning strain tensor as in the above case.

If the external magnetic field acts on structure 1 at angle ϕH = 45◦, then φ = ϕ− ϕH
will change, considering that ϕ ∈ U1 where the set U1 = [40.11◦, 51.57◦], in the interval
φ ∈ [−4.89◦, 6.57◦] which corresponds to the first and fourth areas of change in φ in the
Expression (23): φ ∈ [0◦, 6.57◦] and φ ∈ [355.11◦, 360◦]. Since H̃cr

0 (ζ) = ∞, if 0◦ ≤ ζ ≤ 40◦,
where ζ = φ in the first area and ζ = 2 π − φ in the second area, then Γ = 0 in any of these
cases and detwinning does not occur at any magnitude of the external magnetic field.

All of the above concerning the deformation behavior during the detwinning of
structure 1 at ϕH = 0 and H̃0 = 0.46 remains valid for structure 2 involving the replacement
of the set U1 by the set U2, where the set U2 = [34.38◦, 57.30◦] is the set that describes
structure 2. The consequence of the intersection of the sets U and U2 (instead of U1) are the
values of the angles ϕ1 = 40◦ and ϕ2 = 57.30◦, for which we eventually determine from
the Expressions (42) that Ê11 = 0.0586, Ê = − 0.0586, Ê12 = 0.0075.

By performing analysis similar to that made for structure 1 at ϕH = 0 and H̃0 = 1.00,
and also at ϕH = 45◦, we obtain similar results for structure 2: at ϕH = 0 and H̃0 = 1.00,



Magnetochemistry 2023, 9, 40 25 of 27

the deformed state remains exactly the same as at ϕH = 0 and H̃0 = 0.46, and at ϕH = 45◦,
and detwinning does not occur.

The results of the performed deformation analysis are presented in Table 3. Here
E11 is the average tensile strain of the considered structure in the direction of vector k1
(see Figure 8) caused by the detwinning process (for an isotropic material, this vector can
have any direction). As it follows from this table, the detwinning of an isotropic material
occurs sequentially and is determined by an increase in the strength of the applied external
magnetic field. In structures 1 and 2, complete detwinning occurs already at H̃0 = 0.46,
when the field is applied along vector k1, and the value of E11 for the first structure is
greater than that of the second one. When the field is applied at the angle of 45◦ to vector
k1, the detwinning does not occur at any external field strength.

Table 3. The results of the performed deformation analysis

ϕH = 0 ϕH = 45◦

H̃0 = 0.46 H̃0 = 1.0 H̃0 = 0.46 H̃0 = 1.0

Isotrop., E11 0.015 0.022 0.015 0.022

Structure 1, E11 0.06 0.06 0 0

Structure 2, E11 0.0586 0.0586 0 0

The results of the deformation analysis are consistent with the explanations given
above in the Remark and when discussing the curves in Figure 9.

6. Conclusions

In this article, within the framework of the theory of micromagnetism, the problem
of magnetization of a single twinned martensitic crystal of the shape memory Ni2MnGa
alloy using the finite element method was solved. The variational equations were put in
accordance with the Landau–Lifshitz–Gilbert equation and other differential equations and
boundary conditions of the theory of micromagnetism. This made it possible to reduce
the requirements for the smoothness of the problem solution. Magnetization curves were
plotted for different angles of application of the magnetic field to the anisotropy axes of the
twin variants.

A condition for detwinning of a shape memory ferromagnetic alloy was proposed
for the case when only a magnetic field acts on the body. This simplest way to simulate
the detwinning process is based on the calculation of the mass magnetic moment. When
this moment reaches each element of the twin, a critical value, determined experimentally,
detwinning occurs. It is shown that this critical moment corresponds to different strengths
of external magnetic field H̃cr

0 depending on the direction of its action with respect to the
twin (from angle φ) and quantitative compliance has been established between H̃cr

0 and
φ. The disappearance of the twin (detwinning) causes significant structural deformations
in the material, which affects the magnetization curves of a shape memory ferromagnetic
alloy in addition to the mechanisms that determine the magnetization of conventional
ferromagnetic alloys.

The curves constructed on the basis of the proposed model showed that the change
in the main mechanisms of magnetization, such as the movement and interaction of 180-
degree magnetic domain walls, the rotation of the local magnetization vectors, and the
occurrence of the structural deformation associated with the detwinning process, led to
kinks in the magnetization curves, which occur at different values of the external magnetic
field depending on the direction of this magnetic field.

Based on the magnetization curves obtained for the single-crystal and deformation
state, which corresponds to the detwinning state of such structure, the deformed states
and the magnetization curves were constructed for various types of polycrystals (isotropic
and textured), which are the structures formed of single crystals. For texture-oriented
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polycrystals, the magnetization curves and deformation states differed depending on the
direction of the applied magnetic field because such polycrystals are anisotropic.
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