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Abstract: The martensitic phase transition and exchange bias effect of the Ni-Mn-based ferromagnetic
shape memory alloys (FSMAs) Ni45Co5Mn37In13 (Ni-Co-Mn-In) films are investigated in this paper.
The martensitic transformation properties of the Ni-Co-Mn-In alloy target material are manipulated
by the process of electric arc melting, melt-fast quenching, and high-temperature thermal pressure.
The Ni-Co-Mn-In alloy films with martensite phase transition characteristics are obtained by adjusting
deposition parameters on the (001) MgO substrate, which shows a significant exchange bias (EB) effect
at different temperatures. With increasing sputtering power and time, the film thickness increases,
resulting in a gradual relaxation of the constraints at the interface between the film and the substrate
(the interfacial strain decreases as the increase of thin film thickness), which promotes the martensite
phase transition. Between zero-field cooling (ZFC) and field-cooled (FC) curve obvious division
zone, the decrease of exchange bias field (HEB) and coercive force field (Hc) with an increase in test
temperature is due to ferromagnetic (FM) interaction begins to dominate, resulting in a reduction
of antiferromagnetic (AFM) anisotropy at the interface. The maximal HEB and Hc reach ~465.7 Oe
and ~306.9 Oe at 5 K, respectively. The manipulation of the martensitic transformation and EB
effect of the Ni-Co-Mn-In alloy films demonstrates potential application in the field of information
and spintronics.

Keywords: ferromagnetic shape memory alloys; magnetic phase change Ni-Co-Mn-In alloy film;
exchange bias effect

1. Introduction

The NiMn-based ferromagnetic shape memory alloys (FSMAs) with first-order mag-
netic phase transition are a multifunctional material and have been intensively investigated
both experimentally and theoretically, such as magnetocaloric effect (MCE), barocaloric
effect (BCE), exchange bias (EB) effect, which have shown potential applications in the
microactuator, magnetic sensor, magnetic refrigeration and so on [1–5]. The NiMn-based FS-
MAs can be induced by both magnetic and temperature fields to achieve the magnetic phase
transition between martensite and austenite. And the magnetization and lattice constants
of FSMAs can occur mutation near the phase transition temperature. The representative
FSMAs material is the Ni2MnGa alloy [6]. Where after, new Ni-Mn-based FSMAs are ob-
served such as Ni-Mn-X (X = In, Sn, Sb, and so on) alloys [7]. Among them, the Co doping
Ni-Mn-based FSMAs have attracted widespread attention and are systematically studied.
For example, the Co doping Ni-Mn-X alloys are highly sensitive to their magneto-structural
behavior to micro-structural changes [8]. Wang et al. investigated the manipulation of
electric field on MCE in a Ni44Co5.2Mn36.7In14.1 alloy ribbon/(001)0.7Pb(Mg1/3Nb2/3)O3–
0.3PbTiO3. The thermal and magnetic hysteresis of the FSMAs can be obviously reduced
and the operating temperature window of the alloy ribbon can be remarkably extended [9].
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In addition, Wang et al. also revealed that the Ni49.8Co1.2Mn33.5In15.5 bulk has a large
inverse MCE with an ∆SM of 14.6 Jkg−1K−1 [10]. Porcar, L. et al. show that the martensitic
transformation temperature of the Ni45Co5Mn50−xInx (12.5 ≤ x ≤ 13.2) ribbons are con-
trolled by In content and the ribbons bending strain is up to 1% [11]. Besides, the effects
of alloy composition, heat treatments, and order domain coarsening phenomenon on the
martensitic transformation have been investigated in different compositions and process-
ing NiCoMnIn FSMAs by Karaman, I. et al. [12]. Furthermore, Fähler, S. et al. revealed
that epitaxial Ni48Co5Mn35In12 alloy films deposited on a MgO (100) substrate exhibited
metamagnetic transitions and an inverse magnetocaloric effect ∆SM of 8.8 Jkg−1K−1 at the
9T field [13]. The effect of the in situ annealing temperature on the martensite transforma-
tion of the Ni50Mn38Co6In6 alloy film deposited on the SiO2 substrate was systematically
investigated by Rios, S. et al. [14].

