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Abstract: In this work, 242 NMR spin–spin coupling constants (SSCC) in 20 molecules are calculated,
either with correlated wave function methods, SOPPA and HRPA(D), or with density functional
theory based on the B3LYP, BHandH, or PBE0 functionals. The calculations were carried out with and
without treatment of solvation via a polarizable continuum model in both the geometry optimization
step and/or the SSCC calculation, and thereby, four series of calculations were considered (the
full-vacuum calculation, the full-solvent calculation, and the two cross combinations). The results
were compared with experimental results measured in a solvent. With the goal of reproducing
experimental values, we find that the performance of the PBE0 and BHandH SSCCs improves upon
including solvation effects. On the other hand, the quality of the B3LYP SSCCs worsens with the
inclusion of solvation. Solvation had almost no effect on the performance of the SOPPA and HRPA(D)
calculations. We find that the PBE0-based calculations of the spin–spin coupling constants have the
best agreement with the experimental data.

Keywords: solvent effect; polarizable continuum model; NMR spin–spin coupling constant; SOPPA;
HRPA(D); DFT

1. Introduction

Accounting for solvation may be of crucial importance in the calculation of molecular
properties. Solvation effects caused by, e.g., hydrogen-bonding or polarity effects may
lead to geometrical changes in the molecule (e.g., changes in bond lengths, bond angles,
etc.) but may also directly perturb the electronic distribution in the molecule, leading
to a change in molecular properties. The former of these two contributions to the effect
of solvation is generally referred to as an indirect effect, while the latter is referred to as
a direct solvent effect. Two examples of molecular properties that may be significantly
affected by a solvent are the chemical shift and spin–spin coupling constant (SSCC) [1–5].
These molecular properties represent NMR parameters that, together, provide important
structural information. For example, the SSCC describes how a nucleus experiences a
change in the magnetic field due to other nuclei with spin. In an NMR spectrum, they
are the distance between the peaks in a multiplet, which is a signal containing more than
one peak [1]. Solvent effects have been a topic of much discussion, both experimentally
and computationally, for a long time. Experimentally, the effects of different solvents on
chemical properties have frequently been investigated. Multiple articles have reported
NMR spin–spin coupling constant for a given molecule in more than one solvent. Some of
these [6–19] will be used as experimental reference values in this work.

Computationally, different solvent models have been formulated to improve calcu-
lations. In broad terms, solvent models may be classified as continuum solvent models
or models with explicit solvent molecules treated at a lower level of theory, e.g., via a
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QM/MM approach. Several authors have previously combined such solvent models with
the second-order polarization propagator approximation (SOPPA) for the calculation of ex-
citation energies and linear response properties [20,21]. Most recently, Eriksen et al. [22,23]
presented the PCM-SOPPA/RPA solvent model (described in Section 2.2) and applied
it to the calculation of excitation energies in a water environment. The results showed
that the PCM-SOPPA/RPA calculations had a tendency to underestimate the excitation
energies compared with experimental values, as is also observed in gas phase SOPPA
calculations [24,25]. Different solvent models have also been combined with density func-
tional theory (DFT) for calculations of spin–spin coupling constants. An extension of a
polarizable continuum model (PCM) was presented by Ruud et al. [26], and a QM/MM
implementation was presented by Møgelhøj et al. [27]. Both models gave values of SSCCs
that are in good agreement with experimental observations.

For the present study, the polarizable continuum model (PCM) has now also been
interfaced with the atomic orbital SOPPA module in the Dalton program. With this new
implementation, it is now possible to carry out not only SOPPA but also HRPA(D) calcula-
tions of different response properties in a solvent environment. In this work, the solvent
implementation has been used to calculate the NMR spin–spin coupling constants for
20 small organic molecules (Figure 1) in order to investigate whether the solvent calcula-
tions are more in agreement with experimental values than a typical vacuum calculation.
Our benchmark set was chosen based on the availability of good experimental data and
keeping the size of the selected molecules small to reduce the computational effort. For the
SSCC calculations, five different methods were used: SOPPA [28–31], HRPA(D) [32] and
DFT with the functionals B3LYP [33,34], BHandH [34,35], and PBE0 [36,37].

