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Abstract: Two-dimensional (2D) magnetic semiconductors exhibit unique combination of electronic
and magnetic properties, holding great promise in potential applications such as spintronics and
magneto-optics. However, many of them are air-sensitive, and their properties can be significantly
altered upon exposure to air. Here, we showed an optical spectroscopic investigation of the effects
of air-degradation on few-layered van der Waals (vdW) magnetic semiconductor Cr2Ge2Te6. It was
found that although the partially degraded few-layered Cr2Ge2Te6 showed a significant Raman red-
shift and a split of Eg peak at room temperature, the magneto-optic Kerr hysteresis loop can remain
largely unchanged below the Curie temperature. Temperature-dependent Raman measurements
further revealed characteristic blueshifts of phonon energy, which were associated with the ferromag-
netic phase transition in partially degraded Cr2Ge2Te6, in agreement with Kerr measurements. Our
results provide an optical spectroscopic insight into the air-instability of 2D magnetic semiconductors,
and contribute to a better understanding of the relationship between phonon modes and long-range
spin order at the presence of defects in ultra-thin vdW magnetic semiconductors.

Keywords: air stability; Cr2Ge2Te6; Raman spectrum; 2D magnetic semiconductor

1. Introduction

Layered vdW semiconducting materials with long-range spin orders attracted
widespread attentions due to their unique physical properties [1–4]. The easy exfolia-
tion nature of these 2D semiconducting flakes with intrinsic magnetism make it not only
a candidate for spin-based devices (such as spin field effect transistors [5], spintronic
memory [6], and all-spin logic devices [7]), but also vertically stackable with other vdW
layers to construct nano-architectures for novel interlayer coupling of 2D materials [8].
Among them, few-layered Cr2Ge2Te6 (CGT) is of special interest due to its perpendicular
magnetic anisotropy and gate-tunable semiconducting electrical properties below its Curie
temperature, which led to several conceptual nanoelectronic and optoelectronic devices [9].

It is known that the air-stability of 2D vdW layered magnetic materials is crucial
for realizing the stable performance of nanodevices based on them [10]. Regrettably, the
stability of most of magnetic materials with a thickness of one or a few atoms is barely
satisfactory, as they are easily affected by the external environment and reduce their
performance (such as temperature, stress, etc.) [11–14] as a consequence. Belonging to
Telluride, CGT is easily degraded in air by reaction with oxygen to form TeOx, which
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accelerates as the temperature increases [10–19]. For 2D CGT, its monolayer (1L) rapidly
degrades and becomes invisible under the optical microscope, while the exfoliation of
bilayer CGT flakes was feasible and was found to be robust over 90 min in ambient
atmosphere, with no traceable degradation [20]. To protect few-layered CGT samples,
the preparation process are often carried out in a glove box filled with inert atmosphere
and the encapsulating layers (such as h-BN, MgO, Al2O3, and other noble metals) [21,22]
will be needed to minimize the contact time with O2 and H2O [23]. Despite meticulous
sample fabrication, 2D CGT inevitably degrades, leading to significant alterations in its
physical properties. This can result in inaccurate interpretations of experimental results,
highlighting the need for comprehensive studies on degradation-related CGT to address
this issue.

In this work, we prepared vdW heterostructures of few-layered CGT in pristine and
partially degraded conditions, respectively, with encapsulated by hexagonal boron nitride
(h-BN). We measured the hysteresis loops of the two samples separately, which indicated
that air degradation has marginal effects on the magnetic properties of the CGT samples.
Nevertheless, the Raman spectra, characterized as a function of temperature, demonstrated
a pronounced effect of air degradation on the phonon modes of CGT lattices.

2. Materials and Experiments

To construct h-BN/CGT/h-BN heterostructures, high-quality CGT single crystals
were used with XRD and EDS verification, as plotted in Figures 1a and 1b, respectively.
h-BN flakes were mechanically exfoliated from bulk crystal onto SiO2/Si++ substrates, with
thicknesses of 20–30 nm selected by using atomic force microscopy (Figure 1e,f). Few-
layered CGT flakes were exfoliated onto PDMS in a glove box with O2 and H2O levels
below 0.1 ppm and their thicknesses were identified by optical contrasts. The pristine CGT
samples of 5–10 nm were transferred onto selected h-BN flakes with another h-BN further
picked up and transferred onto the CGT/h-BN heterostructure by using PPC (Propylene–
Carbonate) to form h-BN/CGT/h-BN sandwich structure (Figure 1d) [23]. The thickness of
5–10 nm was chosen because the Raman intensity of CGT nanosheets increased significantly
with decreasing thickness due to the onset of interference effects. However, CGT that is
too thin is more likely to oxidize and lead to the disappearance of Raman modes [24–27].
For CGT samples with partial degradation, CGT on PDMS were intentionally placed in
ambient environment for several hours and transited to the glove box to complete the
residual fabrication as mentioned above. In order to eliminate the influence of other factors,
the tested samples all adopted the same h-BN-encapsulation CGT structure as shown in
Figure 1c [28].