The exchange bias (EB) effect is defined as the shift in the magnetic hysteresis (M-H)
loop of the material from the original due to unidirectional anisotropy produced by the
coupling of ferromagnetic (FM) to antiferromagnetic (AFM) at the interface, which is a major
magnetic coupling effect and has attracted much attention due to its potential applications
in the fields of magnetic recording devices, spintronics devices, and so on [15–17]. It is
usually characterized by an EB field (HEB) and a coercive force field (Hc) varying with the
temperature or magnetic field. The EB effect has been observed in many systems, such as
nanoparticles, bulk alloys, and films, which are strongly dependent on the composition
material, thickness, deposition temperature, post-annealing, and external fields [18–20]. For
example, the coexistence of ferromagnetic and spin-glass in the bulk Ni2Mn1.4Ga0.6 alloy at
low temperatures is considered the origin of the EB effect [21]. The generation of the EB
in the all-3d-metal Ni38.8Co2.9Mn37.9Ti20.4 alloy film is attributed to the FM clusters and
the AFM host exchange interaction at low temperatures. Here, the Ni-Mn-based FSMAs
Ni45Co5Mn37In13 (Ni-Co-Mn-In) alloy target material is manipulated by the process of
electric arc melting, melt-fast quenching, and high-temperature thermal pressure. The
Ni-Co-Mn-In films are deposited on a (100) MgO substrate by sputtering the target material,
which shows martensite phase transition characteristics and significant EB effect at different
temperatures. The maximal HEB and Hc reach ~465.7 Oe and ~306.9 Oe at 5 K, respectively.
The manipulation of the martensitic transformation and EB effect of the Ni-Co-Mn-In alloy
film demonstrates potential application in the field of information and spintronics.

2. Experiment Details
2.1. Preparation of Ni-Co-Mn-In Alloy Target Material

Figure 1 shows the process of making the Ni-Co-Mn-In alloy target material was
combined by the electric arc melting, melt-fast quenching, and high-temperature ther-
mal pressure (powder metallurgy method). First, the raw materials were at a purity of
99.99 wt.%-Ni, 99.97 wt.%-Co, 99.95 wt.%-Mn, 99.99 wt.%-In, respectively. The introduc-
tion of Co to replace Ni can enhance the magnetization and regulate the phase transition
temperature. The Ni-Co-Mn-In alloy ingot was prepared by arc melting method, and
the Mn-Co-Mn ferromagnetic moment was formed by adding the Co element to cast the
multi-combination alloy ingot (Figure 1a). The process of casting the ingot improves the
purity and density of the alloy to enable sufficient alloying of these elements. Secondly, the
Ni-Co-Mn-In alloy magnetic phase transition alloy thin ribbons with a length of 1~15 cm
and 20~50 µm thick were successfully prepared at different wheel speeds (Figure 1b). The
crystal structure of Ni-Co-Mn-In alloy thin ribbons was characterized by using X-ray diffrac-
tion (XRD, Smart lab 9 kW, RIGAKU, Tokyo, Japan) at room temperature (RT). Thirdly,
the ribbons were ground into an alloy powder under the condition of air isolation and
easy heat dissipation. The granularity of the alloy powder prepared was 90~150 mash.
After grinding the alloy powder, it was placed at room temperature and air-dried for
0.5 to 2 h (Figure 1c). In addition, the Ni-Co-Mn-In alloy powder with magnetic phase
transition was obtained through the fine-tuning of the alloy ingot element content, mixed
in a certain proportion, and then imported into the mortar to continue grinding in the
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environment of absolute ethanol, to ensure the granularity and mixing uniformity of the
alloy mixing powder. Finally, the four-element alloy Ni-Co-Mn-In alloy target material was
prepared by high-temperature thermal pressure (powder metallurgy). The prepared alloy
mixing powder was installed in the sintering mold, and the mold into the sintering furnace.
Vacuuming into the protective gas (nitrogen, argon, etc.) atmosphere, the gas pressure
was 1 atm. During thermal pressure, the furnace background vacuum was ≤3 × 10−2 Pa,
heating the furnace to 600–900 ◦C (heating rate 6 ◦C/min) at 20–40 MPa pressure. After
thermal insulation and pressure preservation for a certain time (3 h), the pressure was
unloaded to the pressure-free room temperature condition, and the finished Ni-Co-Mn-In
alloy target material was made after grinding and external round grinding (Figure 1d).
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Figure 1. The preparation process of the Ni-Co-Mn-In magnetic phase transition alloy target material.
(a) The Ni-Co-Mn-In alloy ingots by arc melting. (b) The Ni-Co-Mn-In alloy thin ribbon by melt
spinning. (c) The Ni-Co-Mn-In alloy thin ribbon grind to the alloy powder. (d) The hot briquetting
Ni-Co-Mn-In alloy target material by high temperature and pressure.