Figure 1. The structures of the 20 molecules used for calculations in this article.

2. Theoretical Models
2.1. Electronic Structure Theory Methods

The second-order polarization propagator approximation (SOPPA) is an iterative
method that calculates second-order properties without the individual states and ener-
gies being known. In SOPPA, all terms of the polarization propagator containing single
excitations are evaluated through second order [29,31].

The doubles corrected higher random-phase approximation (HRPA(D)) is an approxi-
mation to SOPPA, where the parts of the SOPPA matrix that include double excitations are
not included in the iterative solution of the SOPPA linear response equations but instead
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are added afterward. This is implemented in order to reduce the cost without decreasing
the accuracy of the calculation [32]. It has been found that HRPA(D) calculations only
slightly reduce the cost compared with SOPPA, because the iterative solution of the HRPA
equations still includes the most expensive matrix of the SOPPA calculation [32,38].

Density Functional Theory (DFT) is currently one of the most used methods for
calculations of the energies and properties of chemical systems based on the electron
density of molecules. DFT includes an exchange-correlation functional because the energy
is given as a functional of the density, but the exact functional for the exchange and
correlation contribution to the energy is unknown. In this work, only one type of functional
is used: the hybrid functional, which uses some percentage of Hartree–Fock exchange
in the calculations. Today, new DFT functionals are still being developed to improve
performance [33–37,39].

2.2. The Polarizable Continuum Model

The original PCM model was developed by Miertus et al. [40]. Since then, the model
has been developed further [41]. In the PCM model, the environment, in this case, a solvent,
is represented as a dielectric continuum, which is described by dielectric constants that
reflect how well the solvent stabilizes the charge distribution of the solute. The system
is described with a static and an optical dielectric constant. The dielectric continuum
surrounds a molecular-shaped cavity that is created by assigning a sphere to each atom or
group of atoms in a solute. The solute in the cavity polarizes the dielectric continuum.

In this work, the new PCM-HRPA(D)/RPA model and the PCM-SOPPA/RPA [22,23]
and PCM-DFT [26] models are used. For the PCM-SOPPA/RPA and PCM-HRPA(D)/RPA
models, the static solvent response effects are evaluated at the SOPPA or HRPA(D) level,
while dynamic effects are treated more affordably at the RPA level. In more detail, in the
PCM model the surface of the cavity surrounding the solute molecule is divided into N
finite elements, called tesserae. The polarization of the solvent, described as a dielectric
medium, in the presence of the quantum mechanically calculated charge distribution of the
solute molecule then leads to an apparent surface charge (ASC) distribution on the surface
of the cavity. In the PCM model, the ASC is realized as point charges qk at each tessera~rk.
They give rise to an additional potential φ(~r), called the reaction-field,

φ(~r) = ∑
k

qk
|~r−~rk|

(1)

which is added to the Hamiltonian of the solute molecule. The value of the apparent surface
charges depend on the charge distribution of the solute, and vice versa. Therefore, they
have to be obtained by a double self-consistent procedure while solving for the ground
state wave function of the solute, i.e., while solving the Kohn–Sham equations in the case of
PCM-DFT or the Hartree–Fock equations in the cases of PCM-HRPA(D) and PCM-SOPPA.