To explore the effect of air degradation on few-layered CGT, we mainly focused on
the magnetic and optical properties of the samples which were mounted in a helium-
free optical cryostat with accurate x-y-z piezo positioner and high numerical aperture
objective. For room temperature measurements, we pumped the optical cryostat to a
vacuum below 0.7 torr before measuring the Raman spectrum. An input laser (λ = 532 nm)
with controllable power (~1 mW) was focused on the samples with a spot size of about
2 µm, and the scattered signal passing through a long wave pass filter was collected by a
spectrometer equipped with a liquid-nitrogen cooled CCD (Horiba iHR550). In order to
clean up the spectrum of excitation laser, we added a bandpass filter on the optical path
of incident light to minimize the stray light on the detection of Raman signals. In order to
perform polarization-resolved Raman measurements of the partially degraded CGT, we
inserted a polarizer and a half-wave retardance in the incident optical path to control the
polarization of excitation laser. The scattered light was analyzed by another polarizer in
the reflected optical path. This way, we only needed to rotate the half-wave retardance
to control the polarization angle of the excitation laser with respect to the detection of
scattered light. The polarization of the polarizer and analyzer were both kept horizontal.
Therefore, we rotated the half-wave retardance to adjust polarization angle and measured
Raman spectrum every 10 degrees within the 360 degrees range of the laser polarization.



Magnetochemistry 2023, 9, 104 3 of 8
Magnetochemistry 2023, 9, x FOR PEER REVIEW 3 of 8 
 

 

 

Figure 1. The results of XRD (a) and EDS (b) measurement, respectively, confirming the crystal 

structures and element ratios of bulk CGT. (c) Schematic diagram of h-BN encapsulated CGT heter-
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wiched by top and bo�om h-BN, with the edge of the CGT crystal indicated by the black dashed 

lines. Scale bar is 10 µm. (e) AFM profiles of a typical h-BN used to compose the sandwiched CGT 
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Figure 1. The results of XRD (a) and EDS (b) measurement, respectively, confirming the crys-
tal structures and element ratios of bulk CGT. (c) Schematic diagram of h-BN encapsulated CGT
heterostructure. (d) The optical photograph of a partially degraded CGT sample. CGT flake is
sandwiched by top and bottom h-BN, with the edge of the CGT crystal indicated by the black dashed
lines. Scale bar is 10 µm. (e) AFM profiles of a typical h-BN used to compose the sandwiched CGT
heterostructure. (f) The linecut of the morphology in (e) to determine the thickness of the h-BN.

We studied the temperature dependence of Raman spectra on two kinds of samples
separately by cooling down the optical cryostat. The pristine CGT was measured every
10 K in the range of 10–140 K, and the Raman spectrum of partially degraded CGT was
measured in the same temperature range with much smaller intervals. Since temperature
changes and other influencing factors will cause slight drift of the sample position in the
optical cryostat, we adjusted the sample position and coupled the spectrometer every time
after temperature changed to ensure the consistency of the measurement position.

The magneto-optic Kerr experiments were performed in the same closed-cycle optical
cryostat equipped with the same objective and laser as Raman measurements. The probe
laser of 2 µW was kept in linear polarization and focused on the sample surface in Faraday
geometry with an out-of-plane magnetic field applied. A polarization sensitive system
composed by a half-wave retardance and a Wollaston prism analyzed the reflected laser
which was detected by a balanced photoreceiver.

3. Results and Discussion

Typical Raman spectra are shown in Figure 2a. The pristine CGT exhibited two
characteristics peaks located at 110.1 cm−1 and 135.9 cm−1, which were named as Eg

2 and
Ag

1, respectively [29]. CGT is a rare example of layered chalcogenides with the R-3 (No.
148) space group and the C3i point group. Here, both two modes were Raman active the Eg

2

mode was doubly degenerate and the Ag
1 mode was nondegenerate, the Eg

2 mode involved
the twisting vibration of Cr–Ge octahedra and the shear vibration of the Ge atoms, while
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the Ag
1 mode involved the rocking vibration of three Te atoms around one Cr atom and the

stretching vibration of two Ge atoms [30–33]. In contrast to the scenario of pristine samples,
three Raman peaks (indicated by solid black triangles) were seen in partially degraded
CGT, as shown in Figure 2a. It should be noted that after analysis and Gaussian fitting, it
was found that the second Raman peak was composed of two vibration modes. We thus
named them P1, P2, P3, P4, respectively. We also tested the polarization dependence of the
four peaks P1–P4. Polar plots of the intensity Raman modes with respect to polarization
angles are shown in Figure 2b–e. The peak changes of these four vibration modes were all
in the shape of a dumbbell, revealing a nondegenerate nature of these modes.
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Figure 2. (a) Raman spectrum of pristine CGT and partially air-degraded CGT taken at T = 294 K.
(b–e) are the polarization angle-dependent Raman intensity of the P1, P2, P3, and P4 modes, respec-
tively. (f) Magnetic hysteresis loop of pristine CGT at 10 K. (g) Magnetic hysteresis loop of partially
degenerated CGT at 10 K.
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We now come to the effects of air-degradation on magnetism in few-layered CGT. The
magnetic hysteresis loops of two samples were tested at 10 K, as shown in Figure 2f,g,
which was in agreement with the literature [34,35]. It was seen that the magnetic hysteresis
loop of partially degraded CGT samples were almost unchanged as compared to those
of pristine ones. It was thus concluded that the ferromagnetic spin ordering of the CGT
sample had a certain stability against defects, and the air degradation to some extent will
have only a limited impact on the magneto-optic Kerr signals.