2.2. Preparation of Ni-Co-Mn-In Alloy Films

Schematic fabrication of the Ni-Co-Mn-In alloy films was shown in Figure 2a–d. The
Ni-Co-Mn-In films were deposited on a (001) MgO substrate in 5 mm × 5 mm × 0.5 mm
by the direct current (DC) magnetron sputtering system. During deposition, the target
spacing was 10 cm and the substrate was circumgyrated at 10 rpm to achieve a uniform
thickness and uniformity. After deposition, the films were annealed in situ for 30 min at
750 ◦C to improve the crystallinity and structural ordering. A table including the obtention
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parameters of each of the Ni-Co-Mn-In alloy films is shown in Table 1. The microstructure
and surface topography of the Ni-Co-Mn-In alloy films were determined by the scanning
electron microscopy (SEM, JSM-IT300HR, JEOL, Tokyo, Japan) equipped with energy
dispersive spectroscopy (EDS) and the Atomic Force Microscope (AFM, 4-NanoScience,
JPK, Shanghai, China). The phase transition temperature and magnetic properties of the
Ni-Co-Mn-In alloy films were investigated using a superconducting quantum interference
device magnetometer (SQUID, MPMS3, Quantum Design, San Diego, CA, USA).
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Figure 2. Schematic fabrication of the Ni-Co-Mn-In alloy thin film. (a) Put in the substrate; (b) Heater
the sample table; (c) Deposition; (d) Annealing.

Table 1. The obtention parameters of each sample for the Ni-Co-Mn-In alloy films.

Samples Power
(W)

Time
(min)

Temperature
(◦C)

#1 30 30 750
#2 75 30 750
#3 100 30 750
#4 75 40 750

3. Results and Discussion

Figure 3 shows the morphology, crystal structure, and magnetic characterization of
the Ni-Co-Mn-In alloy thin ribbons at different wheel speeds (10 m/s, 15 m/s, 25 m/s).
The SEM images of the thin ribbons cross-section of the Ni-Co-Mn-In alloy at different
wheel speeds are shown in Figure 3a–c, respectively. We can observe the cylindrical
particles inside the Ni-Co-Mn-In alloy thin ribbons growing regularly perpendicular to
the free surface. With the increasing wheel speed, the cross-sectional thickness of the
Ni-Co-Mn-In alloy thin ribbons decreases, approximately reaching 47.5 µm (10 m/s),
37.4 µm (15 m/s), and 19.1 µm (25 m/s), respectively. Figure 3d is the XRD curves of
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the Ni-Co-Mn-In alloy thin ribbons at different wheel speeds, which show the crystal
structure of the Ni-Co-Mn-In is the autensite phase and the martensite phase transition
temperature is around room temperature. As the wheel speed increases, the autenitic phase
ratio gradually increases, which indicates the martensite phase transition temperature is
gradually moving towards low temperature [4]. The thermomagnetic (M-T) curves of the
Ni-Co-Mn-In alloy thin ribbons at different wheel speeds indicate the reverse martensite
and martensite phase transition, which is shown in Figure 3e. The thermal lag (∆Thys)
generated by the phase transition process can be calculated as TA-TM using the maximum
value on the dM/dT vs. T curve for the heating (TA) and cooling (TM) processes (Figure 3f).
The corresponding TA (TM) is 316.22 K (286.44 K), 310.02 K (272.17 K), and 287.99 K
(223.97 K) at different wheel speeds, respectively. The magnetization difference (∆M)
and ∆Thys of the Ni-Co-Mn-In alloy thin ribbons at different wheel speeds: the ∆M is
about 61.4 emu/g (10 m/s), 78.7 emu/g (15 m/s), and 81.5 emu/g (25 m/s); The ∆Thys
is approximately 29.78 K (10 m/s), 37.85 K (15 m/s), and 64.02 K (25 m/s), respectively.
With the increasing wheel speed, the average grain size, unit cell volume, martensitic
transformation temperature, and magnetic parameters of the thin ribbon decrease, which
increases the defect density, leading to the phase transition temperature of the Ni-Co-Mn-In
alloy thin ribbons gradually moving towards the low temperature [22]. The characterization
of the Ni-Co-Mn-In alloy thin ribbons is essential for the preparation of the alloy target
material, which determines the structural and magnetic properties of the Ni-Co-Mn-In
alloy targets and films.
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Figure 3. The morphology, crystal structure, and magnetic characterization of the Ni-Co-Mn-In alloy
thin ribbons with different wheel speeds (10 m/s, 15 m/s, 25 m/s). SEM (a–c), XRD (d), M-T (e) and
dM/dT (f).