The calculations of the Møller–Plesset perturbation theory first order doubles and sec-
ond order singles correlation coefficients, necessary for the HRPA(D) and SOPPA Hessian
matrices and property gradients, are evaluated in the current models with the charges {qk}
obtained from the PCM-HF calculation, i.e., with PCM-HF orbitals and orbital energies.
This is called the PTE-approach [42], in contrast to the previous SOPPA reaction field
model [20,21]. In the following linear response calculation at the HRPA(D) or SOPPA level,
the Hamiltonian of the solute again contains the extra reaction field, Equation (1), with the
PCM-HF charges {qk}, which is called the static solvent response. Furthermore, the em-
ployed orbitals and orbital energies are also the PCM-HF orbitals and orbital energies. The
additional dynamic solvent response contributions due to the mixing in of electronically
excited states of the solute are described at the RPA level in both models [43].

For the PCM-DFT model, both the static and dynamic solvent response effects are
evaluated at the DFT level.
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3. Computational Details

For all 20 molecules, initial coordinates were generated with ChemDraw3D. Sub-
sequently, geometry optimizations were carried out using the Gaussian16 [44] program.
Geometry optimizations were carried out both with a continuum solvation model and in
a vacuum. To save time, an initial second-order Møller–Plesset (MP2) [45,46] geometry
optimization with the basis set pcseg-1 [47] was performed first.

This geometry was then used as a starting point for a second geometry optimization
with the larger basis set pcseg-2 [47]. The methods used in the second geometry optimiza-
tion depend on the methods used in the SSCC calculations. The MP2 method was used
for the second geometry optimization for the SOPPA [28–30] and HRPA(D) [32] SSCC
calculations. Because it is possible for the DFT calculations to use the same functional in
both the second geometry optimization and the SSCC, this was implemented to minimize
errors due to using different functionals, as illustrated by Giovanetti et al. [48].

For the SSCC calculations, the publicly available 2022 development version of the
Dalton [49,50] program was used, in which the new PCM-HRPA(D)/RPA model has been
implemented. All the SSCC calculations were carried out with the same basis set, pcJ-2 [51],
which was made specifically to reduce basis set errors for the calculation of NMR spin–spin
coupling constants. For each of the molecules (and solvents), we considered the inclusion
of solvation correction (or not) both in the geometry and the final SSCC calculation. This
leads to four combinations, denoted vacuum–vacuum, solvent–solvent, vacuum–solvent,
and solvent–vacuum, where the first term refers to the geometry treatment and the second
term refers to the SSCC calculation treatment. These four combinations make it possible to
see where the solvent effect is greatest; in the solvent geometry optimization or the solvent
SSCC calculation.

The solvent model used for the SOPPA and HRPA(D) SSCC calculations is the PCM-
SOPPA/RPA(as described in Section 2.2). For the DFT calculations, the solvent models are
the PCM-B3LYP, PCM-BHandH, and PCM-PBE0.

Vibrational corrections [52] are not included in the present study, as we want to be
able to see the pure effect of the solvent corrections. However, this implies that temperature
effects are also not included, and that perfect agreement with experimental values should
not be expected.

4. Results

For the 20 molecules, 242 different spin–spin coupling constants were calculated with
these five methods and four solvent treatment options. All of the SSCCs, including the
experimental values, can be found in the table in the Supplementary Material. Some
SSCCs in the table are reported as a mean value between two or three SSCCs, because
they are indistinguishable in the experimental NMR spectrum. This can happen, e.g., for
a methyl group, where the rotation of the hydrogens is too fast for an NMR instrument
to resolve. Different types of spin–spin coupling constants were calculated depending on
which experimental data were available. Of the 242 calculated SSCCs, 89 are 1 JCH SSCCs
(from 10 molecules), 29 are 2 JCH SSCCs (from four molecules), and 51 are 3 JHH SSCCs (from
nine molecules). Furthermore, there are 2 1 JCC, 2 1 JCN , 1 2 JCN , 3 3 JFF, 12 3 JCH , 7 3 JFH , 10
4 JFH , 7 5 JFH , 1 3 JNH , 6 2 JHH , 15 4 JHH and 7 5 JHH SSCCs.