We further studied the differences between pristine samples and partially degraded
samples, as a function of temperature. The temperature dependence of long-range ferro-
magnetic order of CGT was widely investigated previously [20]. Here, we first tested the
Raman spectra of the two samples at various temperatures in the range of 10–140 K, shown
in Figures 3a and 3b, respectively. At the temperature of about 60 K, an abrupt change
of peak position (indicated by black solid arrow in Figure 3c) in the Raman spectrum for
both pristine CGT and partially degraded CGT was observed. This was mainly because of
the Curie temperature TC of CGT, which underwent a phase transition from random to
ordered spin texture and further changes the phonon modes, resulting in a large shift of
the peak before and after TC. The temperature dependent phonon mode positions above
TC can be modeled by the following equation [20]:

v(T) = v(0) + A

[
1 +

2(
ehv(0)/2kBT − 1

)] (1)

where v(0) is the extrapolation of optical phonon energy at 0 K. We fitted the peak position
of P2 above ~70 K well by using Equation (1), shown as the dashed line in Figure 3c.
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Figure 3. (a) Raman spectrum of pristine sample 10 K–140 K. (b) Raman spectrum of partially
degraded sample 10 K–140 K. (c) The peak position of two modes Eg

2 and Ag
1 for pristine CGT, and

P2 for partially degraded CGT, traced from 10 K to 140 K. Error bars denote the uncertainty of the
fittings. Dashed line is a fit according to Equation (1).
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Notice that the observed TC in our experiment is in good agreement with previously
reported [15,33,34]. It suggests that even though the Raman peak position dramatically
changed in the partially degraded CGT samples, it still exhibited the feature related to
magnetic phase transition. Therefore, it is of importance to note that in characterizations
of 2D magnetic materials, a signature of ferromagnetism does not necessarily mean the
material is in a pristine state.

We now discuss the widths of the P2–P4 peaks of partially degraded CGT and the
Eg

2 and Ag
1 peaks of pristine CGT at different temperatures, as shown in Figure 3a,b. The

Raman peak widths of the pristine CGT were in general narrower compared to degraded
sample, and there was negligible change with the variation of temperature, and the peak
width of the Eg

2 and Ag
1 were comparable, which is in good agreement with the results

reported previously [29]. However, the peak widths of the partially degraded CGT peaks
were significantly different from its pristine state. P2 in partially degraded CGT showed a
peak width comparable to that of Eg

2 and Ag
1 in the pristine CGT, with little dependence

on temperature. Nevertheless, P3 and P4 of partially degraded CGT had significantly larger
widths, which may be related to the formation of oxides on the surface [18,36].

Except for the temperature-dependent Raman, we also carried out temperature-
dependent magneto-optic Kerr measurement in partially degraded CGT samples (while
the Kerr data of pristine CGT can be found in studies such as Ref. [8] and Refs. [22,23]). As
plotted in Figure 4a, the magneto-optic Kerr loops recorded in the temperature range of
5 to 45 K showed ferromagnetic characteristics at the base temperature, which gradually
became paramagnetic with increasing the temperature. Figure 4b shows saturated magneti-
zation (MS, defined as 95% of the maximum Kerr angle around 50 mT) of each curve in
Figure 4a. It was seen that the sample exhibited non-detectable MS above 40 K, which was
lower than the TC (~60 K) of partially degraded CGT obtained by Raman measurements.
We must emphasize that due to instrumental noise limit, the magnetic phase transition
temperature might have been underestimated using magneto-optic Kerr. However, the key
observation here is that even in degraded CGT sample (which has totally different Raman
signals compared to the pristine state), magnetic characteristics (i.e., magnetic hysteric
loops, as well as the Curie temperature) were still robust and detectable by various optical
spectroscopic detections.
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4. Conclusions

In conclusion, our study provided a detailed optical spectroscopic investigation
into the air-degradation effects on few-layered van der Waals magnetic semiconductor
Cr2Ge2Te6. The observed significant alterations in Raman spectra upon exposure to air
highlighted the air-instability of 2D magnetic semiconductors. However, the temperature-
dependent Raman measurements revealed that a shift of peak position associated with
the ferromagnetic phase transition Cr2Ge2Te6 can still be found in degraded CGT samples,
just like the pristine ones. The characteristic of ferromagnetism in degraded CGT samples
was then further confirmed by the magneto-optic Kerr measurements, as the hysteresis
loop remained largely unchanged below the Curie temperature in degraded CGT, with
a rather well-defined TC. Our results underscore the importance of considering the air-
sensitivity and potential degradation of 2D magnetic materials in their characterizations, as
the presence of ferromagnetism does not necessarily indicate a pristine state.
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