Figure 4 shows the surface morphology and composition uniformity of the Ni-Co-
Mn-In alloy films (with different sputtering power and time (#1–#4) as shown in Table 1).
The grain size increases with the sputtering power increase as shown in Figure 4a–c.
With increasing power (#1–#3), the energy acquired by the plasma increases, leading to
smaller particles, the ion bombardment strength of the target surface, and the number
of atoms sputtered out increasing. Smaller particles have higher surface free energy that
can aggregate faster and grow into larger particles, eventually growing into irregular
island particles [23,24]. With the increasing sputtering time, the crystallization of the
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sample (#4) increases, making the particle size reduced and almost evenly distributed
(Figure 4d). Combined with the EDS mapping images, the element of the Ni-Co-Mn-In
alloy films are relatively evenly distributed as shown in Figure 4(a-i)–(d-i). The surface
morphology of films measured by AFM agrees with that measured by SEM, which is
shown in Figure 4(a-ii)–(d-ii). The roughness of root mean square Rq for #1–#4 samples
is 10.93 nm, 15.03 nm, 34.52 nm, 10.10 nm, and Average surface roughness Ra is 8.34 nm,
10.99 nm, 28.86 nm, 7.30 nm, respectively.
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Figure 4. The surface morphology of the Ni-Co-Mn-In alloy thin films (samples label #1–#4) is
characterized by SEM (a–d) and AFM (a-ii)–(d-ii). The composition uniformity of the Ni-Co-Mn-In
alloy thin films (samples label #1–#4) is characterized by EDS (a-i)–(d-i).

The M-T curves of the Ni-Co-Mn-In alloy films (#1–#4) are measured using the SQUID
at a magnetic field strength of H = 0.01 T, which are shown in Figure 5. The Ni-Co-Mn-In
alloy films are first cooled from 300 K to 100 K without the magnetic field and then the
samples are subjected to zero-field cooling (ZFC) curve measurement under the magnetic
field heating conditions from 100 K to 400 K. Next, the field-cooled (FC) curve measurement
is performed while cooling down the sample in the presence of the magnetic field from
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400 K to 100 K. Finally, the samples are warmed in the presence of magnetic field from
100 K to 400 K (FW). The Ni-Co-Mn-In alloy films undergo a phase transition from parent
austenite to martensite, which characteristic temperatures include austenite start (As), finish
(Af), martensite start (Ms), and finish (Mf) temperatures. The ferromagnetic order transition
temperature (Curie temperature Tc) of the Ni-Co-Mn-In alloy films gradually increases
(#1–#4) to 325.89 K, 337.48 K, 338.34 K, and 342.07 K, respectively. When the sputtering
power is 30 W and the time is 30 min, no phase transition occurs as shown in Figure 5a. The
absence of phase transformation in the Ni-Co-Mn-In alloy film (#1) is due to a mismatched
lattice between the substrate and the film, leading to internal strain that causes lattice
distortion. In addition, the small grain size brings a large number of boundaries acting as
barriers separating the individual grains, which provide a transformation energy barrier
and restrict the growth of the martensite phase. With the increase of sputtering power and
time (the increase of film thickness), the strain imposed by both the alloy film and MgO
substrate interface reduces (strain relaxation), which promotes grain size growth. With
the grain size increases, the grain boundaries and the width of the intergranular region
decreases which in turn decreases the energy barrier which is responsible to restrict the
martensitic transformation [23,24]. Besides, the increase in grain size leads to a reduction
in strain energy, and thus less driving force is required for transformation, which facilitates
from the slight signature of phase transition to a significant phase transition (Figure 5b–d).
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Figure 5. The M-T curves with ZFC, FC, and FW measurement for the Ni-Co-Mn-In alloy films. (a) #1,
(b) #2, (c) #3, (d) #4.