Examining Table S1 in the supplementary material, two trends stand out: (i) the
indirect solvent effects via the geometry optimization and direct solvent effects in the SSCC
calculations are approximately additive, i.e., (JVac/Solv− JVac/Vac)+ (JSolv/Vac− JVac/Vac) ≈
JSolv/Solv − JVac/Vac; and (ii) the solvent effects for adding solvation are greater in the SSCC
calculations than in the geometry optimization, where they are found to be over twice as
large (with few exceptions) and sometimes over ten times greater. In Table 1, the averaged
magnitude of the solvent effects on the calculated SSCCs is reported, where we define
the solvent effect as the difference Jsolv − JVac/Vac with Jsolv corresponding to a solvent–
vacuum, vacuum–solvent, or solvent–solvent type of calculation. The magnitude of the
solvent effect on the SSCCs is only weakly dependent on the choice of computational
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method, as is reflected in the very similar mean- and mean-absolute deviations obtained
with both the wave function and DFT methods. It is also apparent that the impact of
the direct solvent effect is typically more substantial than the indirect (geometry) effect.
For example, the mean absolute deviation for SOPPA is 0.20 Hz for the indirect effect
alone, compared with 1.07 Hz for the direct effect alone. The total solvent effects are
also highly correlated between methods. For instance, comparing SOPPA and PBE0, we
find a coefficient of determination R2 = 0.988. This suggests that, to estimate SSCCs that
include solvation effects, one could employ composite methods which compute the effects
of solvation with an affordable method, while the main SSCC is calculated using a more
accurate and expensive wave function method in a vacuum.

Table 1. Statistical descriptors concerning the magnitude of the solvent effect on the 242 SSCCs in Hz.

Vacuum–Solvent Solvent–Vacuum Solvent–Solvent

Mean Dev SOPPA 0.07 0.81 0.89
HRPA(D) 0.07 0.80 0.89
B3LYP 0.06 0.86 0.93
BHandH 0.08 0.75 0.84
PBE0 0.07 0.79 0.88

Mean Abs Dev SOPPA 0.20 1.07 1.10
HRPA(D) 0.19 1.04 1.06
B3LYP 0.20 1.11 1.13
BHandH 0.18 1.01 1.03
PBE0 0.19 1.05 1.07

In the following sections, a statistical analysis of the deviation from the experimental
values is presented, including the mean absolute deviation (Mean Abs Dev), the mean
signed deviation (Mean Dev), the standard deviation (Std Dev), and the maximum absolute
deviation (Max Abs Dev).

4.1. All SSCC

Statistical descriptors of deviations from the experimental data for the 242 calculated
spin–spin coupling constants are presented in Figure 2 and Table 2. In terms of the mean
absolute deviations, it is clear that the PBE0 solvent-solvent SSCC calculations perform
best. Considering the vacuum–vacuum calculations, the HRPA(D) SSCC calculations
perform better than the DFT calculations. The BHandH and PBE0 SSCC calculations are
the only ones for which the SSCCs improve by going from vacuum–vacuum to solvent–
solvent, whereas the B3LYP SSCC calculations worsen. The SSCC calculations for SOPPA
and HRPA(D) are changed negligibly by the addition of solvation, with only a slightly
worsened quality of the solvent–solvent result compared with the vacuum–vacuum results.

The standard deviation describes the consistency of each set of calculations, meaning
the precision. For all the methods except B3LYP, consistency decreased when solvation was
added in the SSCC calculations (i.e., the standard deviation increased).

The maximum absolute deviation decreases when solvation is added for all the meth-
ods except B3LYP, for which it increases. The calculated SSCCs farthest from the experi-
mental values are the 1 JCH coupling constants of imidazole (in chloroform) with the B3LYP
solvent–solvent/vacuum–solvent combination.

In general, the SSCCs for PBE0 and BHandH improve by going from the vacuum–
vacuum to the solvent–solvent combination, whereas the results of B3LYP worsened.
For SOPPA and HRPA(D), the accuracy (Mean Abs Dev) hardly changed when solvation
was added to the calculations. Meanwhile, the consistency improved, which is reflected in a
lower standard deviation and maximum deviation. When comparing SOPPA and HRPA(D)
SSCCs, it is noticeable that HRPA(D) performs slightly better for each combination.
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Figure 2. The statistics for the 242 calculated coupling constants with the experimental values
as references.

Table 2. The statistics data for all the SSCC.

SOPPA HRPA(D) B3LYP BHandH PBE0

Mean Abs Dev vacuum−vacuum 2.13 1.96 3.49 3.09 2.58
solvent−vacuum 2.11 1.96 3.54 2.97 2.53
vacuum−solvent 2.16 1.94 4.30 2.39 1.82
solvent−solvent 2.20 2.00 4.37 2.25 1.69

Mean Dev vacuum−vacuum 0.46 0.09 3.24 −1.26 −1.25
solvent−vacuum 0.53 0.16 3.30 −1.18 −1.18
vacuum−solvent 1.27 0.89 4.09 −0.51 −0.45
solvent−solvent 1.35 0.98 4.17 −0.42 −0.37

Std Dev vacuum−vacuum 3.05 2.92 4.06 4.17 3.63
solvent−vacuum 3.08 2.93 4.16 4.05 3.54
vacuum−solvent 2.84 2.69 4.51 3.31 2.66
solvent−solvent 2.87 2.70 4.61 3.16 2.52

Max Abs Dev vacuum−vacuum 11.05 11.33 14.93 14.69 13.82
solvent−vacuum 10.55 10.83 14.88 14.06 13.19
vacuum−solvent 9.86 9.33 16.60 12.65 10.32
solvent−solvent 9.86 9.33 16.61 12.52 10.32

4.2. 1JCH

For all of the 89 one-bond spin–spin coupling constants between a carbon atom and a
hydrogen atom, the results of the statistical analysis are illustrated in Figure 3 and Table 3.

For PBE0 and BHandH, the calculated coupling constants improved with the solvent–
SSCC calculations. The solvent–solvent SSCC calculations for PBE0 were closest to the
experimental values. The B3LYP SSCCs differ most from the experimental values, and
the coupling constants significantly worsen by going from a vacuum–vacuum to solvent–
solvent calculation. The accuracy of the SSCC calculations for SOPPA and HRPA(D) were
increased slightly when solvation was added in the calculations. The HRPA(D) method
(followed by SOPPA) performs better in vacuum–vacuum and solvent–vacuum calculations
than the other methods.

The mean absolute deviation for the 1 JCH SSCCs is larger than for all the other SSCCs.
This is not surprising because the magnitude of a 1 JCH coupling constant is rather large
(above 100 Hz), and therefore the mean absolute deviation is larger, even if the percentage
error is small. The standard deviation improves with adding solvation in the calculations
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for all the methods (including B3LYP). The method that has the best consistency in the
calculated SSCCs is BHandH with the solvent–solvent combination.

Figure 3. The statistics for the 89 1 JCH coupling constants.

Table 3. Statistical data for the 1 JCH SSCC.

SOPPA HRPA(D) B3LYP BHandH PBE0

Mean Abs Dev vacuum−vacuum 3.04 2.73 6.99 4.83 4.50
solvent−vacuum 3.02 2.72 7.17 4.57 4.41
vacuum−solvent 3.55 3.03 9.00 2.98 2.66
solvent−solvent 3.71 3.18 9.28 2.67 2.37

Mean Dev vacuum−vacuum 0.94 0.35 6.90 −4.83 −4.45
solvent−vacuum 1.19 0.60 7.15 −4.54 −4.19
vacuum−solvent 2.99 2.39 9.00 −2.97 −2.50
solvent−solvent 3.26 2.67 9.28 −2.65 −2.21