The EB effect of the Ni-Co-Mn-In alloy film (#3) with prominent and well-defined
martensitic transformation is shown by the magnetic hysteresis loops (M-H) curves at
different temperatures in the applied field ±2000 Oe (Figure 6a,b). With decreasing the
test temperature, the M-H shifts towards the negative field axis and shows a significant EB
effect on the Ni-Co-Mn-In alloy film. In the 0→ (+H)→ 0→ (−H) period, M-H exhibits a
shift towards the negative field axis. In the (−H)→ 0→ (+H) period, M-H shows a shift
towards the positive field axis. Both periods as shown in the partially enlarged drawing
Figure 6b. The presence of the EB effect in the Ni-Co-Mn-In alloy film is due to FM and
AFM coupling at the interface (Figure 6c,d) [25]. The coupling between AFM and FM spins
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exerts an additional torque on the FM spins. After the films are cooled in the presence of
the field, the FM and AFM spins become parallel to each other at the interface. When the
field direction is reversed, the FM spins start rotating but the AFM spins remain fixed if
the AFM anisotropy is large enough to get affected by the reversibility of field direction.
Consequently, the AFM spins exert torque on the FM spins to keep them in their original
position. Thus, the magnetic field required to completely reverse the magnetization in the
FM is higher when it is coupled to AFM as compared to the uncoupled FM because an
extra field is required to overcome the torque exerted by AFM spins. Conversely, when
the magnetic field is again reversed back, the rotation of FM spins is easier than in an
uncoupled FM since the AFM spins now favor the magnetization reversal as they now
exert torque in the direction of the applied magnetic field. Owing to this unidirectional
anisotropy, the hysteresis loops get shifted along the field axis resulting in EB behavior [26].
The HEB and Hc are defined as HEB = −(HL+HR)/2 and HC = |HL − HR|/2, where HL
is the left branch coercivity and HR is the right branch coercivity, respectively. For the
Ni-Co-Mn-In alloy film (#3), the maximal HEB and Hc are about ~466 Oe and ~307 Oe at
5 K, respectively. The HEB and Hc decrease with increasing temperature, which is shown
in Table 2. Besides, the smaller degree of exchange bias effect exists around 300 K and the
absolute value of HEB is almost constant above 300 K.
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Table 2. The HL, HR, HEB, and HC for the Ni-Co-Mn-In alloy film (#3) at different temperatures.

Temperature
(K) HL (Oe) HR (Oe) HEB = −(HL + HR)/2 (Oe) HC = |HL − HR|/2 (Oe)

5 K −772.6 −158.8 465.7 306.9
100 K −263.8 205.0 29.4 234.4
200 K −185.2 175.5 4.9 180.4
300 K −49.0 83.9 −17.5 66.5
330 K 7.8 27.4 −17.6 9.8
340 K 12.9 22.1 −17.5 4.6
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4. Conclusions

In this article, we study the effects of different preparation parameters on the marten-
sitic transformation and EB effect for the Ni-Mn-based FSMAs Ni45Co5Mn37In13 (Ni-Co-
Mn-In) films. With increasing sputtering power and time, the film thickness increases,
resulting in a gradual relaxation of the constraints at the interface between the film and
the substrate and changing the interfacial stress, promoting the growth of particle size
and the martensite phase transition. More importantly, the Ni-Co-Mn-In alloy films have
a significant EB effect at different temperatures, which is related to the mutual coupling
strength of FE to AFM. The manipulation of the martensitic transformation and EB effect for
the Ni-Co-Mn-In alloy films demonstrate potential application in the field of information
and spintronics.
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