Std Dev vacuum−vacuum 3.80 3.58 3.85 3.14 3.29
solvent−vacuum 3.83 3.60 3.85 3.13 3.29
vacuum−solvent 3.00 2.83 3.03 1.97 2.16
solvent−solvent 2.88 2.67 2.91 1.79 1.99

Max Abs Dev vacuum−vacuum 11.05 11.33 14.93 14.69 13.82
solvent−vacuum 10.55 10.83 14.88 14.06 13.19
vacuum−solvent 9.44 8.00 16.60 9.16 7.97
solvent−solvent 9.64 8.20 16.61 8.45 7.25

For PBE0 and BHandH, all SSCC calculations improve when solvation is added to the
calculations, as was the case for all the SSCCs (Section 4.1). The B3LYP SSCC calculations
with solvation deviate further from the experimental values, but their consistency improved.
For SOPPA and HRPA(D), the mean absolute deviation increased slightly with solvation,
while the standard deviation and the maximum absolute deviation improved. As for all the
SSCCs, the HRPA(D) SSCC calculations were slightly better than the SOPPA calculations
for the 1 JCH SSCCs.

4.3. 2JCH
2 JCH is the two-bond coupling constant between a carbon atom and a hydrogen atom.

The statistical analysis of the 29 2 JCH SSCCs is illustrated in Figure 4. The numerical values
can be found in Table 4.
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Figure 4. The statistics for the 29 2 JCH coupling constants.

Table 4. Statistical data for the 2 JCH SSCC.

SOPPA HRPA(D) B3LYP BHandH PBE0

Mean Abs Dev vacuum−vacuum 1.11 1.13 0.94 1.15 0.92
solvent−vacuum 1.11 1.15 0.93 1.16 0.94
vacuum−solvent 0.72 0.82 1.09 0.80 0.54
solvent−solvent 0.73 0.84 1.06 0.82 0.56

Mean Dev vacuum−vacuum −0.85 −1.02 0.80 −0.97 −0.45
solvent−vacuum −0.88 −1.05 0.76 −1.00 −0.48
vacuum−solvent −0.58 −0.76 1.09 −0.69 −0.16
solvent−solvent −0.60 −0.79 1.06 −0.71 −0.18

Std Dev vacuum−vacuum 0.97 0.87 1.19 0.93 0.97
solvent−vacuum 0.97 0.86 1.22 0.94 1.00
vacuum−solvent 0.69 0.62 1.00 0.66 0.74
solvent−solvent 0.68 0.60 1.03 0.66 0.76

Max Abs Dev vacuum−vacuum 2.28 2.33 5.48 2.21 2.62
solvent−vacuum 2.37 2.43 5.61 2.29 2.73
vacuum−solvent 1.55 1.75 5.71 1.64 2.81
solvent−solvent 1.70 1.66 5.84 1.72 2.93

The mean absolute deviation improved for all the methods, except B3LYP, when
solvation was added in the SSCC calculation, which means that the calculated SSCCs were
closer to experimental values. The vacuum–solvent combinations give the best results for
these four methods, followed closely by the solvent–solvent calculation. PBE0 gives the
best results for both the vacuum–vacuum and the vacuum–solvent SSCCs. The B3LYP
SSCCs calculations worsen slightly with solvation, but in comparison to all the SSCCs
(Section 4.1), the magnitude of this change is smaller.

The consistency of the SSCC calculations is quite good for all the methods, especially
when compared with all SSCCs (Section 4.1). The standard deviations were all improved
with solvation, and the HRPA(D) solvent-solvent calculations showed the best value. The
maximum absolute deviation improved for SOPPA, HRPA(D), and BHandH with solvation,
whereas it slightly worsened for B3LYP and PBE0. The maximum absolute deviations
for the B3LYP calculations are more than twice as large as those of all the other methods,
independent of the solvent model. The reason for this is a large degree of error occurring in
the calculations on 1,2-dichloroethene.

The agreement with experimental results improved with the addition of solvation in
the SSCC calculation for all the methods with the exception of B3LYP, and the consistency
of the results also improved. For B3LYP, the mean absolute deviation worsened slightly



Magnetochemistry 2023, 9, 102 9 of 14

with solvation, while the standard deviation improved. For this type of coupling constant,
the SOPPA calculations are slightly better than the HRPA(D) SSCC calculations.

4.4. 3JHH

The 3 JHH SSCC is the vicinal coupling between two hydrogens. A statistical analysis
was made for all 51 3 JHH ; this can be found in Figure 5 and Table 5. The spin–spin coupling
constants barely changed when solvation was added to the calculations, and the HRPA(D)
results are found to be closest to the experimental values.

Figure 5. The statistics for all the 51 3 JHH coupling constants.

Table 5. Statistical data for all the 3 JHH spin–spin coupling constants.

SOPPA HRPA(D) B3LYP BHandH PBE0

Mean Abs Dev vacuum−vacuum 2.17 1.91 2.92 3.26 2.69
solvent−vacuum 2.16 1.91 2.90 3.25 2.68
vacuum−solvent 2.19 1.91 2.96 3.30 2.73
solvent−solvent 2.18 1.90 2.94 3.28 2.72

Mean Dev vacuum−vacuum 1.50 1.06 2.36 2.66 2.11
solvent−vacuum 1.48 1.05 2.34 2.64 2.09
vacuum−solvent 1.53 1.09 2.40 2.70 2.15
solvent−solvent 1.51 1.08 2.38 2.68 2.13

Std Dev vacuum−vacuum 3.09 3.03 3.10 3.25 3.10
solvent−vacuum 3.10 3.04 3.11 3.26 3.11
vacuum−solvent 3.05 3.00 3.06 3.22 3.06
solvent−solvent 3.06 3.01 3.07 3.23 3.07

Max Abs Dev vacuum−vacuum 9.95 9.40 10.53 11.16 10.40
solvent−vacuum 9.95 9.40 10.53 11.16 10.40
vacuum−solvent 9.86 9.33 10.43 11.09 10.32
solvent−solvent 9.86 9.33 10.43 11.08 10.32

Figure 5 shows that some of the calculated SSCCs deviate considerably from the
experimental values (both by underestimating and overestimating). This deviation follows
the same trend through every method and combination. We considered in more detail
which molecule(s) these coupling constants belonged to, and found that the outliers are
all from the vicinal transcoupling of the molecule trans-1,2-dichlorocyclopentane. To get
a better impression of how the methods work for all the other couplings, a statistical
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analysis that excludes the SSCCs for trans-1,2-dichlorocyclopentane is therefore presented
in Figure 6 and Table 6.

Figure 6. The statistics for the 3 JHH coupling constants excluding trans-1,2-dichlorocyclopentane SSCCs.

Table 6. Statistical data for the 3 JHH SSCCs excluding the trans-1,2-dichlorocyclopentane SSCCs.

SOPPA HRPA(D) B3LYP BHandH PBE0

Mean Abs Dev vacuum−vacuum 0.50 0.32 1.24 1.60 1.03
solvent−vacuum 0.49 0.32 1.21 1.57 1.01
vacuum−solvent 0.54 0.33 1.31 1.66 1.11
solvent−solvent 0.53 0.32 1.29 1.64 1.09

Mean Dev vacuum−vacuum 0.35 −0.10 1.22 1.56 1.00
solvent−vacuum 0.34 −0.12 1.21 1.54 0.98
vacuum−solvent 0.41 −0.04 1.31 1.63 1.08
solvent−solvent 0.40 −0.06 1.29 1.62 1.07

Std Dev vacuum−vacuum 0.44 0.43 0.43 0.74 0.42
solvent−vacuum 0.43 0.43 0.41 0.72 0.41
vacuum−solvent 0.45 0.43 0.45 0.75 0.45
solvent−solvent 0.44 0.43 0.44 0.74 0.44

Max Abs Dev vacuum−vacuum 1.20 0.96 1.82 2.33 1.59
solvent−vacuum 1.18 0.96 1.86 2.30 1.56
vacuum−solvent 1.27 0.88 2.02 2.43 1.68
solvent−solvent 1.24 0.90 2.07 2.38 1.66

The results barely changed from the vacuum–vacuum calculations to the solvent–
solvent calculations. The SSCCs slightly worsen with solvation, except for HRPA(D),
where there is no difference relating to the inclusion of solvation. For this type of spin–
spin coupling constant, the HRPA(D) calculations are closest to the experimental values,
followed closely by the SOPPA calculations. The BHandH SSCC results are farthest from
the experimental values.

In general, the calculations of the 3 JHH SSCCs are relatively close to the experimental
values. The standard deviations are similar for all the methods except for BHandH, with a
small decline with the inclusion of solvation. BHandH has a standard deviation of around
twice the magnitude of the other methods. In general, the standard deviations are rather
small for the 3 JHH SSCCs compared with all the SSCCs (Section 4.1).

5. Discussion

We expected the SOPPA or HRPA(D) calculations to perform better relative to experi-
mental values than the DFT calculations, but the PBE0 SSCCs were overall closest to the
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experimental values with the solvent–solvent and vacuum–solvent combinations, except
for the 3 JHH coupling constants where HRPA(D) performed best. For the vacuum–vacuum
(and solvent–vacuum) calculations, SOPPA and HRPA(D) generally performed better than
DFT, except for 2 JCH where PBE0 performed best, closely followed by B3LYP.

One potential explanation for why DFT performs better may be the basis set selec-
tion: pcseg-2 and pcJ-2 are optimized for good performance with DFT methods, and this
improved performance might not be transferable to wave function methods. Another
reason may be found in the solvent model. The solvent environment is modeled with
a continuum model, and more advanced (atomistic) solvent models could improve the
quality of the results. Additionally, in the SOPPA and HRPA(D) calculations, the dynamic
response solvent coupling is evaluated only at the RPA level. Therefore, the SOPPA and
HRPA(D) results might improve if the solvent model is changed to a full PCM-SOPPA
treatment, where both the static and dynamic response effects are evaluated at a correlated
level. A third reason could be that neither temperature nor vibrational corrections [52] were
included in this study, while the experimental spectra are typically recorded at ambient
temperatures. However, previous calculations of the temperature dependence of NMR
spin–spin coupling constants showed that, for simple systems such as CH4, SiH4 and
H2O [53–55], the temperature dependence due to vibrational corrections is less than 1 Hz.
This might of course be different if the temperature dependence is due to a change in an
conformational equilibrium.

6. Conclusions

This work aimed to investigate the effect of adding solvation in the calculation of
SSCCs, both indirectly in the geometry optimization part and directly in the SSCC part
of such calculations. We found that the direct and indirect solvent effects are additive for
all the methods studied here, and that the direct solvent effect for the SSCC calculations
is greater than the indirect effect via geometry optimization. Furthermore, the averaged
solvent effects are almost independent of the employed computational method, i.e., DFT
or wave function methods. For the individual couplings, the indirect solvent effects via
the DFT or MP2 geometry optimization are very similar, while the direct solvent effect can
vary substantially depending on the method.

In comparison with the experimental values, we find that PBE0 gives the best results
for most SSCC types, except for the 3 JHH SSCCs, where HRPA(D) performs best. The PBE0
and BHandH calculations improve when solvation is added to the spin–spin coupling
constant, meaning that the vacuum–solvent and solvent–solvent combinations perform
best for these methods. Adding solvation, on average, barely improved the agreement with
experimental values for the SOPPA and HRPA(D) calculations. For the B3LYP calculations,
the SSCCs were mostly further away from the experimental values when solvation was
added to the calculation, which means that the vacuum–vacuum and solvent–vacuum
combinations performed best for this method.
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